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The equations of Bethe's ansatz describing the behavior of a Hubbard chain with attractive 
electrons at lattice sites in gauge nonforce electric and magnetic fields are derived. Mesoscopic 
corrections to the energy of the ground state, which determine the oscillations of persistent 
currents in the chain as the electromagnetic field flux varies, are found. Finally, equations that 
describe the same system at a nonzero temperature are studied. 

As is known, the nonforce topological effect of electric 
and magnetic fields on charged particles with a magnetic 
moment manifests itself, for instance, in the quantum effects 
of Aharonov and Bohm' and Aharonov and Casher.' These 
effects are due to acquisition, by the wave functions of the 
particles with charges and magnetic moments, of phases pro- 
portional to the fluxes of the magnetic and electric fields, 
respectively. The gauge invariance of the electromagnetic 
field is the reason why only particles moving along closed 
trajectories exhibit this property. Systems of the greatest in- 
terest in this connection are those in which the nonforce 
topological effect of the electromagnetic field manifests itself 
along with quantum features related to the nature of the 
particle interaction in the systems, for instance, solid-state 
highly correlated electronic systems. 

The nonforce effect of the electromagnetic field may 
reveal itself in a special manner in the low-temperature 
phases of such quantum systems, say, in superconductors 
with a finite order parameter this effect manifests itself in the 
quantization of the magnetic flux.3 Another possible indica- 
tion of the specific behavior of effects of the Aharonov- 
Bohm type in a solid may be the singularities of persistent- 
current oscillations in systems with Peierls period d~ub l ing .~  

Quantum fluctuation effects are known to show them- 
selves most vividly in low-dimension systems, where they 
are enhanced by singularities in the density of states. Study 
oflow-dimension systems has been stimulated by the discov- 
ery of the quantum Hall effect5 and high-T, superconductiv- 
 it^,^ in which the low dimension plays an important role. 
Unfortunately, the approximation methods used in the theo- 
retical description of low-dimension systems, such as the 
mean-field approximation and its modifications and vari- 
ational methods, may even yield qualitatively incorrect re- 
sults. Hence, there is a particular interest in studying non- 
force topological effects in exactly solvable quantum models 
of highly correlated electronic systems. In previous pa- 

effects of the Aharonov-Bohm and Aharonov- 
Casher types were studied in one-dimensional quantum 
models of the Hubbard type with repulsion of the electrons 
at the lattice sites. Here we will continue examining nonforce 
topological effects in a Hubbard chain9 by considering the 
case of a coupling constant of the opposite sign, which corre- 
sponds to electron attraction. 

The present paper investigates mesoscopic corrections 
resulting from gauge electromagnetic fields to the energy of 
a Hubbard chain in the form of a ring with attraction be- 

tween the electrons at the lattice sites. The interest in this 
system lies in the fact that, being exactly solvable, it models 
the behavior of a "low-dimension superconductor." In addi- 
tion, the special behavior of the oscillations of charge and 
spin persistent currents in the ring guarantees the existence 
of both charge states and spin states. We will derive the equa- 
tions of Bethe's ansatz that describe the behavior of the sys- 
tem in the presence of nonforce external electromagnetic 
fields and in the ground state and at a finite temperature. It 
will be found that, depending on the magnitude of the mag- 
netic field, the ground state may contain mesoscopic Ahar- 
onov-Bohm oscillations both with a "metallic flux quan- 
tum" @, = ch / e  and with a "superconducting flux 
quantum" @, = @,/2, while Aharonov-Casher oscillations 
occur only with a "metallic flux quantum" Fo = ch /p, with 
p the magneton (see Ref. 9) .  Oscillations with "flux quanta" 
@,/2n and F,,/2n, with n an integer, generally manifest 
themselves at a finite temperature. These are caused by the 
presence of bound states (strings of length n),  which con- 
tribute to the thermodynamics of the system at a finite tem- 
perature and at any value of the magnetic field and the occu- 
pation numbers of the chain. 

