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The growth kinetics of two-dimensional new-phase islets is investigated with the aid of the 
equation for the order-parameter field. Equations are obtained for the islet growth in various 
regimes. A connection between the developed approach and the phenomenological Zel'dovich- 
Volmer theory is established. The onset of various types of conditions imposed in the 
phenomenological theory on the islet boundary is considered. 

1. INTRODUCTION 

Phenomena occurring when atoms and molecules are 
adsorbed in material surfaces are attracting great attention 
(see, e.g., the ). The most interesting is the islet- 
growth stage, which is characterized by formation of seeds of 
a new phase on the surface. The kinetic laws governing the 
phase transitions in the adsorbing layers are usually charac- 
terized by the exponent n of the power-law growth of the 
dimension R of the new-phase islets with time, R a tn . The 
experimental value of the exponent n varies in a wide range: 
O.l<n<l (Refs. 3-9). 

Several approaches are used to a theoretical description 
of the kinetics of the macroscopic adsorption-layer changes 
due to the onset of various islet structures. The most widely 
used a ~ ~ r o a c h  is based on the classical Zel'dovich-Vollmer 
(ZV) iheory. '~- l~ This theory can describe the growth of 
individual new-phase seeds in first-order phase transitions, 
as well as the relaxation of the growth of an ensemble of such 
seeds during various  stage^.^.^."^.'^ While physically simple, 
this approach contains an appreciable number of phenome- 
nological parameters and supplementary conditions. Thus, 
assuming that the energy of a two-dimensional new-phase 
islets is represented by "volume" and "surface" parts, it is 
easy to find that the growth of islets is energywise favored 
when their dimension R exceeds a critical value 

where y is the surface-tension coefficient of the islet bound- 
ary, s is the area per atom in the new phase, and Ap is the 
change of the chemical potential of the atom as it goes from 
the old phase to a new one. To describe the growth kinetics, 
conditions are postulated in the ZV theory on the islet 
boundary for the flux of adatoms or for their density. It is 
usually assumed that equilibrium is established on the 
boundary, and that the following relation holds for the ada- 
tom density "-I3 

Here Co is the density of the saturated adatom solution and T 
is the temperature. The flow boundary conditions make it 
possible to take into account the deviation of the adatom 
density around the seed from the equilibrium value (2)  
(Ref. 3). 

The growth rate R of an individual new-phase seed is 
expressed in the ZV phenomenological theory on the basis of 

the conservation laws and is determined by the total atom 
flux J through the seed boundary: 

The flux J is produced by the following mechanisms of atom 
supply to the islet: diffusion of adatoms over the surface and 
adsorption of atoms from the gas directly on the islet perim- 
eter, where it is directly trapped into the In the diffu- 
sion mechanism, the atom fluxes adsorbed by the islets and 
by the clean surface lead to the growth equation 

Here D is the diffusion coefficient, L = ( D  /a) a - ' is the 
characteristic adatom lifetime and is governed by desorption 
processes or by escape of the adatoms into the bum of the 
material, and Ki and Ii are modified Bessel functions.15 

Lowering of the rates of the processes connected with 
nonconservation of the particle number (a -0) produces a 
singularity indicative of two-dimensional systems: no sta- 
tionary distribution of the adatoms is reached. The reason is 
that the diffusion equation for a two-dimensional system is 
gauge-invariant.16 For this case there was obtained only an 
asymptotic expression7s8 for the long-time growth rate R of 
the i ~ l e t ~ ' ~  

( D t )  '" 
R ( ~ ) = S D C ~ P ~  (i - 4) {~ln[2])-‘ . (5) 

The value that follows for the power-law exponent n 
from Eq. (5 )  is close to7p8 (0.5). The same value was ob- 
tained by computer s i m ~ l a t i o n ' ~ - ~ ~  and was observed in ex- 
periment for a number of systems (see, e.g., Refs. 2 1 and 22). 
The value n = 0.5 is obtained also from Eq. (4)  when the 
islet dimensions are small compared with the diffusion 
length L (R < L )  . If R , L, however, the value of n obtained 
by direct integration of (4)  is unity. This value of n was 
observed in experiment for several for example 
for exidation of n i ~ k e l . ~ . ~ ~  Note that allowance for the diffu- 
sion interaction of the islets and for their coalescence lowers 
the exponent n (Refs. 3 and 7). 

