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We calculate the neutrino energy loss rate Q for the neutrino-pair synchrotron radiation emitted 
by electrons and positrons in a nondegenerate (relativistic and nonrelativistic) plasma and a 
magnetic field of arbitrary strength. Synchrotron losses exhibit a disparate nature in seven regions 
of temperature ( T) and magnetic field (B) . The asymptotic behavior of Q in all seven regions is 
derived together with a general interpolation expression. We find, among other things, 
Q - 7 ~  10'7p6b6ergcm-3s-'forb<t<1 a n d Q z 4 X  1019t5b2 ln(t/t, ) e rg~m-~s- ' fo r t> t , ,  
wheret = T / ( ~ x  1 0 9 ~ ) ,  b = B / ( 4 . 4 ~  10'3G),p6isthedensity inunitsof 106gcm-3, and 
t, =: (1 + b)3'2b -'. Forp=: lo3-lo6 g ~ m - ~ ,  T--, 108-10'0 K, and B 2 10'2-10'4 G synchrotron 
losses are comparable to, or exceed, other neutrino energy losses, a fact that may be important for 
the neutrino cooling ofneutron star crusts. 

1. INTRODUCTION 

Neutrino radiation is a major cause of energy losses in 
the late stages of stellar evolution (in pre-supernovae and 
neutron stars, for instance). Neutrino losses result from a 
number of mechanisms (see, e.g., Refs. 1 and 2) and have 
been well studied for conditions where the effect of the mag- 
netic field can be ignored. 

On the other hand, neutrino losses are influenced by 
strong magnetic fields. As is well known from observations, 
there are strong fields (B = 10"-10'3 G) on surfaces of neu- 
tron stars. Inside stars magnetic fields can be even higher. 
Since neutrino radiation greatly cools neutron stars, it is im- 
portant to study the effect of a magnetic field on various 
mechanisms of neutrino losses. More than that, a magnetic 
field brings to the fore a specific mechanism of neutrino 
losses: synchrotron emission of neutrino pairs by electrons 
e-  (or positrons e + )  

For B = 0 this mechanism is forbidden by the law of conser- 
vation of energy and momentum. 

The purpose of this paper is to study synchrotron neu- 
trino cooling of a hot nondegenerate plasma. A general 
expression for the synchrotron neutrino energy loss rate Q 
has been derived in Ref. 3. There the authors also give a 
critical analysis of some of the previous work and derive 
computational formulas for the case of a nonrelativistic plas- 
ma at temperatures T g 6 X  lo9 K and in magnetic fields 
B(4.4X lOI3 G. For a degenerate relativistic plasma, calcu- 
lations of Q have been performed in Ref. 4. Below we consid- 
er a nondegenerate (relativistic and nonrelativistic) elec- 
tron-positron plasma in a magnetic field of arbitrary 
strength. 

2. THE GENERAL FORMALISM 

We use the formalism of relativistic electrons and posi- 
trons in a quantizing magnetic field in the Landau gauge 
(see, e.g., Refs. 5 and 6). In this picture a quantum state of 
an electron e- (or a positron e + )  is determined by the pro- 
jection~, of the electron (positron) momentum in the direc- 
tion of the field, the number n = 0,1,2, ... of the Landau level, 
and the sign a of the projection of the electron (positron) 

spin on the momentum. The levels n > 0 are degenerate in 
spin, a = f 1. The ground level of eT is nondegenerate, and 
a = f sign(p, ). The particle energy (here and in what fol- 
lows, c = f i  = k = me = 1, except in the final computational 
formulas) is 

2 112 
E = (1 + p: + pl) , pl = (2bn)lt2, b = BIB, (2) 

wherep, has the meaning of particle momentum across the 
magnetic field, and B, = m:c3/di--,4.414x 1013 G. 

