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We discuss the problem of the dependence of the probability for spontaneous emission on the 
electron density and the temperature under conditions when the effect of the plasma environment 
is not important. Using kinetic Green's functions for nonequilibrium processes in the framework 
of the Keldysh formalism we derive generalized equations, valid for broad lines, for the transfer of 
resonance radiation and for the kinetics of excited particles. In thermodynamic equilibrium these 
equations give the correct expression for the Planck intensity. We perform numerical calculations 
of the spectral intensities of the spontaneous emission and of the intensities integrated over the 
frequency for transitions in the lithium-like carbon ion for which recently experimentally the 
total intensity has been observed to depend on the electron density. Our calculations show that 
even in a low-density plasma at low temperatures a significant difference between the intensity 
integrated over the spectrum and its vacuum value is possible. Spectral anomalies manifest 
themselves on the far wings of the lines which may turn out to be important for the problem of 
radiation transfer, in particular, for calculations of the mean free paths of photons in dense 
matter. 

1. INTRODUCTION 

In Ref. 1 Einstein was the first to introduce in his con- 
siderations the hypothesis of induced emission and also the 
concept of the probabilities for spontaneous and induced 
emission. In the same paper he gave a derivation of the 
Planck formula for the spectra density of equilibrium radi- 
ation from the conditions that the atom be in equilibrium 
with the thermal radiation. This paper essentially laid the 
foundations for the theory of the transfer of resonance radi- 
ation. 

In the quantum theory of radiation the Einstein coeffi- 
cient A,, , which is equal to the probability for a spontane- 
ous transition from an excited state m to a state n, is calculat- 
ed using perturbation theory (see, e.g., Ref. 2). For a 
particle in vacuum the quantity A,, is determined by the 
matrix element of the dipole moment operator and the tran- 
sition frequency and is, of course, independent of the density 
(p)  and the temperature (T). In a dense hot substance the 
emitting ion is in the environment of its neighbors and its 
wavefunctions and energy levels, determined in a number of 
models, depend on the density and the temperat~re,~ which 
causes A,, to depend onp and T. It is natural to assume that, 
as long as the size of the atomic orbits are small as compared 
to the distance between the particles or the screening radius 
of the Coulomb potential in the plasma, thep and T depen- 
dence of A,, is not significant. 

Experiments which have recently been carried out in a 
laser plasma produced by a pulsed CO, laser4 and also by a 
ruby or Xe-Cl lasers with a moderate energy < 10 J and a 
long pulse length - 20 to 150 ns have shown that in a plasma 
with a relatively low density (with an electron density 
N, -- 101R-1019 ~ m - ~ )  the ratio of the experimentally mea- 
sured intensities for transitions from one and the same level 
in the visible (J,,, ) and the vacuum ultraviolet (Jvuv ) bands 
decreases with increasing N, in this range by more than an 
order of magnitude as compared to the vacuum value of this 
quantity, determined by the ratio of the corresponding A 
coefficients. Ratios for CIV ions (3p-3s transitions in the 

5801-58 12 b; and 3p-2s transitions in the 3 12 b; wavelength 
bands for lithium-like carbon), for CIII ions (5696 .& and 
574Afor 3d '&3p1Pand3d 'D-2p1P transitions, respective- 
ly, for beryllium-like carbon), and NV (4603-4620 .& and 
209 b; for the 3p-3s and 3p-2s transitions in lithium-like 
nitrogen) were measured experimentally. 

The authors of Refs. 4 and 5 gave a number of argu- 
ments showing that the observed decrease in Jvis /Jvuv was 
not connected with the reabsorption of the resonance radi- 
ation and reached the conclusion that for electron densities 
N, - 1019 cm-3 their frequent collisions with excited parti- 
cles decrease the probability for spontaneous emission, A,,, , 
for transitions in the visible wavelength band as compared to 
its "vacuum" value. Under those conditions the replacement 
of the Coulomb potential by the screened Debye potential 
does not make a significant difference in the magnitude of 
Avis 

The effects detected in Refs. 4 and 5 have more recently 
been studied in Refs. 6 and 7 in independent experiments and 
the existence of the effect was confirmed in Ref. 6, although 
the authors of Ref. 6 proposed reabsorption as the explana- 
tion of the effect while in Ref. 7 the effect of a decrease in AVis 
with increasing N, was not observed. The problem arises 
whether it is possible in principle that the probability for 
spontaneous emission can depend on the electron density 
and the temperature in conditions when the density effects3 
do not play an important role. We consider in the present 
paper the problem of the effect of a finite spectral line width 
on the intensity of the spontaneous emission and we show 
that even in a low-density plasma at low temperatures the 
emission intensity, integrated over the spectrum, can differ 
considerably from its vacuum value. 

The paper is constructed as follows. In Sec. 2 we give a 
qualitative discussion of the problem considered here. In 
Sec. 3 we give a more formalized derivation of the equations 
for the transfer of resonance radiation and the kinetics of 
excited particles, valid in the case of broad lines. In Sec. 4 we 
give the results of numerical calculations of the spectral val- 
ues and of the intensities of the spontaneous emission by an 
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optically thin plasma integrated over frequency for the ex- 
ample of the transitions in the lithium-like carbon ion which 
were studied e~perimentally.~.~ Although the results ob- 
tained do not explain the dependence of Jvis /Jv,, on the elec- 
tron density detected in Refs. 4 and 5, they show under what 
conditions the quantities J may depend on N, . 

2. QUALITATIVE CONSIDERATIONS 

In the existing theory of the transfer of resonance radi- 
a t ion '~~ in the approximation of complete redistribution over 
frequencies (CRF) of the absorbed and the emitted quanta 
the equation for the spectral density of the radiation is a 
kinetic equation for the photon frequency distribution func- 
tion and can be written in the stationary case in the form (for 
simplicity we consider only two states: m is the upper and n 
the lower state) 

Here ll is a unit vector along the direction of flight of the 
photon. The quantity k,, (w) is the absorption coefficient of 
the resonance radiation defined in terms of the difference in 
populations. 