When the direct-capture mechanism predominates, the 
islet-growth equation takes the simple form399 
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Herex, is the width of the region that surrounds the islet and 
in which direct capture into the islet takes place. It is easy to 
verify that in this case the exponent n tends to unity with 
time. 

Another approach to the kinetics of phase transitions is 
based on an equation describing the relaxation of the order 
parameter ((r,t) to an energywise more favorable ~ t a t e ~ ~ ~ ~ '  : 

6 (r, ~ ) = - ~ ; G F [ s  (r, t )  116E (7) 

Here F[ l ( r , t )  is a free-energy functional corresponding to 
the field ,$(r,t), r is the coordinate, t is the time, f i  is a kinetic 
operator given in the long-wave approximation by 
fi  = - p, A + p H ,  where pc and pH are the kinetic coeffi- 
cients in the case of a conserved and nonconserved field 6, 
respectively. In the considered conversions on the field, 6 is 
the deviation of C(r)  density of the adsorbed atoms in the 
new phase state from the average adatom density c on the 
surface: c(r, t)  = C - 7. 

In principle, the kinetic coefficients pc and pH and the 
free energy F in the vicinity of the phase-transition point 
determine Eq. (7)  completely, and description of the phase- 
transition kinetics requires neither additional parameters 
nor assumptions. This approach has made it possible to de- 
scribe for second-order phase transitions in the bulk and on 
the surface the growth of the domains and a number of non- 
trivial features of the structural-transition kinetics (see, e.g., 
Refs. 26-3 1 ). A de~cr ip t ion~~ of seed formation in three- 
dimensional systems has shown that all the parameters, as- 
sumptions, and main results of the ZV theory can be ob- 
tained by solving the equation for the order parameter. By its 
very nature the approach based on the concept of an order 
parameter should constitute a microscopic verification of 
the phenomenological theory. 

We use in this paper the order-parameter field to inves- 
tigate the kinetics of the growth of new-phase islets. This 
approach makes it possible to obtain by a single procedure 
different limiting cases of the phenomenological theory and 
determine the system parameters that lead to various values 
of the power-law exponent. 

2. ORDER-PARAMETER EQUATION. BASIC PARAMETERS 
OF THEORY 

We write for the free energy in the vicinity of the phase- 
transition point an expression that follows from the Landau 
theory:24.32 

Here A, R, B, and r are coefficients that depend in general on 
external parameters, such as the temperature and density of 
the adatoms. 

The free energy (8) describes a first-order transition 
when B #O. It is easy to verify that a phase transition takes 
place at A<2B 2/91? and constitutes a transition from a state 
with a zero order parameter { = 0 into a state with l 2B/3r. 

The order-parameter equation (OPE) (7) for the free 
energy (8)  takes the form 

Before we proceed to investigate the relaxation of the 
order-parameter field, let us find the connection between the 
kinetic coefficientsp, andp, of Eq. (7)  and the observable 
quantities, so that we can separate the physical mechanism 
of the seed growth. We write Eq. (9)  in the linear approxi- 
mation in <(r,t), which describes the relaxation of small per- 
turbations in the old phase: 

An identical equation is used in the phenomenological 
theory of atom adsorption.7933 In this case the quantity D 
corresponds to the adatom-diffusion coefficient and a- ' cor- 
responds to the adatom characteristic lifetime governed by 
their desorption from the surface or by their departure into 
the bulk of the crystal. This explains the physical meaning of 
the kinetic coefficients pH and p,. The first is connected 
with atom adsorption and desorption (pH = a/A), and the 
second with adatom diffusion over the surface (p, = D /A). 
These are the mechanisms which have been considered in the 
phenomenological theory [see Eqs. (4)-(6) 1. 

For further convenience, we express (9)  in terms of the 
dimensionless variables p = 26 /lo - 1, p = r/x, T = t /T,: 

Here lo = 2B / 3 r  is the order parameter of the new phase at 
the phase transition point, 

x = l o ( 8 W r )  T, =x4/pcR,  l 2  =x2pH/pc,  

and the quantity h = 4( 1 - A /A, ) has the meaning of the 
degree of metastability. The dimensionless order parameter 
p is equal to - 1 in the old phase and p = pH 
= [ I +  (1 +2h)"2]/2 in the new one ( p H - l  for low 
degrees of metastability h < 1 ) . 

