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The problem of formation of a medium-range dielectric order (on a scale much larger than the 
interatomic one) due to electron-electron correlations and to scattering by an impurity in a 
system near a phase transition into a long-range order state is solved by a microscopic approach. 
It is shown that for a weak impurity potential the effect of medium-range order formation is 
stronger than the effect oflong-range order suppression related to scattering by an impurity. The 
infuence of medium-range order on the one-particle excitation spectrum and on the density of 
states is considered. It is found that since the medium-range order in a system is due to 
correlations of electron and hole states "coupled" by a continuous set of inhomogeneity vectors 
(in contrast to the long-range order formed on a discrete set of such vectors), the density of states 
varies on an energy scale determined by the mean absolute value of these vectors. Therefore in a 
system undergoing phase transition into an inhomogeneous state with the modulus go of 
inhomogeneity vectors the medium-range order forms in the density of states a pseudogap of scale 
length v, q, (v, is the Fermi velocity). This distinguishes such a system substantially from one, 
which tends to a phase transition into a homogeneous state (9,-0), where the medium-range 
order forms a pseudogap of scale length v, / { g  v, go (6 is the correlation length). The possible 
role of medium dielectric order effects in high- T, superconductors is discussed. 

1. INTRODUCTION 

Analysis of experimental data obtained during the years 
of study of high-T, (HTSC) superconductivity reveals an 
important role of dielectric correlations in the mechanism of 
the latter. First, it is experimentally confirmed that there are 
strong spin correlations in the superconducting phase of 
LaSrCuO and YB~CUO. ' -~  Second, optical experiments4-" 
have reliably detected a pseudo-gap of electronic origin in 
the excitation spectrum of BaPbBiO and BaKBiO for super- 
conducting compositions. Third, HTSC have very large stat- 
ic dielectric constants in the long wavelength which 
is interpreted as an indication of proximity of these sub- 
stances to a point of instability in relation to the transition 
into ferroelectric phase. Fourth, anomalously high mobility 
of oxygenlo and copper" ions has been observed in a number 
of experiments on YBaCuO, which can be related, from the 
microscopic point of view to electron instability to charge 
transfer from copper to oxygen.12-'4 Besides, temperature 
nonmonotonicity and changes in lattice parameters, and in 
the elastic and oscillation characteristics near the phase 
transition into superconducting phase can also be regarded 
as indirect evidence of strong dielectric correlations in 
HTSC. 

All these data prompted to extensive theoretical studies 
of the nature of dielectric correlations in HTSC and their 
relation to superconductivity in these compounds. 

It is reliably established that the electron-electron inter- 
action in HTSC is not weak ( U/ W- 1, where Uis the energy 
of one-center repulsion and W is the bandwidth). Owing to 
this, and in laminated HTSC also owing to their effective 
two-dimensionality, the point of electron instability with re- 
spect to the transition into the phase with long-range dielec- 
tric order is preceded by a wide interval of developed charge 
[in the case of a charge density wave (CDW) 1 or spin [in 

the case of a spin density wave (SDW) ] fluctuations. In this 
interval electron-electron correlations form a medium-range 
order (falling off on a scale larger than the interatomic one), 
which means existence of local long-living charge or spin 
fluctuations. 

Defects (impurities) inserted into HTSC by doping can 
also form, in their vicinity, regions of a medium CDW or 
SDW order. These regions of medium-range order in the 
vicinity of impurities constitute something like "frozen" 
fluctuations. Therefore the problem of fluctuations connect- 
ed with electron-electron correlations can be treated in 
terms of the impurity problem. However, to go over from 
one problem to the other, it is necessary to replace in all final 
expressions the parameters V12N(0) and no, where V12 is the 
off-diagonal component of impurity scattering (see Sec. 21, 
N(0) is the density of states at the Fermi level in the symmet- 
ric (initial) phase, and no is the impurity concentration, by 
the parameters p,, / E ~  and n, , where pCr is the critical value 
of the incongruity parameter (see Sec. 2),  E, is the Fermi 
energy, and n+ is the concentration of local long-living re- 
gions ofshort-range order. Note also that n, should be deter- 
mined, in a self-consistent way, by proximity of the system to 
the point of transition into the long-range order state. 