In (2)  A is the photon wavelength, the gi are the statistical 
weights of the states i ( i  = n,m), a,, (w) is the profile of the 
spectral line determined by the various broadening mecha- 
nisms: radiative, collisional, Doppler, and Stark broadening 
(see Ref. lo), and Ni is the population of the ith state. The 
quantity E,, (w) is the volume intensity of the spontaneous 
emission in the appropriate frequency and solid angle range 
which in the approximation of a complete redistribution 
over frequen~ies",'~ we can write in the form 

We can find the populations Ni from the balance equations 
which contain the rates for the excitation processes (includ- 
ing photo-excitation) and the decay of the corresponding 
states (see Refs. 8 and 9). Equations (2)  and ( 3 ) have been 
written down in the resonance approximation when the devi- 
ation of the frequency from resonance is small compared to 
the frequency: 

In thermodynamic equilibrium the populations satisfy the 
Boftzmann relation:' 

When the radiation is in equilibrium with matter the radi- 
ation intensity is determined by ( 1 ) with a right-hand side 
equal to zero and in accordance with Kirchhoff s law" is 
given by the expression 

Using (4)  we get from (5) for the photon occupation 
numbers the Planck formula, as was shown for the first time 
in Ref. 1, 

In fact, in the Planck formula the expression which is the 
analog of (6)  contains not the transition frequency wo, but 
the running photon frequency w. As long as the widths y of 
the spectral lines are small compared to the temperature, 

the difference between (6) and the true Planck formula is 
insignificant. However, one can pose the problem more for- 
mally as, is done, for instance, in Ref. 13 (see the controversy 
connected with this in Refs. 14 and 15 ) which is devoted to 
the Nyquist formula: which of the formulas is more accurate 
especially for widths which are not small? A similar problem 
had been discussed earlier in Ref. 16. The difference becomes 
more one of principle if we consider the problem about the 
radiation leaving an equilibrium plane layer (see Ref. 17) : 

emn(~) [ ( knn?)~)] (7) 
zrayer (w? P )  = 1 - exp - ----- . 

Here L is the thickness of the layer and ,u the cosine of the 
angle of the photon flight reckoned from the direction of the 
normal to the layer. The first factor in (7)  is given by Eq. 
(5).  Even if y 4 T holds, for large optical depths of the layer, 

for mismatches A small compared to the equivalent line 
width Awe,, determined from the relation 

(for a Lorentz profile) Eq. (7)  can give a considerable dif- 
ference from the Planck formula, if iiAw,, > T. According to 
(7) ,  (5),  and (6)  the intensity of the emerging radiation is 
practically independent of the frequency for A<Aweq [w, 
occurs in the exponent of Eq. (6) ] ,  whereas in the true 
Planck formula the intensity can vary considerably (by a 
factor e=: 2.7 when fiAo,, -- T). Since there appears such a 
discrepancy we must admit that the formulation of the ap- 
propriate radiation theory expounded above is unsound. A 
qualitative solution of the emerging difficulties was pro- 
posed in Ref. 9. We note that the absorption coefficient (2)  
contains a correction for induced emission and in the case of 
thermodynamic equilibrium it can be written in the form 

When the radiation transfer occurs in the continuous spec- 
trum we obtain an expression for the corresponding correc- 
tion factor'' 
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If in Eqs. (2)  and (3)  we replace formally the occupation of 
the upper level Nm by the quantity 

the correction for induced emission in the expression for the 
absorption coefficient in the line is at equilibrium the same as 
the similar one in the continuum and Eq. (5 )  gives the cor- 
rect expression for the Planck intensity. The factor 
exp( - fi(w - w,)/T) introduced here differs little from 
unity for y< T. However, at low temperatures or for broad 
lines this modification of the transfer theory leads to consid- 
erable differences from the one expounded above. 

We turn to the problem of the integral power of sponta- 
neous emission which was measured in Refs. 4 and 5. If we 
use the approximation (3) and integrate this expression over 
the frequency we get 

In the resonance approximation the frequency dependence 
of the probability for spontaneous emission, 

(dm,  is the matrix element of the dipole moment operator) 
and of the factor h in (8)  can be neglected for narrow spec- 
tral lines. Removing the smooth frequency dependence pro- 
portional to w4 from under the integral at the point of reso- 
nance (w = w,) we get 

since the profile a(w) of the spectral line is normalized to 
unity. In Eq. (9)  

is the vacuum value of the probability for spontaneous emis- 
sion calculated using perturbation t h e ~ r y . ~  In actual fact, 
the integral (8)  diverges if we do not use the resonance ap- 
proximation, since in the wings of the line the profile con- 
tains a Lorentz tail, 

which does not guarantee the convergence of the integral 
(8) :  

Jw44w)dw = ==. 
0 

If we use the modification of transfer theory proposed 
in Ref. 9, i.e., substitute in (8)  instead of Nm the quantity 
N *, we obtain 

The integral (10) appearing here converges for large mis- 
matches. At low temperatures or large linewidths the con- 
verging integral ( 10) may differ noticeably from expression 
(9)  which was taken as the basis for the interpretation of the 
e ~ ~ e r i m e n t . ~ . ~  The qualitative discussions given in the pres- 
ent section can be justified quite rigorously in the framework 
of L. V. Keldysh's theory using kinetic Green's functions for 
nonequilibrium In particular, a justification 
for the heuristic replacement in Ref. 9 of N ,  by N *, is given 
in Refs. 23 and 24. More important is that in a rigorous 
treatment Eqs. (2)  and (3)  are also changed. In the next 
section we give a more rigorous formulation of the corre- 
sponding equations for the transfer of resonance radiation 
which is valid for broad spectral lines and low temperatures. 