Equation ( 1 1 ) contains only two dimensionless param- 
eters, h and I. The degree of metastability h measures the 
proximity to the phase-transition point, the difference be- 
tween the new and old energy states. The parameter h can be 
regarded as small near the phase-transition point, h < 1. The 
parameter 1 ( 11 ) determines in fact the ratio of the contribu- 
tions of two different growth mechanisms of the new-phase 
islets--direct capture and diffuse growth. The parameter 1 
varies in a wide range in different physical systems, and will 
in fact determine the different relaxation regimes of the sys- 
tem. 

We emphasize that the equation obtained for the field of 
the order parameter ( 11 ) is universal, and the relaxation 
kinetics in actual physical systems differs only because the 
parameters lo ,  X, T, and 1 are different. We now go on to 
solve the OPE ( 1 1 ) . 

3. CRITICAL NUCLEI OF NEW PHASE-STATIONARY 
SOLUTIONS OF OPE 

We consider the non-uniform order-parameter field 
distributions p ( p , ~ )  produced in two-dimensional phase 
transitions. It is known that the new-phase seeds are solu- 
tions of the equation for the order parameter.25 The free- 
energy functional (8)  makes it possible to determine the ex- 
plicit form of the order-parameter field p, (p )  for a 
new-phase seed with critical dimension. This field corre- 
sponds to an extremum of the free-energy functional and is 
therefore a stationary solution of Eq. (7) ,  in accord with the 
fact that critical seeds neither grow nor are dissolved. 
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The result is an equation for the order-parameter field 
p, (p)  of the critical seed: 

Let us write down the boundary conditions for Eq. ( 12) 
The order parameter corresponds at large distances from the 
seed to the old phase, p ( p  - cu ) = - 1, and inside the seed 
to the new phase, p(p = 0 )  = p H .  

For a two-dimensional system with axial symmetry the 
solution of ( 12) for critical seeds at low degrees of metasta- 
bility, h -4 1, can be represented in the form 

Here R, =Xa, is the critical dimension of the seeds. It fol- 
lows from ( 13) that x assumes the role of the width of the 
transition layer between the phases. 

The analytic solutions ( 13) are compared in Fig. 1 with 
the numerical solutions of ( 12), which describe the field of 
the order parameter of critical seeds. Evidently the analytic 
solutions agree well with the exact ones up to metastability 
degrees h -0.1. At higher metastabilities (h > 0.1 ) spreads 
out, by analogy with three-dimensional systems.34 

The obtained order-parameter field distribution ( 13) 
yields the connection between the phenomenological param- 
eters in Eq. ( 1 ) and the free-energy coefficients (8).  Integra- 
tion of the free energy (8)  over the transition layer of the 
new-phase seed ( 13) yields for large seeds a linear tension 
coefficient 

Using the solution ( 13), we can calculate also the change of 
the chemical potential on going from the old phase to the 
new: 

The energy (8)  corresponding to an order-parameter field 
given by ( 13) can be represented as 

E ( R )  =2nRy+A1tsnR2. (16) 

Here s-6; ' has the meaning of the molecular area of the 
new phase. Note that the subdivision of the energy ( 16) into 
"bulk" and "surface" parts was used to obtain R, ( 1 ) . Thus, 
for large-radius critical seeds (a, ) 1 ) the Zel'dovich- 
Vollmer and Landau theories are in full agreement. 

Relation (16) can be written only for large seeds ex- 
ceeding the width x of the transition layer. With increase of 
the metastability degree h the critical dimension R ,  = XU, 
of the seed decreases. At large h the concept of critical di- 
mension becomes too vague, for at R, -X the seed energy 
does not separate into bulk and surface parts. At the same 
time a solution for the critical-seed field p, (p) does exist in 
this range of parameters (Fig. 1 ) . 

4. EQUATION FOR ISLETGROWTH 

We proceed to find the nonstationary solutions of Eq. 
( 11 ) for the order parameter and show that the growth and 
dissolutions of the islets can be described without additional 
assumptions and phenomenological parameters. 