The Hamiltonian of the system in the form of a ring is 

where U>O is the Hubbard attraction constant (the hop- 
ping constant is set equal to unity), he the external magnetic 
field, A the chemical potential, a,: (a j , ,  ) the operator of cre- 
ation (annihilation) of an electron with spin u ( u  = + 1) at 
site j, N, is the number of sites, nj,, = a,:aj,,, and a, the 
phase acquired by the wave function of the system because of 
the nonforce effect of the magnetic flux @ through the plane 
bounded by the ring (the Aharonov-Bohm effect) and/or 
the flux Fof  the radially directed electic field generated by a 
charged string in the middle of the ring (the Aharonov- 
Casher effect), with F = 47~7, where T is the linear density of 
the charge on the string, and 

The eigenfunctions in the coordinate representation are es- 
tablished by Bethe's ansatz method." The quantum 
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numbers (the rates k, and A, ) that parametrize the wave 
functions and the eigenvalues of Hamiltonian (1) can be 
found from the following system of equations: 

M 

N.kj=2n (I ,+u,)  +2 arctg( (sin kj-ha) /u). 
a=, 

N - Z M  

+2 arctg((L--s in kj)/U) 
]=I 

where the 4 and J, are integers or half-integers, N is the 
number of electrons, and 2M the number of electrons bound 
in local pairs (see Ref. 1 1 ). The energy of the respective state 
is 

Depending on the occupation number v = N/Na and the 
magnitude of the external magnetic field h e ,  the ground state 
of the chain is formed by the free electrons, characterized by 
a quasimomentum k,, and the bound states of two electrons 
at the sites (local pairs), characterized by the rates A,. 
Equations (3) clearly show that only the fractional parts 
{{a,)) and {{a, + a- ,)) of the Aharonov-Bohm and 
Aharonov-Casher phases are important, since the integral 
parts only renormalize the sets of numbers 4 and J, . Thus, 
quantum nonforce effects in a Hubbard chain with attractive 
electrons at the sites are of a mesoscopic nature. The ground 
state of such a chain is formed by filling the "Dirac seas" of 
free electrons and local pairs. ' ' 

To calculate the finite-size corrections we use the meth- 
od developed in Ref. 12. The correction, brought about by 
magnetic and electric fluxes, to the energy of the ground 
state of a Hubbard chain with attractive electrons at the sites 
is 

where a, = a, + a - , , vf and uf, are the Fermi velocities of 
the free electrons and local pairs, and ci, ( i ,k =J;b) are the 
excitation charges "dressed" because of the interaction 
(electrons and pairs). Clearly, such a mesoscopic correction 
is present only in the case of excitations without a gap in the 
spectrum. The ground-state energy corrections due to the 
nonforce topological effect of electromagnetic fields on the 
considered Hubbard chain and resulting from the gaps ALb 

in the excitations spectrum are proportional to 
exp( - Noh,-,/v,-,), that is, are extremely small and thus 
will be ignored. The fractional parts {{a,)) and 
{{a, + a- ,)) determine, as Eqs. (3)  demonstrate, the frac- 
tion of quantum numbers that transfer, owing to the gauge 
fields, from one edge of the Fermi bands of electrons and 
local pairs to the other edge, that is, they are related to the 
number of virtual excitations of the free-electron and local- 
pair types existing above the ground state because of the 
nonforce effect of magnetic fluxes (the Aharonov-Bohm ef- 
fect) and electric fluxes (the Aharonov-Casher effect). 

In the ground state the "dressed" charges are deter- 
mined by the following equations: 

t ta(k)=-(1!2n)  j dhlK, ( s in  k - h ' ) t ( k r )  , ( 7 )  
-h 

4 

L u  ( A )  =-- ( l / 2 n )  J dkK,  (h-sin k)cos k t t  ( k )  

The kernels K ,,, ( x )  are specified as follows: 

Note that the system of equations for the "dressed" charges 
of the simplest excitations of the Hubbard chain with repul- 
sion is obtained from Eqs. (6)-(9) by reversing the sign of 
the integral terms. The Fermi velocities are given by 

and the excitation energies E~ (k)  and E, (A) "dressed" be- 
cause of the interaction can be found from 