3.TRANSFER TO RESONANCE RADIATION IN BROAD LINES 

We noted above that the deviation of the results of the 
standard theory for the transfer of resonance radiation [for- 
mulated using Eqs. ( 1 ) to (3)  ] from the true Planck formu- 
la in the equilibrium case is not very important if the 
linewidth y, or the equivalent width of an optical dense sys- 
tem, Am,,, are small as compared to the temperature. If, 
however, this condition is not satisfied the theory must be 
generalized and it is convenient to formulate it using the 
method of kinetic Green's f~nct ions. ' ' -~~ 

If one takes into account the partial redistribution in 
frequency (PRF) of the absorbed and emitted pho- 
t o n ~ , ~ ~ ~ ' - ~ ~  besides the occupation numbers N, of the atomic 
states the spectral densities N, ( a ) ,  which are usually inter- 
preted9 as the probability distribution of excited particles 
that are able to emit a photon of frequency w ,  also occur in 
the theory of the transfer of resonance radiation. In the CRF 
regime the N, (w) are connected with the corresponding oc- 
cupation numbers N, through the relation 

In Eq. ( 11 ) ai (a) is the spectral line profile. These relations 
assume that the transitions from the excited state i = m take 
place to the ground state i = n which has a zero width so that 
the corresponding quantity N, (a) is proportional to a S- 
function of the frequency. 

The spectral density of the excited particles can be ex- 
pressed in terms of the kinetic Green's f ~ n c t i o n ' ~ ~ ~ ~ ~ ~  
G ; + (r,t,,r,t2), defined as the quantum statistical average 
of the field operators 4 in the Heisenberg representation: 

For definiteness here we have assumed Fermi statistics for 
the particles, x = {r,t) is the four-coordinate of the center of 
mass of the particle, and the are variables characterizing 
the motion of the atomic electron described by a set of atom- 
ic wavefunctions pi (6). The projections of the Green's func- 
tion ( 13) on the basis atomic functions determine the func- 
tion G ; + (x,xl) : 
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We consider in what follows the interaction of an atom with In ( 18) we have wk = clkl, c is the velocity of light, and the 
a quantized electromagnetic field which does not contain nk are the photon occupation numbers connected with the 
coherent states so that the off-diagonal functions GT ' ( i #  k, spectral intensity density I(w,fL) through the relation 
and the a = + are Keldysh variables characterizing the 
kind of chronological ordering of the field are nA2 

n -- assumed to be equal to zero. k - hk I(wp n). (20) 

The spectral distribution function of the excited parti- 
cles can be in terms of G; + ( ~ 7 ~ ' )  through the The transport equation ( 1 ) is a particular case of the Dyson 
following relat i~n: '~ , '~  e q ~ a t i o n ' ~ - ~ "  for the function D ; + :23-24 

a Ni(R* P* a*. TI = - i J ~ ; + ( r ~ t ~ ,  r2tz)exIJ(w7 - ipp)d'dP- -qw - + auk(n, s)) D; + = qnh2(n+-D-  + - n - t o t - ) .  
at il i j  

(15) 
(21) 

Here we have 
Using Eqs. ( 18) to (20) we can express the absorption coef- 

7 = t ,  - t2, T = ( z l  + t2 ) /2 ,  p  = r1 - r2, ficient k,, (w) and the volume source E , ~ ,  (w), which ap- 
pear in ( 1 ), in terms of the polarization operators nu"' : 

R = (r, + r2) /2 .  

The wavevector p is connected with the particle velocity v: 

v = TiplM, 

where M is the particle mass. 

' I tzk  
k 11111 (w)  = - 2 c cn,',- - n , : ) ~  

Equation ( 15) means that the spectral particle velocity 
and frequency distribution, a special case of which is the In the resonance approximation for the polarization opera- 

function N, (w ) from ( 1 1 ) and ( 12), appears in general in tors nu"' we can obtain the e ~ ~ r e s s i o n s ' ~ ~ ~ ~  (for simplicity 

the transfer theorv for resonance radiation. we assume that the states m and n are nondegenerate) 

In the Keldysh technique".20 the information about the 
dynamics of the quantum system is described by the retarded d?,,, d o  4 
G and advanced Gf Green's functions and its kinetics is 

n z ( ~ ,  k )  = i - J -+ G:JP + ~)G;,;(P), (24) 
( 2 4  

described by the functions G -+ and G +-, where these are 
connected through the relation 

G,?- = G f  - G; + G;'. 

For nondegenerate systems the last term can usually be 
dropped in an expansion in the parameter NA ;, where A, is 

To find the atomic Green's functions G 7' we need expres- 

the thermal de Broglie wavelength for the particle con- 
sions for the retarded G : and advanced G y functions. From 

cerned. the Dyson we can find that 

Not only the atomic Green's functions G P" but also the 
photon Green's function D 7 ' (x,xf)  defined in terms of the ~ f ( p )  = ~ f ( w ,  p) = 

1 

Heisenberg operators of the photon electric field strength h - hi - E(p) + p  - ~ f ( w ,  P) '  

appears in the set of equations describing the transfer of reso- (26) 
nance radiation. For instance, for D ,; + (x,xl) we have2" Here tiw, is the energy of the ith state, 

A n 

i ~ i + ( x ,  x')  = (Ei(xl)Ej(x)).  (17) E(p) = p 2 / 2 ~  

For a perfect photon gas in infinite space the function is the translational energy, and p is the chemical potential. 
D y + (w,k) has the formz0 We can express the mass operator Xp as f o l l o ~ s : ~ ~ ~ ' ~  

(18) 
The function GA is obtained from GR by taking the complex 
conjugate. The first term in (27) characterizes the shift of 

The function D ,: - ( w , k )  can be expressed in terms ofD - + 
the level due to the interaction with the photons (Lamb 

by the relation20 shift) and the electrons (collisional shift) and the second 
one characterizes the width of the state and by virtue of the 
assumption of a low atomic density (NA 3, < 1 ) we have 

~ + - ( w ,  k )  = D - + ( - a ,  -k) .  (19) Z+-s8-+. We thus have 
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Omitting the shift in the level (including it in w i  ) in the 
present case we write 

For the radiative decay from the state m to the state n in the 
resonance approximation the Feynman diagram18.20 we 
have 

The thick solid line here indicates the dressed atomic 
Green's function and the wavy line the photon Green's func- 
tion. The vertex insertions in (28) are small in the resonance 
approximation. 