It is known that scattering by a charged impurity sup- 
presses the long-range order in systems with electron-hole 
coupling'5s1h (the 1/r effect). This is a second-order effect in 
the impurity potential related to different effect of a charged 
impurity on the electron and hole in the electron-hole pair. 
However, an impurity can produce in its vicinity the medi- 
um-range dielectric order even in such a range of system 
parameters for which the long-range order is not realized. 
This is a first-order effect in the impurity potential and pre- 
dominates, when the latter is weak, over the effect of long- 
range order suppression. Two types of defect are possible: of 
the "local transition temperature" type, when the order in 
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the vicinity of the defect arises at a temperature somewhat 
higher than the temperature of long-range ordering in the 
system, and of the "local field" type, when the medium- 
range order near the defect exists at any temperature. 

Local structural transitions near the defects of the "lo- 
cal field" type been considered phenomenologically in Ref. 
17. Defects of the "local transition temperature" type have 
been discussed in relation to band antiferromagnets (AF) 
above the NCel point.'8-20 The properties and structure of 
states localized at both types of defects in one-dimensional 
systems, undergoing transition into an inhomogeneous 
phase of the soliton lattice, have been considered in Ref. 21. 

In the present study we treat microscopically, in terms 
of the "random field" impurity problem, the formation of 
medium-range dielectric order in systems above the point of 
transition into the long-range order state (the changeover to 
the problem of medium-range order formation by electron- 
electron correlations is carried out according to the rules 
mentioned above). The influence of the medium-range order 
on the one-particle excitation spectrum and density of states 
is considered, and the role that the medium-range dielectric 
order might play in HTSC is discussed. 

We will solve the problem thus formulated in the limit 
of weak interaction (U/W( I ) ,  in which it has an asymp- 
totically exact solution. In this limit, the charge carriers are 
described in the framework of band approach, and the insta- 
bility against electron-hole pairing is connected with the fea- 
tures of the excitation spectrum of collectivized ,electrons. 
As theoretical studies show, treating electron-electron cor- 
relations in the limits of weak ( U/ W( 1 ) and strong ( U/ 
W) 1) interactions lead to qualitatively equal results. 
Therefore one can hope that the results obtained in both 
limiting cases can be reasonably extrapolated to the region of 
intermediate interaction ( U/ W- 1 ) realized in HTSC. 

2. MODEL HAMlLTONlAN AND BASIC EQUATIONS 

In the present study we use a model Hamiltonian for a 
semi-metal with congruent electron ( 1) and hole (2)  bands 
whose extrema are the "nesting" vector Q apart: 

Note that the scheme of one-band metal with congruent 
parts of the Fermi surface separated by the "nesting" vector 
Q also reduces to model ( 1 ) by means of appropriate label- 
ing of spectral regions separated by space at the vector Q 
near the Fermi surface. 

We will make use of high density approximation, when 
all interactions can be assumed point-like.22 It is well-known 
that a system described by model ( 1 ) is unstable against 
electron-hole pairing. In what follows we assume for defi- 
niteness that the system undergoes a phase transition into 
the state with charge ordering. The latter occurs, if the cou- 
pling constant g, corresponding to the CDW is a maxi- 
mum.22 However, the results that follow hold also in the case 
of instability to a transition into the state with (AF) spin 
ordering, which occurs if the coupling constant g,  corre- 
sponding to the SDW is the greatest. It is necessary only to 
replace in all final expressions the coupling constant g, of 
singlet pairing by the coupling constant g, of triplet pairing, 

and replace the off-diagonal component of potential part of 
carrier scattering from impurity atoms by the off-diagonal 
component of the exchange part of scattering (see below ). 