The synchrotron radiation specified by Eq. (1) pro- 
ceeds along two channels involving the charged and neutral 
weak intermediate bosons. We restrict our discussion to a 
plasma with a temperature TgM,, with M ,  - 100 GeV 
the boson mass. In this case the amplitude of process ( 1) is 
described by a single "four-leg" diagram. As a result the syn- 
chrotron loss rate Q (the amount of energy carried away by a 
neutrino from a unit plasma volume per unit time) is given 
by the following expre~sion:~ 

Here w = E - E' and q are the energy and momentum carried 
away by a neutrino pair as the electron (or positron) passes 
from the initial statep, ,n,a to the final state (p:,n',af ) as the 
number of the Landau level changes by s = n - n' (by analo- 
gy with electromagnetic synchrotron radiation, s can be 
called the cyclotron harmonic number). In Eq. (3), f ( ~ )  
and f l ( & ' )  = f ( ~  - W )  are the Fermi-Dirac distribution 
function for eT in the initial and final states: 

where T, = m,c2/k--,5.930x lo9 K, and p is the chemical 
potential of the electrons. The quantity Q, in Eq. (3)  is equal 
to G ', where G is the Fermi weak-coupling constant. In cal- 
culating Q we can take all quantities except Q, on the right- 
hand side of the equations dimensionless, and for Q, we can 
use the dimensional constant 
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which we call the Compton neutrino loss rate. 
The quantity A in Eq. (3) is proportional to the square 

of the absolute value of the matrix element summed over a 
and a'. The integration over q is limited to the domain of 
allowed values w ~ > ~ ~ .  Analysis shows3 that only transitions 
with s > 0 are allowed. 

The general formula for A is3 

Here q, = p, -p i  and q, are the components of the mornen- 
tum of the neutrino pair along and across the magnetic field, 

and L ", are the associated Laguerre polynomials. In cases 
where formally n < 0 or n' < 0 holds one should put Fn., = 0. 
The quantities C ,  and C, are the transition constants for 
vector and axial vector interactions. For the process ( 1 ) in 
which electron neutrinos are produced (with allowance 
for charged and neutral currents), we have 
C ,  = 2 sin2 0, + 0.5 and C, = 0.5, where 0, is the Wein- 
berg angle and sin2 0, -0.23. For a process with muon-like 
and tau neutrino production (by neutral currents only), C ; 
= 2 sinZ 0, - 0.5 and C ;  = - 0.5. Summation in (6) in- 
volves neutrinos of all types, where the following notation is 
introduced: 

where N = 2 is the number of types of non-electron neu- 
trinos. To calculate the total synchrotron neutrino energy 
losses using Eq. (3),  we must add the electron and positron 
losses. 

Note that the electron and positron densities are given 
by the expressions: 

where ni is the density of the plasma ions, and Z the atomic 
number of the ions. 

3. PHYSICAL CONDITIONS 

We start by describing the range of temperatures T, 
densitiesp, and magnetic field strengths B considered below. 
It is convenient to introduce the following dimensionless pa- 
rameter x,: 

wherep, is the density in units of 10, g ~ m - ~ ,  and A is the 
mass number of the plasma ions. We restrict our discussion 
to a nondegenerate plasma, 1% tF ,  where tF is the dimension- 
less temperature [see Eq. (4 ) ]  of electron degeneracy, 
tF = (1 + x ~ ) ~ ~ ~  - 1, x  = p F / m , c ,  where p, is the Fermi 
momentum of a degenerate gas with given b  andp. For esti- 
mates we use the relations (see, e.g., Ref. 7)  x  z x ,  for b  5 x: 
and x z + x i / b  for b  %xi ,  which readily follow from (9).  

For t (  1 the electrons and positrons in the nondegener- 
ate plasma are nonrelativistic, and f o r t s  1 they are relativis- 
tic. We will call a magnetic field with b  < 1 nonrelativistic 
(and b> 1 relativistic) since for b ( 1 the separation of adja- 
cent Landau levels is much smaller than the particle rest 
mass. It is convenient to distinguish between the case of a 
nonquantizing magnetic field, in which the particles occupy 
many Landau levels, and the case of a quantizing field, in 
which the n = 0 level is primarily occupied. According to 
(2) ,  for t( 1 a field with b  ( t  is nonquantizing and a field 
with b 2  t  is quantizing. But for t ,  1, a field with b < t 2  is 
nonquantizing and a field with b  2 t * is quantizing. 

An analysis of (3) shows that synchrotron losses be- 
have differently in seven temperature ( T )  and magnetic field 
( B )  regions (regions I-VII in Fig. 1 ). The curve OAB in Fig. 
1 separates the regions of nonquantizing and quantizing 
magnetic fields. An approximate equation describing curve 
AC is b z  l / t  ( t  2  1). In the region lying above AC, relativis- 
tic electrons and positrons emit v? pairs and lose a consider- 
able fraction of their energy (see Secs. 5.2 and 5.3). 