Using the Green's function G(p) = Ko(pl) of the equa- 
tion 

FIG. 1.Order-parameter field q, ( p )  of critical islets [solid line-solution 
ofEq. (12), dashed-analytic relation (13) 1: I-h = 0.05; 2-h = 0.1; 3- 
h = 0.5. 

we rewrite Eq. ( 16) in the form 

We seek for Eqs. ( 1 1 ) and ( 18) solutions that describe the 
formation of new-phase islets of size R large compared with 
transition-layer widthx(a=R /x) l ) ,  in the form of a seed 
plus a certain correction: 

Here p, (p - a ( t )  ) is the solution of Eq. ( 12) for the critical 
seed but with the substitution a, +a (T) .  The correction 
W(P,T) will be shown below to determine the diffusion fluxes 
to the seed, and in the diffusion limit of small I it is a slowly 
varying function of the coordinates: 

For weak metastability h ( 1 the increment w(p,r) to the 
solution p, can also be regarded as small: 

Near the phase-transition point (h ( 1) the change of 
the seed dimension is usually the slowest p r o c e s ~ , ~ ~ . ~ '  i.e., it 
can be assumed that the characteristic time T, for the estab- 
lishment of the distribution w is short compared with the 
time T, in which the size of the seed changes: 

At any finite instant of time r ,  only the old phase 
[p (p  - cu ,T) - - 1 ] exists at large distances from the seed. 
Since p, (p - cu ,T) -+ - 1, w(p,r) satisfies the condition 

Substituting the solution (19) in Eq. (18) and using the 
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conditions (20), (21 ), and (22) we obtain 

-6 ( z ) P  (p, t) = ( l /a- l la , -6w (p, ~ ) ) c h - =  (a-p) +4w (p, t) . 

The investigations that follow will involve the solution 
of Eq. (24) which determines the growth rate of the islets in 
a field w ( p , ~ )  . In the diffusion limit (I-. O), as will be shown 
below, it is necessary to take into account in (24), for two- 
dimensional systems, the discarded terms - w. This will be 
done for I  = 0. 

The parameter I  that determines Eq. ( 11) for the order 
parameters enters in (24) only via the Green's function ( 17) 
and correspondingly through the integral P ( p )  of Eq. (24). 
Therefore the characteristic features of the kinetics are de- 
termined by the properties of the integral P ( p )  at various 
values of I. It is convenient to represent the parameter I, 
which determines the contributions of the various growth 
mechanisms, as the ratio x / L  of the seed transition-layer 
width x to the characteristic diffusion length L  during the 
adatom lifetime. The quantities x and L  are indicative of the 
dimensions of the layers in which the mechanisms of direct 
capture and diffusion growth supply adatoms to the islet [ X  
corresponds to ~ ~ ( 6 )  1 .  We investigate the properties of the 
function P(p )  to various limiting cases with I<  1 and 1% 1, 
and obtain the corresponding growth equations. 

5. ISLETGROWTH IN THE DIFFUSION REGIME (14 1) 

Consider the case when the diffusion length L  exceeds 
the width x and let the adatom desorption be weak: 

The integrand in expression (24) for P( p)  at I< 1 con- 
tains a product of an abrupt function ~ o s h - ~  (a - p l ) ,  
which differs from zero in the vicinity of the seed boundary 
p' = a ,  and a function G(p,p1)p', which is fluent in this vi- 
cinity [here G(p,pl) is the function 
G(p - p') = K O (  Ip - p'll) ofEq. (17), integrated over the 
directions of the vector p'] . This circumstance makes it pos- 
sible to expand the function G(p,pl)p' in terms of the vari- 
able p' near the maximum value p' = p, , (p, z a )  of the 
function cosh - ( a  - pf ) : 

Confining ourselves to the zeroth approximation of the func- 
tion G(p,p1)p' in (26), we obtain for P ( p )  (24) 

It follows hence that the characteristic scale of the variation 
of the function P ( p )  zPo(p )  is 1/1. In the diffusion limit, 
when I< 1, the function P(p)  is thus smooth over scales of 
the order of the size of the transition layer of the seed. 

Consider now Eq. (24) outside the seed boundaries. 
The function cosh - ( a  - p )  is here exponentially small, so 
that the equation simplifies to 

Since the functions w(p, r )  and P0(p,r) are smooth [rela- 
tions (20) and (27) 1 ,  Eq. (28) should be satisfied in all of 
space, including on the seed boundary at p z a .  It follows 
hence that the first term in the right-hand side of (24) is 
zero, and the following relation holds on the islet boundary 

Using (27) and (29) it is easy to obtain from (28) the islet 
growth rate in the diffusion regime: 

When account is taken of the function P ( p )  [Eq. (27) ] the 
behavior of the perturbation w(p,r)  can be determined in all 
of space: 

From the explicit form of the perturbation ( 3  1 ) it follows 
that at finite I there are two different fluxes J a  - Vw, one 
from the outside and the other from the inside towards the 
boundary. It is these two fluxes that determine the growth 
rate (30) of the seed. 