For collisions with electrons we have in the Born ap- 
proximation for E,,,,,, + - ( p )  the Feynman diagram23,24 

We note that in thermodynamic equilibrium we can use 
the temperature Green's function technique.25 The tempera- 
ture Green's function has a form similar to (26) except that 
instead of the frequency w the quantity iw, occurs, which for 
Fermi statistics runs through a series of discrete values 

where f l  is the reciprocal temperature of the system. 
The momentum distribution function Ni (p) can be ob- 

tained from the temperature Green's function by using the 
r e l a t i ~ n : ~ ' - ~ ~  

Free-electron Green's functions are here indicated by a thin 
solid line, and a dashed line corresponds to the interaction 
potential V, with an electron (in the present case we consid- 
er elastic scattering). To calculate the values of 8' - in 
(28) and (29) we must know the Green's function G + - . 
We can similarly write down an expression for the mass op- 
erators 8; + . 

The kinetic equation for the Green's function G; +, 
which is also the corresponding Dyson equation, 18-'0 can be 
written in the form 

In what follows the quantity will be denoted by T to avoid 
confusion with the notation for the temperature of the sys- 
tem. Using Eqs. (28) and (29), and also Eqs. (26) and (16), 
we can obtain closed equations for G ; + . We note that the 
total occupations N, of the states which appear in the CRF 
approximation are obtained from ( 15) by integrating over 
the frequencies and the momenta: 

The kinetic (in the present case balance) equations for the 
occupation numbers are obtained from (30) by integration 
over w and p in accordance with (3  1 ). 

Using Eq. (26) we get in accordance with what we have 
said26,27 (to simplify the notation we have put the quantity f i  

equal to unity) : 

Here ai ( E )  , with 

has the shape of a Lorentz profile: 

From (33) there follows an expression for the equilibrium 
spectral density [or in the case of ( 15) for the Green's func- 
tion G ; + ( p )  ] : 

Ni(w, p) = -iG;+(p) = 
kQi(&> 

exp((e + wi + E(p) - p) /  7') + 1 ' 

(35) 

We note that Eq. (35) for the equilibrium kinetic Green's 
function can also be obtained from the Dyson equation (30) 
by putting the right-hand side of that equation equal to zero 
(this corresponds to the CRF approximation) : 

If we use Eqs. (28) and (29) we can obtain two equations, 
one of which must be satisfied due to the condition that the 
atoms are in equilibrium with the radiation [taking for Zaa' 
the quantity X::',";, from (28) 1, and the second due to the 
condition for equilibrium with the electrons [taking the 
quantity Z:$, from (29) 1. 

Introducing the notation 

and using the definition 
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(39) Ni - = - 1 exp(-wi/T,)exp0r/T), a?. 
1 

we can obtain Eq. (35) from (36) with the quantity Ni ( p )  
equal to23.24 which differs from (43) in that the distribution over the lev- 

els is characterized by a running temperature Ti rather than 
by the electron temperature T. This equation generalizes ex- ( p + w i  + T ~ ( ~ )  - P 

%i(P) = exp ] + 11-'. (40) pressions such as (41 and (42) to the case of a non-Boltz- 
mann distribution of the atomic particles over the levels. We 
get for the spectral density of the excitations an expression 

If the line width yi is small compared to the temperature which is valid for any ratio of the width and the temperature: 

yi/T e l ,  kai(e)Zi1@xp I-(& + E(p))/T I 
Ni(w P) = (45 

we can neglect the quantity E in the exponential in (35) and 1 + Sl~@xp[--(e + E(p))ITl ' 

(401, and from (35) for a nondegenerate gas of particles 
(Nil$<I)  weget: The density of atoms in the state i is given by the expression 

Integrating Eq. (41) over the momenta we get 

[cf. (11) and (12)] where Ni is the equilibrium density of 
excited atoms in the ith state: 

In the case of a degenerate state an extra factor gi , equal to 
the statistical weight of the state occurs in (43); 

is the thermal (de Broglie) wavelength of the atom. For an 
arbitrary ratio of the width to the temperature Eqs. (41 ) and 
(42) are not satisfied and one must use Eq. (35). 

We note that we can obtain a more general solution than 
(35) from the condition (36) that the rates of direct and 
inverse collisional processes are equal [with Zaa' equal to 
xaa' ,,,,, from (28) 1. We introduce the quantity 

For narrow lines ( y 9 T) when we can neglect the quantity 
E/T in (46) and use the fact that the parameter 3, < 1 is 
small, we find that the auxiliary quantity N, introduced in 
(44) is the same as the true occupation number. In the case 
of equilibrium populations of the atomic states ( Ti = T) the 
quantities Ni satisfy the Boltzmann relations (4).  However, 
the "true" populations (46) do not satisfy these relations in 
the case of broad lines, not even in equilibrium. 

Using Eqs. (37), (38), and (45) we can obtain the val- 
ues of the appropriate polarization operators (24) and (25), 
which by virtue of (22) and (23) determine the absorption 
coefficient and the volume source in the equations for the 
transfer of resonance radiation. For instance, we thus get for 
the emission spectrum 

We have written here (w, = w, - w, ) 

For narrow lines ( y E E ~  T) and a nondegenerate gas i.e., the usual convolution of profiles, taking into account the 
(Niil $ < 1 ) Eq. (48) gives Doppler shift of the line. Similarly we get for the absorption 

coefficient 
+m 
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[cf. ( 2 )  1. The generalization to the degenerate case is ob- 
vious. 