FIG. 1. Regions I-VII of the values of dimensionless temperature t and 
magnetic field strength b in which the neutrino synchrotron radiation 
from a nondegenerate plasma is of a disparate nature (for details see the 
text). 
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4. CYCLOTRON NEUTRINO RADIATION (REGIONS I AND II) 

In a nonrelativistic gas with t 4 1 and b 4 1, the energy is 
of an emitted neutrino pair is approximately w = sb (see 
Ref. 3), with the principal energy losses related to the first 
cyclotron radiation harmonic s = 1. As a r e ~ u l t , ~  

In a nonquantizing field (bgt ,  region I )  we have 
Q a  (n- + n+ ) b 6 .  In a strongly quantizing field ( b s  t ,  re- 
gion 11), Q is exponentially suppressed [Q a exp ( - b /t) ] : 
the plasma particles are mainly on level n = 0 and are in- 
capable of emitting neutrino pairs by the synchrotron mech- 
anism. Only a small fraction of particles that remain on level 
n = 1 emit neutrino pairs (cf. the results of Sec. 6).  

5. CYCLOTRON LOSSES IN A NONQUANTIZING FIELD 
(REGIONS IV, V, AND VI) 

The electrons and positrons in regions IV-VI (Fig. 1 ) 
are relativistic, occupy many Landau levels, and emit a qua- 
sicontinuous spectrum of higher-order harmonics s, 1. In 
this case Eq. (3)  can be simplified by a method used earlier 
in Refs. 4 and 8. Here, in contrast to those papers, we do not 
assume that in emitting a YV pair both e -  and e+ lose only a 
small fraction of their energy. 

For n and s fixed, the inequality w2>q2, which limits the 
domain of integration over q in (3),  can be written as3 

In the conditions chosen (E, 1, n) 1, S$ 1, andp, ) 1 ), only 
a small subdomain of ( 12) in which the function A in the 
integrand of (3)  assumes its maximum value provides the 
principal contribution to (3).  The peak value of A is primar- 
ily determined by the maximum of the functions F i., (u)  . 
One can easily see that the domain specified by ( 12) corre- 
sponds to thevalues u S (fi - @),'for which the F;., (u)  
grow exponentially with u (see Ref. 6).  Hence, the main 
contribution to the integral in (3)  is provided by the subdo- 
main of ( 12) near the point (q, = xl , q, = x, ), where x, is 
the peak value of 9,. From ( 12) we find that 

For q, zx, and q, -- x, condition ( 12) can be replaced by 
the following inequality: 

When integrating over the small subdomain (14), we can 
assume that the energies of the product particle and the emit- 
ted neutrino pair are constant: E = E[ ( 1 + p12)/ 
(1 +p:)]'12andw = E - ~ ' . ~ n a n a l ~ s i s o f  (6)  showsthat 
it is sufficient to retain only the following terms in it: 

In the subdomain (14) it is enough to put 
2 2 w -q  z2xlSq, - ( l+p : ) (q ,  -x , I2  where 

Sq, = x, - q,. Since both @ and are independent of q,, 
we can easily integrate A with respect to q, within the limits 
( 14) : 

EC'JA dq, = C:dqZ (Y + @) 3 x,dq, - 6 ~ t d q ; )  [ r 

where 642 = 2x1&EtSqL ( 1 + P? 1. Next we assumep, ) 1 and 
p; ) 1. Under these conditions we have9 

where K,,,(z) and KZl3(z) are modified Bessel functions of 
the second kind with argument z = 0.5y( 1 + f 2)312, with 
y = 2x, /3p1p; b and6 = 2p,p; Sq, / x ,  . The functions ( 17) 
decrease exponentially as Sq, grows, which justifies the 
above procedure. We substitute ( 17) into ( 16) and integrate 
with respect to q, in accordance with ( 3 ) .  Going on to inte- 
gration with respect to and sending the upper limit of inte- 
gration to infinity, we obtain 

Here 
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In ( 18) we have allowed for the identity tion with respect top; to integration with respect toy  [see 