The limits of integration are specified by the conditions 

and the "free" energies E; (k) and E! (A ) by 
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The quasimomentum and rate densities in the ground state, 
p ( k )  and (T(A), satisfy the following system of equations: 

The principal term in the expansion of the ground-state ener- 
gy in powers of N ;  ' is 

The numbers of free electrons and local pairs in the ground 
state are, respectively, 

Depending on the magnitude of the external field, the 
ground state of the system is formed by different states. For 
instance, if h, <h,  , where 

the ground state is formed only by local pairs, while excita- 
tions of the free-electron type have a gap in the spectrum. If 
h, >hs ,  where 

hs= (21n) COS(UY) [2n-2 arctg (sin(nv)/C7)] + [2 (l+UZ)'"] -' 
+(4UIn) [U-'(I+CF)'& arctg(U(I+CF)-"'ctg(nv) )+m], 

the ground state is "ferromagnetic," the chain's magnetic 
moment is at its maximum, and excitations of the local-pair 
and free-electron types have a gap in the spectrum when 
h, > hs.  For h, <he <hs ,  excitations of the local-pair and 
free-electron types are gapless and an intermediate state sets 
in. The situation is similar to that in type I1 superconduc- 
tors. Note that since the system is one-dimensional, the criti- 
cal temperature is zero. It must also be stressed that in our 
case of a Hubbard chain with attraction between electrons at 
the lattice sites the order parameter is zero even at absolute 
zero; the superconductivity correlators decrease in a power- 
like manner as the distance increases, l 3 . I 4  though more slow- 
ly than the spin correlators and free-electron correlators do. 

Hence, because of a nonforce topological electromagnetic 
field, even at absolute zero the system manifests mesoscopic 
oscillations of the charge and spin current, rather than quan- 
tization of the external field fluxes, as in superconductors. 

Let us consider some limiting cases of Eq. (5 ) . Obvious- 
ly, at he = h, there are no local pairs. The energy correction 
term is 

The subscript "h " indicates that the magnitude of the exter- 
nal magnetic field is fixed. For he < h, ,  only the local pairs 
with k, = vf = cbf (A,) = 0 are gapless. For small occupa- 
tion numbers Y ,  the energy correction resulting from the 
magnetic flux is 

whe re~~ , (A , )  = [ l  + (v/2)U- ' (1 + ~ ~ ) ' / ~ ] - ' . ~ t h a l f -  
occupancy we have 

Finally, at an occupancy close to half-occupancy the 
"dressed" charge is 

bbhZ(hO) = [2-In-'( (81ne) '"I, (n/2U) I (1-v)  ) I-', 

where I, ( x )  is the modified Bessel function, and e is the base 
of natural logarithms. 

Equations (5)  and (20)-(22) show that for he c h ,  a 
Hubbard chain with attractive electrons at the sites exhibits, 
in the ground state, mesoscopic oscillations of the charge 
persistent current and the related diamagnetic moment with 
a "superconducting flux quantum" @, . At he = hs the spin 
current in the chain oscillates with the electric flux F, with 
the period of oscillations being "metallic," F, (see Ref. 9).  
In the intermediate state with h, <he <hs ,  there may occur 
both oscillations of the spin current with the "metallic" peri- 
od and oscillations of the charge current with the period @, 
(these are due to the combination of "superconducting" and 
"metallic" oscillations with periods @ ,  and @,, respective- 
ly). The amplitudes of the other oscillations in the ground 
state ("metallic" oscillations of the charge and spin currents 
for h, < h, and all oscillations for he > h, ) are much smaller 
and are proportional to exp( - No ). 