Equations ( 4 7 )  and ( 5 0 )  thus generalize the standard 
theory for the tranfer of resonance radiation in the CRF 
approximation to the case of broad spectral lines which 
leads, firstly, to replacing the line profile by the expression 
p ( w )  which depends on the densities @, of the atomic parti- 
cles and, secondly, justifies the above replacement of Nm by 
N z ,  which is reflected in ( 4 7 )  and (50) by the factor 
exp[ - ( w  - w , ) / T ] .  In equilibrium the correct expression 
for the Planck intensity, 

follows from ( 4 7 )  and ( 5 0 ) .  
We note that here the equations for the kinetics of the 

excited particle densities are formulated for the quantities 
In particular, the rate of spontaneous decay of the state 

m is given by the expression 

and the rate of n -m photoexcitation can be written in the 
form 

We can similarly write down the expressions St, - ,  for 
transitions between the states n and m under the action of 
collisions with electrons: 

where the probability Wnm for a collisional transition now 
depends nonlinearly on the densities Ni [cf. ( 2 9 )  ] : 

The function F ( ~ , p , p , , q )  is given by the expression 

[ 
( & ( e ) ( ~ l  + q) - P e ) ] } - ' .  

X I + exp - 
T 

In Eqs. ( 5 5 )  and ( 5 6 )  E"' (p) is the electron kinetic energy 
and p, their chemical potential. 

We note that the width yi is the sum of the radiative and 
collisional widths given by Eqs. ( 2 6 )  and (29). For instance, 
we have for the radiative width of the state m decaying to the 
state n [cf. ( 2 2 ) l  

w 

din do w:an(& - wq + wo + qv) 

gi l + ~ J ~ e r p [ ~ ( r - w q + w o + q v + ~ ( p - q ) ) I ~ ] '  

If the state n is the ground state, the profile a ,  ( E )  is a S- 
function: a,  ( E )  = S ( E )  and the radiative width ( 5 7 )  is given 
by the equation 

Here A O is the classical probability for spontaneous emis- 
sion: 

and 8 is the Heaviside step function. 
We note that the integral over the frequencies in Eq. 

( 5 7 )  for the width converges in the general case because of 
the presence of the denominator. If the profile of the state n is 
broadened, for instance, by collisions, the radiative width 
depends, in general, on N, and T. In the case of narrow lines 
we have 

We can also obtain an expression for the collisional 
width in the elastic collision approximation [cf. ( 2 8 )  1 : 
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For the nondegenerate case (Nil 3, -4 1 and Neil 4 1 ), if 
we neglect the recoil of the atom in collisions with the elec- 
trons we get from (59) 

- c(~)(P' + q)). (60) 

Since the line profile a, (E) itself is determined by the quan- 
tity y, ( E )  Eq. (60) is essentially an integral equation for the 
width. If we solve Eq. (60) by iteration, taking the appropri- 
ate S-function as the zeroth approximation instead of a, ( E )  

we obtain the normally used definition for the collisional 
width l o  in the Born approximation with one difference, how- 
ever, that the mismatch E, which characterizes the fact that a 
collision with an excited atom with electrons leads to a redis- 
tribution of the excitations along the spectrum, occurs in the 
energy conservation law [the argument of the profile in 
(60) 1. Taking the mismatch into account in (60) leads to an 
&-dependence of y, in first approximation (cf. Ref. 28): 

where is the width calculated in the framework of the 
existing theory. l o  

Note that, in the light of what has been said here, the 
probability for spontaneous emission occurs in different 
problems with different meanings: 1 ) as the width yLR) (E)  of 
the state [see (57) and (58) ] occurring in the expression for 
the Lorentz profile (34); 2) as the total decay rate of the 
state [see (52) ] occurring in the nonlinear balance equation 
for the "populations" 3, ; 3 )  as a characteristic of the inte- 
gral emission [see (47) and (8)  to ( 10) 1. For narrow lines 
all these definitions give the same expression-A O,  calculat- 
ed in the framework of standard perturbation theory,* inde- 
pendent of temperature and density. Since experimentally4-' 
the integral emission rate is determined, in what follows we 

inapplicable in the standard Biberman-Holstein theory".12 
because in the far wing of the line the photon mean free path 
becomes commensurate with the size of the system and the 
possibility for emission decreases insufficiently fast with the 
mismatch from the resonance (proportional to the spectral 
line profile). 

Note also that from the expressions given here there 
follow unexpected predictions for the far wings of the lines. 
At low temperatures (Tgw,) it follows from Eq. (47) that 
in the emission spectrum apart from the usual resonance 
peak near w ~ w , ,  which is connected with the function p(w) 
[see (47) to (50)] in the "red" wing, for wgw,, one will 
observe a growth in intensity, due to the presence of the fac- 
tor exp[ - (w - wo)/T], leading to an additional strongly 
nonresonance wavelength maximum (at w l. T g  0,). At 
high temperatures ( T$ w,) there follows from the same ex- 
pressions also the existence of an additional "blue" maxi- 
mum for w -- T$ w, in addition to the maximum near w ~ l w ,  
caused by the function p(w ). 

On the quantitative front, we used in the expressions 
given above the resonance approximation which is repre- 
sented by single-loop diagrams (without vertex insertions) 
for the mass Z+- [see (28) and (29) 1 and polarization 
17""' [ (24), (25) ] operators. Therefore a rigorous consider- 
ation of large mismatches from resonance requires going be- 
yond the framework of the resonance approximation just as 
one must obviously go beyond the framework of the two- 
level atom. Estimates indicate that taking vertex insertions 
into account in the polarization operators does not qualita- 
tively change the general conclusions about the possibility of 
additional red (for Tgw,) and blue (for T$w,) maxima in 
the emission spectrum. 