It was assumed above that w(p,r) is a smooth enough 
and slowly varying function of the coordinates and the time 
[the conditions (20), (21 ), and (22 ) l .  Using the explicit 
form ( 3  1 ) of the function w we easily verify that the condi- 
tions (20) and (21) are certainly satisfied in the region of 
low degrees of metastability ( h  < 1 ) for large seeds (1% 1 ) . 
The same result was obtained in Ref. 25 for the three-dimen- 
sional case. On the other hand, the quasistationary condition 
(22) may be violated at short times, when the seeds are small 
and the following relation holds: 

a31=IO (al)K, (nl)  -1. (32) 

FIG. 2. Diagram of relaxation regimes of a two-dimensional system: I- 
line [(22,32) ] of violation of quasistationary-growth condition; 2-line 
of admissible dimensions a > 1; 3, 4-line of equilibrium violation (45) on 
islet boundary ( 3 4  = O.lX, where X = + aZ,(al)K,(al), 4-P = X). 
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6. OPE AND PHENOMENOLOGICAL-THEORY PARAMETERS 

As I tends to zero, when the role of the processes that do not n 
conserve the number of adatoms becomes negligibly small, 
this time and space region broadens. Figure 2 shows the re- l 2  

gions of seed dimensions for various values of the parameter 
I, where various relaxation regimes are realized. The size (0 
region in which growth takes place in the quasistationary 
regime lies below curve 1. This region is bounded from below 
by line 2 which determines the permissible dimensions a > 1. 48 

It is seen from Fig. 2 that there is nonstationary growth if 
1 > 0.2. 46 

Let us consider the kinetics of the islet growth (30) in 
the diffusion regime. Figure 3 (lines 1-4) shows the time ,, 
dependences (30) of the islet dimensions for different values 
of the parameter I. A nonstationary relaxation regime exists 
for the curves to the right of line 3. The region of the param- Q L  
eters of this regime lies below the dashed curve 7. Figure 4 
(lines 1-4) shows the effective power-law exponents 0- 

We start by showing that at I <  1 the seed-growth equa- 
tion is determined by the conservation laws, just as in the - c i ( r ) ~ h - ~  (a-p) =4(12-A)w(p, t ) .  (33) 

case of the phenomenological theory [Eq. (3)  1. Werewrite w e  integrate this equation over the boundary layer, where 
E ~ .  (28) in differential form, by applying it to the operator the function cosh - * (a  - p) differs from zero. The result is 
( I 2  - A ) :  an equation for the seed growth rate in the case 14 1: 

6 

- 

- 

- 

- 
I 

- 

- 

, , . . . ,  1 , . , 1 , 1 , ~  , 

The first two terms in (34) describe the diffusion fluxes 
towards the seed boundary from the inside and the outside, 
while the last term is the flux due to the creation (adsorp- 
tion) of particles on the seed boundary itself. This term is 
proportional to 1 2, and therefore diminishes rapidly as 1-0. 
Note that with decrease of I (slowing down of the processes 
connected with nonconservation of the number of particles) 
the contribution to (34) from the flow from the interior of 
the seed also decreases and vanishes altogether in the limit as 
1-0. If I is small but finite, particles are produced inside the 
seed by adsorption and flow towards the boundary. 

The growth rate of the seeds is determined by relations 
of the form (34) in systems of any dimensionality (>2) ,  
when the nonconservation of the number of particles is insig- 
nificant (14 1 ). A change of the dimensionality changes only 
a numerical coefficient and the form of the function w(p,r) 
that determines the particle fluxes towards the seed bound- 
ary. 

We show now that the value (29) obtained for the func- 
tion w(p,r) on the seed boundary from the order-parameter 
equation agrees with the phenomenological condition (2) 
corresponding to equilibrium on the boundary. We use the 
expression for the critical dimension R, [Eq. ( 1 ) ] expressed 
in the low-density approximation, R, = p o ~ o / ( ~ -  C,) 
(Ref. 35), and rewrite the boundary condition (2): 

n -at /a for the same parameters as in Fig. 3. In the case of I00 MOO a. 

the diffusion relaxation mechanism (at small I) we have 
With enhancement of the processes that do not 'On- FIG. 4. Dependence of effective power-law exponent n==t  /a on the di- 

serve the number of particles on the surface (desorption, mension a: 1-1 = 2.10 - 5 ,  3-5. 4-2.10- 3 ,  5 - 1 0 2 ,  
penetration into the bulk of the material), the asymptotic 6-02 (the remaining parameters are the same as in ~ i ~ .  3).  
values of the exponent increase. 