00 
Eq. (22) ] by usingp;dp; = b dn = bds = 1.5p:b dy. We let 

5 the upper limit of integration go to infinity since the contri- 14 t6(1 + t2 )~Lp(z)  = 71 ( R ~  - 2 ~ 3 ,  (20) bution of large values of y is exponentially small. The most 
0 convenient way to perform integration with respect top, and 

which can be derived the Bessel func- p, is to transfrom to spherical coordinates and introduce the 
ti on^.^ The integrals R,, R ,, and R, are expressed in terms of classical particle momentum and the pitch angle 
linear combinations of modified Bessel f~nc t ions .~ .~  p, = p cos 6 and p, = p sin 6. The result is 

In the approximation adopted here the characteristic 
numbers of the Landau levels of the particles before and after OD x 
neutrino emission are high (n ) 1 and n' ) 1 ) . Hence in ( 3 ) 3 5 ~ c  6 

we can replace the sums over n and s (i.e., n')  by integrals 
&' J a sin78 Q = J d p  p8 
+ ~ 1 4 2  

0 0 
with respect to dp, and dp; (dn = p, dp, /b, and similarly for 
n'). As a result we obtain 

+ca OD p L + 2R1 + 4 R2) - c f i ( 4 ~ ~  + 2Rl)]. (23) 
Q=- 2Qc J dPZ J PIdP1 J P;dP;f(l- f ~ ,  

3 b ( w 5  -, ,, o (21) All the integrals can be evaluated, which yields 

whereIis given by Eq. ( 18). In (21 ) we have allowed for the 
fact that in a nondegenerate relativistic gas the chemical po- 
tential of electrons and positrons vanishes. For this reason 
the distribution functions (4) for e-  and e+ are the same, 
and summing the contributions of e-  and e+ to (2 1 ) reduces 
to introducing a factor 2. 

Equations ( 18 ) and (2 1 ) generalize Eqs. (5),  ( 1 1 ) , and 
( 12) of Ref. 4 to the case where the radiating particles may 
lose a sizable fraction of their energy and momentum (the 
magnetic field, however, remains nonquantizing ) . The dif- 
ference in the formulas derived in this paper lies in the new 
term in ( 18) that contains the sum R, + R,. If the particles 
lose a small fraction of their momentum, then x:/p,p; -4 1 
holds and this term is negligible. 

By the very meaning of our derivation, formula (21 ) is 
valid in regions IV-VI (Fig. 1). Neutrino losses in these 
regions do not depend on the density of matter (they are 
functions of only temperature and magnetic field strength). 
Below we consider regions IV-VI separately. 

In this region the typical values p, -E-t satisfy the 
condition p, b ( 1. Relativistic electrons and positrons emit 
cyclotron harmonics with moderate numbers ( 1 (s g n) and 
lose a small fraction of their energy and momentum when 
emitting YV pairs ( w  <E, Iq, I ( Ip, I, and 9, (p, ). Equations 
( 13 ) then yield 

According to (19), for y) 1 the functions Ri (y) decrease 
exponentially as y grows. The main contribution to the neu- 
trino losses is provided by harmonics with s -p:, which cor- 
respond toy - 1. The same is true of ordinary electromagnet- 
ic synchrotron losses (see, e.g., Ref. 9). Using Eqs. (22), we 
can easily show that nondegenerate relativistic electrons and 
positrons do indeed lose a small fraction of their energy and 
momentum if 1 & t (b - holds. This is possible only forb ( 1 
(region IV in Fig. 1 ) . 

Here we can ignore the term in (18) that contains the 
sum R, + R ,. It is convenient in Eq. (2 1 ) to go from integra- 

where c (x )  is the Riemann zeta function. 

5.2. Region V ( t - 1  gbg 1) 

Here the characteristic valuesp, -E- t satisfy the con- 
di t ion~,  b) 1, the main contribution to the neutrino losses is 
provided by harmonics with s - ~ * / b ,  and electrons and posi- 
trons may lose a sizable fraction of their energy and momen- 
tum when emitting YV pairs. We partition the domain of 
integration with respect to p; [in (Eq. 21 ) 1 into two do- 
mains, one from 0 top, and the other fromp, top,, withp, 
subject to the condition b - ' (p, ( t. 