It is assumed that electrons and holes have different 
densities, owing to doping by impurities and existence of a 
reservoir (i.e., other bands overlapping with the ones under 
study but not participating in the pairing and providing total 
electroneutrality ) . For example, in the compound 
La, - ,Sr,CuO, the role of doping, by impurities, of 2D- 
bands formed by the CuO, plane is played by subsitution of 
Sr atoms for La atoms. In the YBa2Cu30,+, compound the 
role of a reservoir is played by the ID-band formed by CuO 
chains and contributing to the Fermi surface, while the role 
of doping is played by changes in the oxygen content. Owing 
to the difference in electron and hole concentrations in the 
system, the model Hamiltonian should be supplemented by a 
term of the form 

where ii,,, are electron density operators in the bands stud- 
ied, and p is the chemical potential. Because of this (p #O), 
the Fermi surfaces of electron and hole bands turn out to be 
not exactly congruent, and therefore inhomogeneous solu- 
tions formed by a discrete set of wave vectors q#Q (such 
that Iq - Q I  =go( IQI) may arise either for the CDW or for 
the SDW.23,24 

The potential part of carrier scattering by impurity 
atoms can be written in the form of a matrix in the space of 
band and spin indices: 

h 

where I is a unit matrix in spin space, and V,, = V f ,  . The 
impurity potential is considered point-like for simplicity. 
The off-diagonal, in band indices, component of potential 
scattering is the source of the long-range CDW order, while 
the off-diagonal component of the exchange part of scatter- 
ing (proportional ot the scalar product of the impurity atom 
spin and the electron spin) is the source of the short-range 
SDW order. 

The matrix elements VV ( i  j = 1,2) in the space of band 
indices correspond to local renormalization of site energy 
levels E,  and matrix elements t,, of hopping between the 
neighbors in the basis of the Wannier functions: 

(The quantities with and without a tilde correspond to re- 
normalized and bare matrix elements respectively). This re- 
normalization leads to local changes in charge or spin den- 
sity, producing either a local CDW or a local SDW, which 
fall off over scales of the order of the correlation length 6. 

All matrix elements VV ( i  j = 1,2) have the same order 
of magnitude. In particular, the authors of Ref. 25, using the 
wave functions calculated in the tight-binding approxima- 
tion for systems with bcc lattice,26 have found that for a 
point-like impurity potential 

The effect of medium-range order formation in the impurity 
vicinity is "proportional" to V,,, while the "1/r effect" of 
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long-range order suppression is "proportional" to the 
squares of matrix elements K, ( i j  = 1,2). Therefore for a 
weak impurity potential the formation of a medium-range 
order near (below) the point of phase transition into the 
long-range-order state will predominate over the "1/r ef- 
fect." 

The CDW amplitude is determined by the value of a 
singlet order parameter. A, ( r ) .  The latter, in its turn, is re- 
lated to the anomalous, in band indices, Green function by a 
self-consisting equation 

A ,  (r) =a, (r) exp (iQr) 

Here 

are the temperature Green functions, Y,, ( r , ~ )  is the field 
operator of annihilation for an electron of spin a in the ith 
band, 

Tis the temperature, and a, ( r )  is a function slowly varying 
on the lattice-constant scale. 

Since we have assumed for definiteness and without loss 
of generality that the system is unstable against the CDW 
formation, we have 

In the high-density approximation the equations for the 
Green functions have a standard form G, (r,r',w, ) 

The potential p ( r )  in (5)  is related to the long-range The chemical potential p, is fou%d from Eqs. ( 5) and (71, if 
part of the Coulomb interaction resulting from screening of we setp = p,, A, ( r )  = p ( r )  = v.,, ( r )  = 0, and n(r)  = n: 
the impurity potential V(r) and spatial redistribution of ex- -n ' Fo -' - tra carriers, existing forp $0, due to inhomogeneous A, ( r ) .  W(0)  ' (8 

The potential p ( r )  obeys the Poisson equation, which has where 
the following integral form 

N (0) =m'vd2ng 

( 6 )  is the density of states in bands 1 and 2 at the Fermi level [we 
have assumed, for simplicity, that the spectrum ~ ( k )  is iso- 

where e is the electron charge, n ( r )  is the difference in the - 
electron and hole concentrations, and n = n( r )  (the bar 
means averaging over the volume). Here we have already - 
taken into account that the average value p ( r )  = 0, since 
the system, as a whole, is electroneutral. 