At finite temperatures the eigenfunctions can be classi- 
fied in the following way (see Ref. 15 ) : N - 2M' real-valued 
quasimomenta k, corresponding to free electrons; complex- 
valued quasimomenta k, corresponding to electron pairs or 
bound states of pairs such that sin k h,, = A  A!, = + iU, 
where 

h,lf,=hl,,-iU(n+l-21). 

with I = 1,2, ..., n, form a string of length n with a real part 
A k,, characterizing the bound state of n pairs (a is an index 
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labeling M ,!, strings of length n, and M '  = 8,"= , nM ,!, since 
the total number of values is k - N); and complex-valued R, 
corresponding to bound spin states, equal to 
R L,, = A,,, - iU(n + 1 - 21), where I = 1,2 ,..., n, and a is 
an index labeling M, strings of length n (Nl  = Z,"=, nM,, 
and N ,  + M' = M is the total number of electrons with spin 
"down"). Note that in the case of repulsion the imaginary 
part of k, corresponding to bound states, changes its sign. 
Takahaskii6 has lately proved that these solutions comprise 
a complete set for the Hubbard Hamiltonian. The same pa- 
per shows that the raising operators of the projections of 
angular momentum and quasimomentum (see Refs. 17 and 
18) are actually creation operators for excitations of the spin 
and charge (pair) bound-state types. To study the nonforce 
topological effect on the Hubbard chain it has proved more 
convenient to consider not the system of equations (3)  but 
the following system: 

+ arctg( (sin k,-A&,) /nu)] . 
(1-1 

where 4,  J,,, , and J h ,  are integers or half-integers, and 

for n # m and 

at n = m. The equations describing a Hubbard chain with 
repulsive electrons at the lattice sites are obtained from (23) 
by changing the signs in the first system of equations (for k )  
in front of the sum over n. 

The energy of a state with given N, N,, and M' is 

E/N.=- [2 ees kj+A+he/2]  
j- I 

or M,' 

The thermodynamics of a Hubbard chain with attraction 
and repulsion is constructed by a method similar to the one 
used in Refs. 15 and 19. The form of Eqs. (23) implies that 
just as in the ground state the response of a Hubbard chain to 
a nonforce topological effect is determined by the fractional 
parts of the corresponding phases (see also Ref. 9),  at finite 
temperatures this role is played by the fractional parts of the 
phases, {{a,)), {{n(al + a_,)), and {{n(a, - a- ,)I. 
This means that generally, at a nonzero temperature, there 
may be oscillations of the "metallic" type with flux quanta 
@, and Fo, "superconducting" charge oscillations with a 
flux quantum @,/2 (as in the ground state of a Hubbard 
chain with attractive electrons), "superconducting" spin os- 
cillations with a flux quantum F0/2 (as in the ground state of 
a Hubbard chain with repulsive electrons9), and, finally, os- 
cillations corresponding to virtual excitations of bounds 
states (strings) and generated by the nonforce gauge effect 
of the electromagnetic field, both charge oscillations with a 
period of qO/2n and spin oscillations with a period of F0/2n. 
The latter, naturally, are caused by the interaction and dis- 
appear at U = 0. Note that the lower the temperature the 
smaller the probability of excitation of strings with large n. 
Also note that for a Hubbard chain with attraction of the 
electrons at the lattice sites at low temperatures the oscilla- 
tions of the "superconducting" spin type have a low proba- 
bility, while for a chain with repulsion this is true of oscilla- 
tions of the "superconducting" charge type. 

Thus, we have set up the exact equations describing the 
behavior of a Hubbard chain with attractive electrons at the 
lattice sites in gauge electromagnetic fields, which act on the 
electrons in a nonforce manner. We have established that in 
the ground state, depending on the magnitude of the magnet- 
ic field and the band occupancy, there may be quantum me- 
soscopic oscillations both with "metallic" periods and with a 
"superconducting" period of oscillations with a magnetic 
flux related to virtual creation of local pairs. At nonzero 
temperatures there may be oscillations corresponding to vir- 
tual creation of strings with charges 2ne and magnetic mo- 
ments 2np under the action of electric and magnetic fluxes. 
These oscillations result from the interaction in the system 
and are absent in systems ofnoninteracting electrons. At low 
temperatures there should be oscillations with small values 
of n, which corresponds to a small probability of virtual cre- 
ation of long strings. 

I am grateful to I. V. Krive and V. M. Tsukernik for 
discussions. 
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