One should also mention that above we used Fermi sta- 
tistics for the field operators of the atom. Strictly speaking 
the concept of a field operator for the atom is an approximate 
one since the atom as a bound state of electrons and a nucleus 
is an object with complicated statistical properties. Since 
above we considered mainly the nondegenerate case 
(Nil 3, g 1 ) the main conclusions of the present paper will, 
apparently, be retained also in a more rigorous approach. 

shall study just that quantity. 
In the spectral source E,, (w) of (47) which occurs in 4. RESULTS OF NUMERICAL CALCULATIONS 

Ea. ( 1 for the transfer of resonance radiation there appears The spectral distribution of the intensity of the line 
a x -  

the factor exp [ - (w - @,)/TI, so that for broad -lines emission for the rn - n transition can be written in the form 
(YET)  we can use the diffusion approximation which is [see (47) and (48)]  
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In the line profile (62) we have included the frequency de- 
pendence w3exp\ - (w - oo)/T] contained in Eq. (47); 
the "populations" (44) are assumed to be equilibrium ones; 
No is the density of atoms (ions) in the ground state; we 
neglect the thermal motion of the emitters (which is valid for 
low temperatures and high densities). 

For transitions to the ground state a, ( E )  is a S-function 
and Eq. (62) can be simplified: 

For narrow lines ( y <  T )  and a nondegenerate gas 
(NA 3, ( 1 ) the profiles (62) and (63) have the standard nor- 
malization: 

The calculations were carried out for the lines corre- 
sponding to the 3p - 2s (A,,, = 3 12 A and 3p + 3s (A,, 
= 5801-5812 A)  transitions of the lithiumlike carbon ion 

CIV which were considered in Refs. 4 and 5. The level 
scheme is shown in Fig. 1. The energies of the levels were 
taken from Refs. 29 and 30. The widths yi occurring in Eq. 
(34) for the spectral function of the level ai ( E )  depend on 
the actual broadening mechanisms. For the lines considered 
at temperatures of the order of a few eV one can restrict the 
discussion to the collisional and radiative mechanisms over a 
wide range of densities ( 1016 < N, < loz3 cmP3) : 

1018<Ne < 1019 ~ m - ~ ,  studied in Refs. 4 and 5, the density 
dependence of the width of the CIV 5801.5 A line corre- 
sponding to the 3p-3s transition is well reproduced by 
the y'""" (N,,T) curves: y'exP' [eV] = 1.7X 10-15 
x (N, [ ~ m - ~ ]  )'I3 obtained in Refs. 4 and 5 on the basis of 
the quasistatic approximation31 including the experimental 
data on Ref. 32. This agreement is caused by the weak tem- 
perature dependence of y""" : in the range of plasma param- 
eters T z  1-10 eV and N, z 10'8-1019 cmP3 the decrease in 
the collisional width due to the factor T-"' [see (6611 
when the temperature increases is balanced by the growth in 
ln A. 

In connection with the experimental data obtained in 
Refs. 4 and 5 one should note one fact which is related to the 
measurement of the profile of the CIV 3 12 d; line (the 3p - 2s 
transition). According to our estimates for densities 
1018<Ne<1019 cm-3 the width of that line must be 
M,,, ~ 0 . 0 1 - 0 . 1 k  whereas according to the data from Ref. 
5, M,,, =: 1 A holds (see Fig. 3 in Ref. 5) when the spectro- 
graph has a resolving power of 0.8-3 d;. In this connection 
there arise additional problems for the interpretation of the 
experimental data of Refs. 4 and 5. 

The probabilities for the radiative 3p+ 2s and 3p- 3s 
transitions are given in Refs. 4 and 5. The missing constants 
(oscillator strengths) were calculated using Cowan's pro- 
gram,33 which gives good agreement with known 

The collisional (electron) widths f '  = ( a v ) N ,  [see 
(61 ) 1 were calculated in the "hydrogen" approximation 
(with the l ~ g a r i t h m ) . ~ ~ . ~ ~  In this case the cross-section for 
electron collisions can be written in the form (Born type 
cross-section) 

(65) 
where a, is the Bohr radius, E is the electron energy, AEU is 
the transition energy, Ry = 13.6 eV, Ai is the oscillator 
strength, and A = pmax /pmin. The upper2 (pma, ) and lower 

where the widths Y'~"" and Y ' ~ '  are calculated from Eqs. 
(pmin ) impact parameters were defined as follows: 

( 6  1 and ( 58 ) . In Fig. 2 we show a comvarison of the colli- 
sional (y'""') ) and stark ( f S t )  ) widths for the 3p level of the pnZm = min@D, v/wii), p,in = pC9 a, pw), 
CIV ion. It is clear that over the wide range of densities 
10I6<Ne < cm-3 for temperatures 1 < T< 10 eV the colli- where 

sional broadening mechanism dominates: y'cO1))y'St'. pD = ( ~ / 4 n e ~ ~ ~ ) " ~  
(The Doppler broadening can also be neglected at the tem- 
peratures con~idered.~.~)  We note that in the density range 

FIG. 1 .  Level scheme for the CIV ion. 

log N,. [ C I I - ~ ]  

FIG. 2. Width of the 3p level of the CIV ion: full drawn curve: approxima- 
tion of Refs. 4 and 5; dashed curve: Stark width; collisional width f for 
T =  1 (O), 4 (El), and 8 ( A )  eV. 
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w ,  eV 
W. eV 

FIG. 3. Line profile a,,, (o) as function of the mismatch o - o, for 
N, = 1019 ~ m - ~ ,  T =  1.3 eV (the dashed line shows the Lorentz profile FIG. 4. The same as Fig. 3 for N, = lOI9 cm-), T  = 0.7 eV. 
with width .$). 

is the Debye radius, v is the electron velocity, p w  = (xeZd$/27ivh~,.,.)~/~ 

w ,  = AEij/7i for the quadratic Stark effect. Here dij is the dipole moment 
of the transition. If it turns out that In A < 1 we put In A = 1. 