It is easy to find the local variation of the electron den- 
sity, if we know the Green functions and density of states at 
the Fermi level, N, , in the bands forming the reservoir. Since 
the variation of the electron density in the reservoir bands 
equals 

wherep, is the chemical potential in the absence of the impu- 
rity potential in the symmetric phase, i.e. for 

we have 

n(r)  - 2 ~ x  (Gl l  (r, r, 0") exp (10.~) +GI. (r, r, 0.1 
en 

- - 
tropic, i.e., ~ ( k )  = k2/2m], and v, is the Fermi velocity. 

Thus, Eqs. (3) ,  and (5)-(7) form a closed system al- 
lowing to find the order parameter A, ( r ) ,  the long-range 
Coulomb potential p ( r ) ,  and the chemical potential p in 
terms of system parameters, as well as carrier excitation 
spectra E ,  ( k )  and E~ (k) ,  the difference n in electron and hole 
concentrations, and the coupling constant g, . 

3. LOCAL CDW 

It is well known (see Refs. 232nd 24) that when the 
scattering by impurities is absent [ Vim, ( r )  = 0] at T = 0, 
the system under study experiences a phase transition into 
an inhomogeneous state with long-range dielectric order, if 

where 

p,, =0,755Ao, Ao=2ep exp ( - l l g , ) ' ,  

and cF is the Fermi energy. The formation of a spatially 
inhomogeneous solution for the order parameter occurs for 
a discrete set of wave vectors q, lying close to the "nesting" 
vector Q, such that 
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In the presence of the impurity potential the right-hand 
side of the self-consistency equation ( 3 )  contains a source 
whose magnitude is proportional to V, , .  As a result, a solu- 
tion for A, ( r )  localized near the impurity exists even above 
the transition into the state with long-range order. We will 
find this solution at T = 0  for the values of the incongruity 
parameter close to (larger than) p,, . 

For this purpose we go over in the system ( 3 ) ,  ( 5 ) - ( 7 )  
to the momentum representation, introducing, as usual, the 
Fourier components A, ( q ) ,  ~ ( q ) ,  n ( q )  and 
G, (k ,k  + q , a , ) .  Then weexpand G I 2 ( k , k  + q , a , )  inase- 
ries in A, ( q )  and V,, ( q )  and retain in the right-hand side of 
the self-consistency equation ( 3 )  the terms linear in A, ( q )  
and V , , ( q ) ,  which is valid in the Born approximation 

Then Eq. ( 3 )  is rewritten in the form 

where the polarization operator II(q ,p)  is 

x c  
exp {iQ(r-ra)-  1 r-ra l/t}sin (go 1 r-r,,I ) 

I r-r., I 1 

where the correlation length 

determines the effective size of the medium-range order re- 
gion near the impurity. 

4. EXCITATION SPECTRUM AND DENSITY OF STATES IN A 
SYSTEM WITH MEDIUM CDW OR SDW ORDER 

When considering the influence of inhomogeneities on 
physical parameters indicative of a system as a whole (such 
as thermodynamic properties, energy spectrum, density of 
states, etc. ), it is necessary to average these parameters over 
spatial position of inhomogeneities. AS a result, the momen- 
tum k  turns out to be a natural quantum number in the prob- 
lem. Let us consider the effect of medium-range dielectric 
order on the spectrum of one-particle excitations Ei (k )  and 
density of states Ni ( a )  in the bands i = 1,2. These quantities 
are expressed through the self-energy part Xi ( a , k )  of the 
corresponding band: 

and E , - p - e ,  ( k )  -Re X, ( E , .  k) =0, ( 1 5 )  