FIG. 3. Dependence of islet dimension a on the time T for a ( ~  = 0 )  = 32, 
a, = 30, and different values of the parameter I [lines 1-4 and 6'-soh- C ( r = R )  -C=Copo( i /R-I /&) .  
tibns of Eq. (30); lines 5 and &solitions of E ~ .  '(43 ) ] : 1-1 = 2.10 - >, 
2-2.10-4,3-10-3, 4--10-2, 5 4 . 1 ,  6, 6 ' 4 . 2 .  Changing in (29) from the dimensionless quantities a to the 
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dimensional R = Xa we readily verify that expressions ( 2 9 )  
for w ( r  = R )  and ( 3 5 )  for C ( r  = R )  - coincide, and a 
connection exists between the parameters of the phenome- 
nological theory and the coefficients of the order parameter: 

Copo=~o~I12. ( 3 6 )  

Since an expression in the form ( 2 9 )  is obtained for w  only in 
the diffusion limit I g  1 ,  equilibrium is reached on the bound- 
ary only when the diffusion length L exceeds the characteris- 
tic scale x of the boundary layer between the phases, in 
which direct capture of atoms from the gas into the new 
phase is possible. 

7. DEVIATION FROM QUASISTATIONARY GROWTH REGIME 
(I= 0) 

We have considered above the case ( 2 2 ) ,  when the time 
to establish the distribution w ( p , r )  was neglected compared 
with the time to change the islet dimension, so that the term 
-w could be left out of Eqs. ( 2 4 )  and ( 3 3 ) .  There exists, 
however, also a parameter region in which the quasistation- 
arity condition ( 2 2 )  is violated (Fig. 2 ) .  This condition is 
certainly not met at I = 0 .  Let us consider the growth of islets 
in just this case. We must write them in place of ( 3 3 )  

-ci ( r )  ch-2 (a-p) =-4Aw (p, r )  +w ( p ,  7 ) .  ( 3 7 )  

Outside the seed boundary, where the left-hand part of ( 3 7 )  
is zero, this is the usual equation of nonstationary two-di- 
mensional diffusion. Solution of the diffusion equation with 
allowance for the asymptotic condition ( 2 3 )  can be written 
in the long-time limit 4 ~ " ~  )a in the form8p36 

Here A is a slowly varying function of the time, which can be 
conveniently determined from the behavior of the system 
near the islet boundary. Inasmuch as for sufficiently long 
times 4 ~ " ~  )a the perturbation wave w ( p , r )  ( 3 8 )  propa- 
gates over large distances from the islet boundary, the func- 
tion w ( p , r )  near the islet can be regarded atp = a  as quasista- 
tionary, so that w can be disregarded in this region when Eq. 
( 3 7 )  is solved. Equation ( 2 4 )  therefore remains in force 
near the boundary. This circumstance makes it possible to 
obtain the boundary conditions ( 2 9 ) ,  and for long times we 
have A = w, in ( 3 8 ) .  Integrating ( 3 7 )  over the transition 
layer of the seed [by analogy with ( 3 3 )  ] and substituting the 
explicit form ( 3 8 )  of w ( p , r ) ,  we obtain an asymptotic 
expression for the growth rate in a two-dimensional system 
with a conserved order parameter (at 4 ~ ' ' ~  ) a ) :  

This equation coincides with Eq. (5 )  of the phenomenologi- 
cal theory (apart from the nondimensionalizing param- 
eters). The exponents n of the power-law growth of the islet 
size, which appear when equations such as ( 3 9 )  are solved, 
have been considered in Ref. 8  and are close to 0.5 owing to 
the weak dependence of the function ln(4r"' / a )  on the ar- 
gument. As a result the solutions of Eq. ( 3 9 )  are similar7ss to 
the solutions of the equation 

Just such an expression was obtained in Ref. 37 for the islet 
growth rate in investigations of the relaxation of a conserved 
order parameter in a two-dimensional system. Our analysis 
above shows that Eqs. ( 3 9 )  and ( 3 9 a )  are asymptotic and 
describe the behavior of the system after long times. 