is the transition frequency, A, is the electron de Broglie For a Maxwellian distribution the averaging of the 
wavelength, cross-section (66) over the velocities gives 

p, = (Z - 1)e2/rnt? 
312 

is the Coulomb radius, Z is the spectroscopic symbol of the f i j /? l l2e-Br~,  (67) 
ion, 

a = max(ai, a.) 
I 

is the ion radius, 

a, s anl = (3n2 - I ( ! +  l))ao/2Z, 

and p is the Weisskopf radius: 

pIF) = xedll/7iv 

for the linear Stark effect, 

where v, is the electron velocity in the first Bohr orbit, we 
have fi = AEij/T, and the bar over the logarithm indicates 
that in the expressions forp,,, andp,, we have substituted 
the average (thermal) electron velocity. Equation (67) 
gives the excitation rate by electron collisions. For the in- 
verse process (deexcitation) we have 

g i < ~ ) ~  = g i (~ ) i l~x~(AEi j~T) ,  (68) 

whereg, andg, are the statistical weights of the levels iandj. 

w. eV FIG. 5. a: Line profile a,, (o) for N, = lo2' ~ m - ~ ,  
T = 1 eV; b,c: the same as Fig. 3 for N, = cm-), 
T =  1.1 eV. 
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We note that the cross-sections and electron excitation 
rates used, (66) and (67), agree quite well (with an accura- 
cy < 10% ) with the data of recently performed calculations 
in the tight binding appr~ximat ion .~~ 

In Figs. 3-5 and the Table we show the results of the 
calculations of the profiles a,,, (w) and a,,, (w) [see Eqs. 
(62) and (63)] and the corresponding integral intensities 

of the A,,, = 5801-5812 b; and A,,, = 312 b; lines in the 
temperature and density ranges 0.5< T<5 eV, 
10I8<Ne & cmP3. The total intensities are normalized to 
the Einstein probability so that for J = 1 the emission proba- 
bility is the same as the usual (vacuum) probability. For low 
densities, N, &1019 ~ r n - ~ ,  and not too low temperatures, 
D 1 eV, the profiles of both lines have the usual Lorentz 
shape. For instance, for N, = 1019 cmP3, T =  1.3 eV the 
a",, (a) and a,,, (w) profiles are practically the same and 
have very similar widths: y,,, =4.6x10P3 eV, 
y,,, = 4.1 X eV which differ little from the collisional 
width of the 3p level: f' = 4.OX loP3 eV. No shift of the lines 
was observed since the collisional shift was not taken into 
account in the calculations. However, in the low-frequency 
range an additional maximum for the 312 b; line appears, 
which can be seen clearly in the logarithmic scale of Fig. 3. 
However, its contribution to the total intensity is unimpor- 
tant in this case. The areas under the profiles are equal, 
J,,, z J,,, - 1 [cf. (64) 1. 

For the same density, Ne = 1019 ~ m - ~ ,  but at a lower 
temperature, Te = 0.7 eV, the a,, (W profile still retains its 
Lorentz shape ( y,,, = 4.9 X eV for a collisional width 
fip = 4 . 6 ~  eV) whereas the low-frequency peak at the 
3 12 b; line increases steeply (Fig. 4c) and gives the main 
contribution to the total intensity J::":' = 2.55 x lo7. On the 
other hand, the area under the profile in the region of the 
central frequency is, as before, close to unity J::;' = 0.99. 

The intensity of the low-frequency peak for the 3p -+ 2s 
line can be approximately estimated using a formula which 
follows from the general expression (63) for the profile at 
low temperatures ( T(w,) : 

where w, = 39.67 eV is the frequency of the 3p-2s transi- 
tion. 

In the case considered this formula gives an area under 
the low-frequency peak equal to 2 x  10' (cf. the result 
2.55 X lo7 of the numerical integration). When the temper- 
ature is lowered the accuracy of Eq. (69) increases. For 
instance, for N, = 1019 cm-3 and T = 0.5 eV we get from 
Eq. (69) 1.3 x 1016 and the exact value is 1 . 5 6 ~  1016 (see 
Table). 

We show in Fig. 5 the profiles a,,, (a) for N, = 10" 
cmP3, T =  1 eV and a,,, (a) for N, = loz3 cmP3, T=  1.1 
eV. Here both profiles differ considerably from the usual 

TABLE I. Integral intensity J =  Sa(o)do of the lines of the carbon CIY ion in the vacuum 
ultraviolet (vuv) and the visible (vis) regions of the spectrum (A,,, = 3 12 A, A,,, = 5801-5812 
A )  for different electron densities and temperatures (the contribution from the central peak of 
the A,,, line is given in brackets). 

*The data for J,,, have a meaning only for N, < 3.3 X lo2' cmP3, since for higher densities the 
radiation with A = 5800 A cannot propagate in the plasma. 
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Lorentzian. Firstly, both are asymmetric. The halfwidths at 
half-height ( y r  is the "red" and y the "blue" wing) are, 
respectively: y :,, = 0.36 eV, y e,, = 0.52 eV; y :,, = 1.4 eV, 
y t,, = 0.82 eV, while for the A = 5800 b; line the short- 
wavelength wing decreases exponentially: 

and for the A = 312 b; line the "red" wing decreases expo- 
nentially: 

Note that for the 312 b; line these widths are significantly 
smaller than the "zeroth" collisional width f', which for 
such high densities is very large: f' = 41.4 eV. A particular 
kind of narrowing of the spectral lines is thus observed. 
Moreover, one should note that the center of the 3 12 b; line is 
shifted: A,,, = - 3.4 eV . Under these conditions the total 
intensity is: 

The probability for the 3p-3s transition is thus little 
changed, but the probability for the 3p+2s transition is 
three and a half times larger than the Einstein probability. If 
we take into account only the peak near the central frequen- 
cy for the 3 12 b; line, it gives a contribution to J,,, equal to 
2.6. The whole variety of possibilities in differences between 
the probabilities for the radiative 3p- 3s,2s transitions from 
the "classical" (Einstein) values for different densities and 
temperatures is illustrated in the Table. 