Forp; >p, the characteristic values of the arguments of 
the R, (y) are small, y <  1. The main contribution to ( 18) is 
provided by the function R , = : 2 7 ~ ~ / 9 ~ ~ ,  which grows faster 
than other functions as y-0. This yields 

where x, = p, /p, ( 1. The logarithmic term appears be- 
cause x,  is small. 
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For p; <p, the main contribution to ( 18) is provided Y + @ = 2 9 ,  y - @ = ; 9  v ( n = O ) ,  
by the term containing the sum R, + R ,. When p; is small, 
the energy of the final electron or positron is low, E' < t, that 

2  U 
is, f ' ~ 0 . 5 .  As a result, Y+@=- - (P+n)CJ,  ~ - @ = ~ ( 1 2 - 3 n ) 9  (n=  1), 

n  

where y, = 2/(3p1 bx, ) & 1. The integral containing R,(y) 
converges as y, -0, which allows us to replace the lower 
limit of integration by zero. The integral containing R,(y) 
possesses a logarithmic singularity when y, -0. This is writ- 
ten out explicitly. 

After we add (26) to (27), the dependence on the artifi- 
cially introduced parameter p i  vanishes, which justifies the 
above procedure. We substitute this sum into (2 1 ). The inte- 
gration in (26) can be done numerically. The other integrals 
in (27) and (2 1 ) can be evaluated analytically. The result is 

In the case considered here tb $1, that is, the leading term in 
the square brackets is the large logarithm. Note that the giv- 
en mode of synchrotron losses is similar to the one occurring 
in a degenerate relativistic electron gas with a nonquantizing 
magnetic field for t 4 bxi ,  where x, is given by ( 10). In the 
latter case Q = (2 /9 )< (5 )~ -~C:  t 5b 2Q, (see Ref. 4).  

5.3. Region Vl(1 +b+t 2, 

The calculation of synchrotron losses in region VI is 
similar to the one done for region V. We again partition the 
domain of integration with respect to p; in (21) into two 
domains (one from 0 top, and the other fromp, top, ). We 
requirep, to satisfy the condition figp, & t. The integral 
over the second domain leads to (26), as it did in Sec. 5.2. 
The difference lies in the first domain. While in Sec. 5.2 the 
main contribution in this domain was provided by values of 
p; much larger than unity, corresponding to n') 1, now the 
values n' - 1 provide a sizable contribution. Hence, from in- 
tegrating with respect top; from 0 top, we go back to sum- 
mation over n' from n' = 0 to n, = p , / J 2 6 $  1. 

Equations ( 17), which were used in deriving ( 18 ) , be- 
come invalid for small values of n'. Let us use the exact for- 
mulas for F,., ( u ). These can be made simpler by accounting 
for the fact that we are interested only in values n % 1 and in 
the domain of arguments u 5 n, which provides the largest 
contribution to the integrals with respect to q, in ( 18). As a 
result we find that it is sufficient to use the following formu- 
las in (15): 

Clearly, Eq. ( 16) remains valid up to values n'> 1. Sub- 
stituting (29) into ( 16) and integrating with respect to q,, 
we obtain 

where a,, = 0.697, 0.790, and 0.833 for n' = 1, 2, and 3, re- 
spectively. These values can be approximated by the formula 
a,. /n' =: (n') - ' - 0.3 (n') - Assuming that the same for- 
mula is valid for n' > 3 yields 

The case n' = 0 requires special treatment since the do- 
main of integration with respect to ql and g, is described 
then by Eq. ( 14) only for Ip, - q, I & 1. For Ip, - q, I $ 1 but 
in the neighborhood of the point (q, = x,, q, = x, ), the 
domain of integration is found from Eq. ( 12). For q, > 0 
(for the sake of definiteness) this equation assumes the form 
( x l - q 1 ) = ( ~ ~ p , ) ( q Z - ~ , ) / ~ , ,  where x1=p l ,  
x, =p,, the "plus" corresponds to qz > x,, and the "minus" 
to q, < x,. Employing (15) and (29), we get I = C :  
b 3n~-1 .  We add this to Eq. (3  1 ), multiply the product by b 
(to adjust summation over n' and integration with respect to 
p; ), and add the result to (26). As in Sec. 5.2, all dependence 
onp, (or on n, ) vanishes. The remaining transformations 
are similar to those performed in Sec. 5.2. The result is 

This is similar to (28). The difference lies in the arguments 
of the logarithm and the coefficients of the logarithms. In 
region VI the quantity t /& under the logarithm sign is 
large, that is, the leading term in the square brackets is still 
the large logarithm. For this reason the synchrotron loss 
modes in regions V and VI are similar. 