8. DEVIATION FROM EQUILIBRIUM ON THE BOUNDARY OF 
THE SEED ( 1 ~ 1 )  

We have considered above the case l g  1 ,  when the influ- 
ence of the processes that do not conserve the number of 
particles was manifested only far from the islets, at large 
distances compared with the transition-layer widthx. Equi- 
librium w ( p  = a )  = w, was reached in this case on the 
boundary of the islet (this condition is satisfied at I = 0  only 
for long times 4~"' )a ) .  Analysis of the processes that do 
not conserve the number of particles on the boundary should 
lead to deviation from equilibrium. To take formal account 
of the influence of these processes on the boundary condition 
it is necessary to retain in ( 2 6 )  the terms that follow the 
zeroth term of the expansion and permit allowance for small 
but finite values of / ( I (  1 ) .  Thus, the quantity P ( p )  defined 
by ( 2 4 )  takes in the linear approximation the form 

The function P o @ )  [Eq. ( 2 7 )  varies over scales 1/1. Direct 
substitution of the liner term of the expansion ( 2 6 )  into rela- 
tion ( 2 4 )  for P ( p )  shows that the function S P ( p )  differs 
form zero only in the region of the seed boundary. This 
means that outside the boundary Eq. ( 2 4 )  takes as before the 
form ( 2 8 ) ,  and the function w ( p , r )  is just as smooth as 
P o @ ) .  Since the functions w ( p , r )  and P,,(p) are smooth, the 
relation - a ( 7 )  P (  p )  = 4w ( p , ~ )  is valid near the boundary 
p z a .  Equation ( 2 4 )  takes then in the vicinity of the bound- 
ary the form 

We integrate this equation over the transition layer of the 
seed, using the abrupt dependence of the functions 
cosh - ' ( a  - p )  and S P ( p ) .  The result is 

ra(p=a)  =u),+ri ( r )  813. ( 4 2 )  

[p  = 2 / 1 2  in the linear approximation ( 2 6 )  1,  w, is the 
equilibrium value of the field w ( p , r )  ( 2 9 )  on the seed 
boundary. 

Note that the quadratic and subsequent terms of the 
expansion ( 2 6 )  introduce into P ( p )  a term that varies both 
over scales comparable with 1/1 and over scales of the order 
of the width of the transition layer. The terms of the former 
type renormalize P o @ )  and change the flows to the seed, 
while those of the second renormalize S P ( p )  and according- 
ly 0 in ( 4 2 ) .  

By considering jointly Eq. ( 2 8 )  and the boundary con- 
dition ( 4 2 ) ,  we obtain the growth rate of the seeds at I< 1 :  
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in the limit of small I we can neglect P in the denominator of 
(43), in which case the growth equation (43) coincides with 
(30). 

Using relation (43) for the growth rate, we rewrite the 
boundary condition (42) : 

It is easily seen that equilibrium is reached on the islet 
boundary (29) only under the condition 

al, (al) KO (al) >> @. (45) 

The islet-dimension regions where the influence of processes 
violating the condition of equilibrium on the boundary be- 
comes substantial, are indicated in Fig. 2. The contribution 
of the processes on the islet boundary to the right of curve 3 
exceeds 10% [i.e., P >  0. lX, where X = +aIo(al)Ko(al) 1, 
and becomes decisive on the right of curve 4 (B> X). If 
I < 0.1, equilibrium is reached on the boundary only for islets 
of sufficient size, a > a*. It is easy to show that a* increases 
when I decreases. The equilibrium in the interval 0.2 < I  < 1, 
starting with a> 1, is violated on the boundaries of seeds of 
all sizes, in the 0.2 < I < 1 interval, and at I > 1 this violation 
becomes predominant: w (p = a ) < + w, . 

We rewrite the obtained boundary condition (42), us- 
ing the general relations for the growth rate a(7)  [Eq. (34) ] 
for the growth rate of an islet, and for the total flux J of 
particles to the boundary of the islet: 

or in dimensional form 

A condition such as (46a) is used for the flow of particle 
through the boundary of a seed in the ZV phenomenological 
theory. This is a more general boundary condition that (2)  
and (29). It takes into account the finite rate of the processes 
that occur on the boundary of the seed.396 From the explicit 
form of the expression obtained for the flow it is seen that the 
velocity v of passage of the particles through the boundary is 
determined in this case by the velocity of a diffusion jump of 
length X ,  which is indicative of the width of the transition 
layer of the seed: 

The quantity P [Eq. (42) ] is thus connected with the finite 
flow rate of the particles through the boundary. 