1 
ion-ei (k) -; 

is the Green function of a free particle in the ith band. 
Assuming that 

[the latter assumption is justified by the final result for 
A, ( r )  1, we expand the polarization operator II  ( q y  ), hav- 
ing a maximum for I q  - Q I = q,, in a series in these param- 
eters: 

( 1 2 )  

From ( lo)-(  12) we find 

In the "cross" technique2' self-energy parts are given by 
the following expressions: 

where no is the impurity concentration, and A , ( q )  is the 
order parameter ( 13) for one impurity atom. 

Two requirements must be fulfilled, if we want to use 
the "cross" technique. The first is related to the contribution 
of neglected "localization" diagrams: 

The second one, making use of the Born approximation in 
the potential A,  ( q ) ,  reduces, in our case, to the inequality 

Using ( 13) ,  we get from ( 17) the following expressions 
( 1 3 )  

for Z, ( o , k )  for k  near the Fermi surface of the correspond- 
In the configuration space we have correspondingly ing band i: 
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r lm X,( f3 ,  k)  =-uEa sgn (93-p) [ x  - 2~~ (k)  ] give the spectrum of elementary excitations 
Ei (k) ,  and Im Hi [Ei (k) ,k]  give their damping. The gen- 
eral form of the spectrum El as a function of&, (k)  for differ- 
ent values of the parameter ~ U E ~  /vF qo is shown in Fig. 2. As 
is well-known, quasiparticles are well defined if the condi- 
tion 

3: 
is fulfilled. This is realized in the system under study in spec- 

[ l+  (gyo)2(s-1)2]Z 
tral regions 

x + ( Q + E , ( ~ )  )/uFqe (20) 
X- ( Q + E ~ ( ~ )  )/vRq0 1 Ei (k) f e i  (k) I2v,qo. (24) 

Substituting (20) into (16), we find the following 
We have introduced the notations 6 = w - p, and expression for the density of states near the Fermi surface: 

It follows from (20) that for 16 + E, ( k )  + uFqo12 uF/{and 
1 Im 2, (y)lv,qo a t 6 =  - ~ , ( k )  + vFqo x- 
n '[E-y-13~ Z ( k )  /vpq,IZ+ f Im Zi ( Y ) / ~ F ~ O ~ '  4, 

Using (201, (21) and (18), we find 

Figure 1 shows Re Zi (6,k)  and Im Zi (6,k) as func- 
tions of x = 6 + E~ (k )  (solid lines). According to ( 16), the 
intersection points of the plots of Re Hi (6,k) and 

(25) 

where 

y= ( ~ + e , ( k )  ) /v,qo, E=B~lv,yo. 

Expressions (20) and (25) show that 

vpqa=1,8Ao, 

where A, is the mean-field gap for 

T=p=V,, (r) =O 

(see Sec. 3), is the characteristic energy scale of the density 
of states. 

Figure 3 shows the results of computer calculations for 
the following sets of parameters 

FIG. 2.One-particle excitation spectrum E, ( k )  ofa system with medium- 
FIG. 1 .  Self-energy part in a system with medium-range dielectric order range dielectric order unstable against the transition into an inhomogen- 
unstable against the transition into an inhomogeneous state (solid lines) eous state (plots a, b, and c correspond to 2u&,/uFq,, < 1, and plot d to 
and into a homogeneous one (dashed lines). 2ueF /uFq,, > 1). 
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FIG. 3. Density of states in a system with medium-range dielectric order 
unstable against the transition into an inhomogeneous state. 