6. CYCLOTRON LOSSES IN A RELATIVISTIC QUANTIZING 
MAGNETIC FIELD (REGIONS Ill and VII) 

In regions I11 ( t & l & b )  and VII ( l < t < f i ) ,  asin re- 
gion 11, the majority of the plasma electrons and positrons 
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are on the ground Landau level and are incapable of emitting 
synchrotron YV pairs. The main contribution to the radiation 
is provided by a small fraction of particles on level n = 1. 
When summing in (3),  it is sufficient to leave only one term, 
with n = 1, n' = 0, and s = 1. The processes of emission of a 
YV pair by particles in regions I11 and VII are similar. Prior 
to emitting, a particle is highly nonthermal (e)  t ) .  In both 
regions we have b % 1. Hence in calculating A in (6)  we can 
put e=:J26, withp, -t 'I2b 'I4<&. After emitting, the parti- 
cle retains its high energy but finds itself on level n' = 0. It is 
sufficient to assume that el=: Ip, I ) t and e r% 1, with the re- 
sult that 1 - f '=: 1 in (3).  Equation (6) yields 

Here w = J26 - Iq, I, and the domain ( 12) of admissible 
values of q, (or u) and q, can be expressed as follows: u < 1, 
2qI (b( 1 - u ) ~ .  Integration over this domain yields 

where e = exp( 1 ), and n;' are the concentrations of parti- 
cles (e+ and e-) on level n = 1 [see Eq. (9) 1. The above 
formula is valid in both region I11 and region VII. 

Calculating n(:) in region 111, we get 

where n * are the total particle densities. 
A similar calculation for region VII yields 

The main feature of Eqs. (34)-(36) is the presence of 
the exponentially small factor exp( - J26/t), which re- 
flects the fact that only a small fraction of particles are capa- 
ble of emitting neutrino pairs by the synchrotron mecha- 
nism. 

7. AN INTERPOLATION FORMULA 

After deriving the asymptotic formulas ( l l ) ,  (24), 
(28), (32), (35), and (36) describing the neutrino synchro- 
tron losses in regions I-VII, it is well to derive a general 
interpolation formula. Allowing for the special features of 
the synchrotron mechanism of the emission of YV pairs 
(Secs. 3-6), we can write the interpolation formula as 

where n- + n+ is the total concentration of e- and e+, j is 
the fraction of electrons on Landau levels with n > 0, and F ,  
are functions of temperature and magnetic field strength ( t  
and b). To use (37), we must have computational formulas 
for n- + n+, j, and F ,  . 

The total concentration of e- and e+ is given by the 
following formulas: 

which follow from (9). For the product n -n + we can use the 
interpolation formula 

where a = ( 2 / ~ )  (1n 2)' = 0.3059, and f l=  1.56 (3) /  
In 2 = 2.601. For t 4 1 formula (39) describes the nonrela- 
tivistic asymptotic behavior, which can be obtained from 
(9)  and is valid for all values of b. The above choice of the 
parameter a enables (39) to be transformed into its asymp- 
totic form for 1 4 t 4 6 .  Finally, the choice of the parameter 
f l  makes it possible to reproduce the proper asymptotic be- 
havior when t% 1 in a nonquantizing field. Using (39), we 
arrive at the following expression for the dimensionless pa- 
rameter u in (38): 

2 b 
u = 13,41(&) dt(1 + at) exp (- :) coth2 [2t(l 

where A is the mass number of the plasma ions, andp, is the 
plasma density in units of lo6 g ~ m - ~ .  

For the fraction j of electrons occupying the excited 
Landau levels we can employ the following interpolation 
formula: 

Here a is the same parameter as in (39). Formula (41 ) re- 
produces the nonrelativistic asymptotic behavior for t <  1 
and b 4  1 and the asymptotic behavior for 1 ( t < G  and 
yields the correct valuej = 1 in the limit t, 1 for nonquantiz- 
ing fields. 