Let us examine the influence of the finite rate of the 
processes at the boundary of an islet on the growth kinetics 
of the new phase. Curves 1-4 of Fig. 3, which constitute 
solutions of Eq. (30) for I< 10 - 2 ,  agree within 10% with 
the solutions of Eq. (43) which takes the processes on the 
boundary into account. On the left of line 5 (1 > 0.1 ) are 
located curves for which the contribution of the processes on 
the boundary exceed 10% [lines 5 and 6-solutions of Eq. 
(43) 1.  By way of example, Fig. 3 shows the solution of both 
Eq. (43) (line 6) and Eq. (30) (line 6 ' )  for I = 0.2. The 
power-law exponents calculated with the aid of Eq. (43) 

exceed 0.5 and tend to unity for large values of I (curves 5 
and 6 of Fig. 4).  

A situation far from equilibrium sets in when processes 
in which the number of particles is not conserved, 1) 1, 
dominate. The phase transitions are described in this case by 
a nonconserved order parameter. Relaxation of a non-con- 
served order parameter was investigated in sufficient de- 
tai125,37 for systems with various dimensionalities. The fol- 
lowing growth equation [in the dimensionless form ( 1 1 ) 1 
was obtained for the seeds in Ref. 25: 

This equation is easily obtained in the framework of the 
proposed method. For 1) 1, in fact, the Green's function G 
[Eq. ( 17) ] can be assumed, up to scales of the order of the 
boundary width, to be G = I AS a result, the integral 
P(p)  differs from zero only on the boundary, the growth 
equation takes the form (47). Note that the perturbation 
w(p,t) is zero for I) 1, so that the same nonequilibrium ada- 
tom density obtains near the islet as at large distances, and 
there are no diffusion fluxes. The islet growth rate (47) is 
fully determined by the particle adsorption on its boundary 
[by analogy with (6) 1. 

The growth equation (47) leads for large islets to a 
power-law exponent n = 1. The islet size increases thus lin- 
early both if I) 1 and if I< 1 (see Sec. 8) .  Since the growth 
exponent is a monotonic function of the parameter I, one can 
expect n to be close to unity also in the intermediate region 
l> l .  

10. CONCLUSION 

The theory of relaxation of metastable statesz5 is appli- 
cable to two-dimensional systems of adsorbed atoms. The 
main advantage of the developed approach is its universal- 
ity: the entire variety of relaxation regimes reduces to vari- 
ation of two dimensionless parameters h and I, one of which 
(h)  determines the degree of metastability of the system and 
the other (I) the ratio of two growth mechanisms, viz., diffu- 
sion of adatoms to an islet and direct landing of atoms from 
the gas phase above the surface on the perimeter of the islet. 
We have investigated here the growth kinetics of new-phase 
islets in various regimes. The obtained power-law exponents 
of the growth of an islet (occurring after long growth times) 
varies in the interval from 0.5 (in the diffusion limit 1-0) to 
1 (in the cases I- 1 and I) I). 

A connection was established between the developed 
approach and various generalizations of the ZV theory for 
two-dimensional systems. Relations were obtained between 
the coefficients of the order parameter and the parameters of 
the ZV theory. Solution of the order-parameter equation led 
to the conditions produced on the islet boundary in various 
cases. It was shown that an equilibrium adatom density is 
produced near an islet boundary only in the diffusion limit 
(I( 1 ), and deviation from this limit violates the equilibrium 
and leads automatically to a flow-like boundary condition. 

Application of the developed approach to actual sys- 
tems requires derivation of an expansion of the free energy in 
powers of the order parameter in the vicinity of the phase 
transition point, or indirect derivation of an order-param- 
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eter equation. A similar microscopic approach was imple- 
mented for certain physical ~ys t e rns .~ ' -~  The free energy of 
an adatom system can be expanded on the basis of the poten- 
tial of paired long-range interactions between the ada- 
 torn^.^',^^ 

Note that the theory of relaxation of order-parameter 
fields can be used to consider individual seeds as well as their 
ensembles. It is possible to derive in a regular manner an 
equation for the seed flux in dimension space and to study 
formation of seeds, their coalescence, and other effects.25 
The distinguishing features of two-dimensional systems 
with different growth-mechanism ratios requires a separate 
analysis of the relaxation of an ensemble of islets. 
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