Evidently, we get a pseudogap structure of the density 
of states with a characteristic energy scale of the pseudogap - vFq, and well pronounced peaks of the density of states at 
its boundary. The coordinates of these peaks are found from 
the condition that the absolute value of 

is minimal, which, together with (20) and (22), gives 

Thus, the pseudogap width equals 2 lGmax I. The amplitude of 
the density of states at the maixmum, N(Gma, ), is propor- 
tional to Gmax. Outside the pseudogap energy scale, for 

the density of states is 
a 

h'(63) = N ( O )  (632-a-2)" ' 

as in the case of commensurate CDW with long-range order 
in the system. 

When the system moves away from the point of instabil- 
ity against the transition into the state with long-range CDW 
or SDW order [this corresponds to the increase in the pa- 
rameter u [see (21) ] and correlation length l ] ,  the density 
of states grows on the energy scale of the pseudogap, while 
the peak amplitude falls off (see Fig. 3). The peaks them- 
selves draw together in such a way that the pseudogap width 
is always larger than vFq, [see (26) 1. Such an evolution of 
the CDW-pseudogap has been found in optical experi- 
m e n t ~ ~ - ~  on BaPb, - , Bi, 0, in the Pb concentration range, 
where the long-range CDW order is suppressed. 

As has already been noted, well defined quasiparticles 

exist in the spectral regions given by (24). It is just these 
sepctral regions that lie outside the energy interval of the 
pseudigap and turn into quasiparticles when the long-range 
order sets in. The states inside the pseudogap have a very 
strong damping and therefore contribute mainly to the inco- 
herent part of the spectral function A ( k , w ) ,  which is the 
integrand in ( 16). 

Before discussing the physical cause of formation, by 
the medium-range order, of a pseudogap on a characteristic 
energy scale 

in a system, which tends to a phase transition into an inho- 
mogeneous state, we consider the same problem for a system 
near (above) the point of phase transition into a homoge- 
neous (i.e., with q,rO) state. For this purpose, instead of 
( 12), we must use 

where 

Pfr ='/zAo=&a exp ( - l l g , )  

(see Ref. 28), 

and c(3)  -- 1.2 is the Riemann zeta-function for the argu- 
ment equal to 3. 

Instead of ( 13 ) , we find 

exp {iQ (r-ra) - 1 r-ra 1 /E') 
AS1(r) = - - 

1 r-ra 1 t 

(14') 

where the correlation length is 

For the self-energy parts, instead of (20), we get 

where 

and 

Inequality ( 18), together with (20), gives 
EF -uf<1. (23') 
PSr 
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FIG. 4. Density of states in a system with medium-range dielectric order 
unstable against the transition into a homogeneous state. 

It is necessary to replace ( 19) by 

The plot of Re Bl(5,k) is shown in Fig. 1 (dashed line). 
Substituting (20') into ( 16), we get 

1 Im Xi' (y') 1 / ( v ~ E ' )  
X [E'-yf-Re xi' (y') / (VFIE') 12+ [ 1m Xi' (Y') (valg') 1'' d ~ ' ,  

where 

y' = 
a+& (k) 20 1 E'=- 

vpigl ' vFIE'' 

Expressions (20') and (25') show that the medium- 
range order in a system undergoing a phase transition into a 
homogegeneous state gives rise to a characteristic scale 
length v,/(' of the density of states. Figure 4 shows the re- 
sults of computer calculations of Ni ( E  ') for the following 
parameters 

The phase transition into a homogeneous state with 
long-range order is due to the correlation of an electron with 

momentum k from band 1 and a hole with momentum k - Q  
from band 2. In contrast to this, the medium-range order in 
such a system is formed due to correlations of an electron 
with momentum k from band 1 with an ensemble of holes 
from band 2 whose momenta lie inside a sphere of effective 
radius (6 ') with the center at the point k - Q  (Fig. 5 ) .  
The phase volume of these states is 4/37r(f ') -3. As a result, 
the characteristic energy scale length for the density of states 
is vF/('. 