It is clear from the data given that under the experimen- 
tal conditions of Refs. 4 and 5 for T >  1 eV, N, -- 1018-10'9 
cmP3 in the framework of the proposed theory the effect of 
the temperature and the density on the probability for spon- 
taneous transitions in the ultraviolet snd visible regions and 
on the ratio of their intensities is insignificant (see Table). 
Such effects may occur either for the given densities at tem- 
peratures T <  1 eV or at high temperatures ( T >  1 eV) in a 
high density plasma. The effects observed in Refs. 4 and 5 are 
possibly connected with the fact that in a denser and colder 
plasma the density of lithiumlike ions is small, whereas their 
density increases when one goes away from the target and 
reabsorption of the radiation may occur for a transition to 
the ground state (3p-2s). However, at sufficiently large 
distances the matter density decreases and the effect of the 
reabsorption again diminishes. In such a case the ratio J.,,,/ 
J,,, of the intensities, as a function of the coordinate, may 
have a maximum value. 
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We note that the anomalies indicated above on the 
"red" wing of the line at low temperatures can be observed 
only under nonequilibrium conditions since the equilibrium 
densities of lithiumlike carbon ions is exponentially small at 
such temperatures; they may be observed, for instance, when 
one "injects" ions into a cold plasma. 

It was noted in Sec. 3 that similar anomalies must be 
observed in the short-wavelength wing of the line in the case 
of high temperatures. We show in Fig. 6 the line profile 
a,,, (a) at a temperature T = 1500 eV and a density 
N, = cmP3. Figure 6a shows the complete spectrum 
together with a Lorentz profile constructed with the width 
f', which for the parameters considered is equal to f' = 2.47 
eV. In Fig. 6b we show the "blue" wing in the range 
0.5 GwG2.5 keV. One clearly sees a maximum at a frequency 
a= T. 

Under well defined conditions the spectral features of 
the spontaneous transitions between atomic and ionic levels 
noted here can turn out to be important for radiative transfer 
problems. In particular, the anomalous behavior of the 
"blue" wing of a broad line may lead to a noticeable lowering 
of the magnitude of the Rosseland mean free 

where u = %/Tand k :,"' is the total absorption coefficient: 

Here k L, k 2, k th, and k T, are the line, bremsstrahlung, 
photoionization, and Compton absorption coefficients, re- 
spectively (without the correction factor [ l  - exp( - %/ 
T) ] , taking into account the induced emission, which is in- 
cluded in the denominator of the weight function in the inte- 
grand). 

We have carried out preliminary estimates of the Rosse- 
land mean free paths for a hydrogen plasma at high tempera- 
tures and densities, taking into account the contribution of 
the high-frequency wing of the La line. 

In accordance with Eq. (50) the absorption coefficient 
in the line is given by the expression 

where gfis the oscillator strength multiplied by the statisti- 
cal weight, 

FIG. 6. The same as Fig. 3 for N, = 10'' ~ r n - ~ ,  
T = 1500 eV. 
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is the electron de Broglie wavelength, I is the ionization po- 
tential from the ground state (in the present case I = Ry), 
and Ni and N, are the ion and electron densities. For the 
wing of the line the function p ( w )  was taken in the form34 

where 

B = (3/8)213(7ilrne)(ni - n;) 

is the Stark constant for the n2 + n, transition, and 

is the normal Holtsmark micropole strength. 
The (bremsstrahlung and photoionization) absorption 

coefficient in the continuous spectrum was calculated in the 
Kramers approximation'0 (neglecting the Gaunt factor): 

The absorption due to the Compton effect was estimated 
using the Thomson cross-section aT = ( 8 ~ / 3  ) (e2/mc2)2 
= 6.65 x cm2: 

In Fig. 7 we show the density dependence of the ratio of the 
magnitude of the Rosseland mean free path I ,  calculated 
taking into account the contribution of the wing of the La 
line [see (7 1 ) ] to the magnitude of the Rosseland mean free 
path I k calculated with the absorption coefficient 

(i.e., neglecting the line absorption). It can be seen from the 
figure that for densitiesp > lov3 g . ~ m - ~  (for a temperature 
T = 100 eV) the absorption in the far wing considerably de- 
creases the photon mean free path. This effect is usually ne- 
glected in the ~a l cu l a t i ons .~~~~ '  

We note that the estimates for large densities have a 
qualitative nature. Here to obtain a quantitatively reliable 
result we need refinements taking into account the fact that 
the plasma is not perfect (leading, in particular, to a diminu- 
tion of the bremsstrahlung absorption when the electrons are 
degenerate, ionization of the hydrogen atoms in the plasma 
micropoles, overlap of Stark broadened spectral lines, and so 
on). 

We must note also that there are also other causes lead- 
ing to a density dependence of the probability for spontane- 
ous emission which go beyond the confines of the present 
paper: 1 ) for densities above the critial one when the plasma 
frequency is higher than the radiation frequency (e.g., for 
visible radiation withA = 5800 h; for N, > 3.3 X ~ m - ~ ) ,  
the corresponding radiation does not propagate in the plas- 

FIG. 7. Density dependence of the ratio of the magnitude of the Rosseland 
mean free path I,, calculated taking the absorption in the wing of the L ,  
line of the hydrogen atom into account, to the magnitude of the Rosseland 
mean free path I ; ,  calculated neglecting the line absorption, for T = 100 
eV. 

ma; 2) cooperative spontaneous emission for N,A 3)1 
(Dieke superradiation3') which occurs in the case of inver- 
sion in the corresponding transition and leads to a power of 
the radiation proportional to the square of the atomic den- 
sity, N : .  These physical effects do not explain the depen- 
dence of the Einstein probability on the electron density 
observed in Refs. 4 and 5. 

Evidence which, in our opinion, is persuasive was given 
in Ref. 39 that the Einstein coefficients are independent of 
N, under conditions close to those realized in the experi- 
ments of Refs. 4 and 5, although Ref. 40 contains a number 
of objections against the arguments of the authors of Ref. 39. 
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