Finally, employing Eqs. (37)-(41), we arrive at the 
following expressions for the functions F+ and F-: 

with the constants 
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log T [ K l  

FIG. 2. Neutrino energy loss rates versus the plasma temperature at a 
density p = 2 X  10' g cm-j. Curves I and 2 correspond to synchrotron 
and annihilation losses for B = 1013 G (solid curves) and B = 1014 G 
(dashed curves); curves 3,4,  and 5 correspond to photon decay,' plasmon 
decay,' and electron bremsstrahlung on nuclei ( Z  = 6 and A = 12; Ref. 
11 ) at B = 0. Curve 3 has been plotted using the data of Table I in Ref. 2, 
where the values of Q are listed only for T< 109.9 K. For higher tempera- 
tures the authors of Ref. 2 suggest using the interpolation formulas (5)- 
(16) of Ref. 2. The interpolation curves, however, depart strongly from 
the tabulated data and are not shown here. 

chosen in such a way so as to satisfy the asymptotic forms of 
Eqs. (111, (241, (281, (321, (351, and (36). 

Finally, substituting (38) into (37), we get 

where C?+ = 1.675, C 2  = 0.175 [see Eq. (8), 
sin2 8, = 0.23, the number N of types of non-electron neu- 
trino is two], and the quantities u, j, and F ,  are specified in 
(40), (41), and (42). 

8. DISCUSSION AND CONCLUSIONS 

Formula (44) provides an easy way to calculate the 
synchrotron neutrino loss rate in a nondegenerate plasma 
with an arbitrary magnetic field. To illustrate this fact, Fig. 2 
depicts the temperature dependence of the loss rate for p Z  / 
A = 10' g cmP3 in magnetic fields B = 1013 and 1014 G.  
Synchrotron losses are compared with neutrino losses 
caused by other mechanisms of neutrino production, such as 
the annihilation of e-e+ pairs (e- + e+ - Y + V), plasmon 
decay (hp + Y  + V), photon decay in a plasma 
( y + e- + e- + Y + V) , and electron bremsstrahlung on nu- 
clei (e- + Z+e- + Z + Y + V).  Annihilation losses in a 
magnetic field have been calculated in Ref. 10. Up to now the 
effect of a magnetic field on other processes has not been 
discussed. The respective curves in Fig. 2 are depicted for the 

case of a zero field for illustration (with the data taken from 
Refs. 2 and 11). 

According to Fig. 2, synchrotron radiation is the major 
cause of neutrino losses in a plasma that is not too hot 
(T5; lo9 K )  and is placed in a strong magnetic field. Such 
conditions are realized in neutron star crusts. The above dis- 
cussion shows that neutrino synchrotron radiation is an im- 
portant cause of the cooling of nondegenerate plasma in neu- 
tron star crusts. According to Ref. 4, neutrino synchrotron 
radiation may also be one of the main reasons for cooling in 
the deeper, degenerate, layers of neutron stars. Our results 
augment the data of Ref. 4 and make it possible to calculate 
neutrino synchrotron losses in all the sections of neutron star 
crusts (degenerate and nondegenerate, relativistic and non- 
relativistic) in magnetic fields of arbitrary strength. This is 
especially important in studying the cooling of young neu- 
tron stars (the first 10-100 years), where neutrino losses in 
the crust have a strong effect on the lowering of the tempera- 
ture of the star's surface (see, e.g., Ref. 12). 

A more complete analysis of the effect of a magnetic 
field on the cooling of a neutron star must include the effect 
of the field on the neutrino losses caused by all the mecha- 
nisms of neutrino production. 

In conclusion we note that a simple scaling criterion for 
neutrino and electromagnetic synchrotron losses has been 
derived in Ref. 4. It makes it easy to estimate neutrino syn- 
chrotron losses if electromagnetic synchrotron losses are 
known. In Ref. 4 the criterion has been applied to the case of 
a degenerate electron gas. Using the results of Secs. 4-6 and 
the well-known formulas for electromagnetic synchrotron 
losses, one can easily verify that the scaling criterion also 
makes it possible to estimate the neutrino synchrotron losses 
in all seven regions of variation of the magnetic field strength 
and temperature in a nondegenerate plasma. What this ap- 
proach does not achieve is an estimate of the large loga- 
rithms in Eqs. (28) and (32). Note that electromagnetic 
synchrotron losses of plasma energy are much larger than 
neutrino synchrotron losses. However, electromagnetic ra- 
diation cannot penetrate an optically thick medium and is 
not as important a cause of cooling of hot, dense matter as 
neutrino losses. 
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