The phase transition into an inhomogeneous state with 
long-range order is due to the correlation of an electron of 
momentum k from band 1 and a discrete (finite) set of hole 
states from band 2 with momenta k - q. The vectors q are 
given by the absolute value of the inhomogeneity vector 
s-Q: 

The medium-range order in such a system is formed by the 
correlated motion of an electron with momentum k from 
band 1 and an ensemble of holes from band 2, both inside a 
spherical layer of effective thickness 6 -'. The radius of the 
sphere equals q, and its center is at the point k - Q (Fig. 5). 
The phase volume occupied by this ensemble (the volume of 
spherical layer) is large and equal to 

This is why the medium-range order in a system undergoing 
phase transition into an inhomogeneous state forms a pseu- 
dogap on a characteristic energy scale 

Such a system with medium-range order is much closer in its 
properties [the excitation spectrum, density of states (and, 
as a result, thermodynamic properties), optical and tunnel 
characteristics, etc.] to a system with long-range dielectric 
order than a system with medium-range order unstable 
against the phase transition into a homogeneous state. This 
is also reflected in the fact that the ratio of correlation 
lengths in these two cases, under the condition of equal prox- 
imity to the transition point, is 

The effect of anitferromagnetic spin fluctuations on the 
excitation spectrum and density of states of a two-dimen- 
sional metal given by the Hubbard model for T = 0 and oc- 
cupation deviating from half occupation (p  #O) has recent- 
ly been discussed.29 However, attention has mainly been 
paid to the case of system instability against the transition 

FIG. 5. To the question of correlation between an electron of momentum 
k from band 1 and holes of momenta k - q from band 2 in systems with 
medium-range order. 
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into a homogeneous state with the SDW. The random phase 
approximation has been used and the solution has been ex- 
trapolated to the region of intermediate and strong interac- 
tion ( U / W> 1 ), where the size of the ordering region is d,e- 
termined by the ineratomic di~tance.~'  The pseudogap 
energy scale is therefore determined by the quantity 

(here a is the interatomic distance), as found by the authors 
of Ref. 29. 

As already noted in the Introduction, the large values of 
the static dielectric constant in the long wavelength 
and anomalously high mobility of oxygenlo and copper" 
ions in HTSC are, evidently, related to the proximity ofthese 
systems to instability against charge transfer from copper 
(in cuprate superconductors) or bismuth [in 
Ba(K,Pb)BiO ] to oxygen (charge instability). In Refs. 12- 
14 the charge instability has been regarded as a cause of 
radical increase in the superconducting transition tempera- 
ture due to peculiar momentum and frequency dependences 
of electron-electron interaction in the Cooper channel. 

The theory developed in the present paper for medium- 
range CDW or SDW order in systems close to the instability 
against the transition into an inhomogeneous state suggests 
the following scenario of evolution of HTSC under doping. 
Undoped systems (La,CuO,, YBa,Cu,O,, BaBiO,, etc. ) are 
unstable against the formation of long-range CDW or SDW 
order due to the "nesting" of the Fermi surface in the initial 
antibonding band (mainly copper for cuprate HTSC and 
bismuth for BaBiO,). This band splits into two subbands 
and the upper part of the bonding (mainly, oxygen) band 
falls into the energy interval of the formed CDW or SDW 
gap. With doping the long-range charge or spin order is sup- 
pressed, the subbands draw together, but the medium-range 
order (with q,#O) prevents the CDW or SDW pseudogap 
from "collapsing." For certain doping (probably, corre- 

p-q/z a+q/2 
+arctg - arctg arctg 

(i2!4+ 1)'" (qZ/4+ 1 )  " 
(27) 

where 

and w, is the cutoff energy of the order of the allowed band 
width. 

In the limit of interest, 

Eq. (27) reduces to 

+ arctg 

If we study (28) as a function of q, we find that II ( q y  ) 
has a single maximum at the point q = 0. Expanding (28) in 
a series in ij< 1 and a& 1, we get 

- n (q. 11) =2p-n-'/,a3-'I8xr~'. (29) 
sponding to the superconductivity optimum) the distance 

The critical value of doping at which the long-range 
between the Fermi level in the oxygen band and the maxi- 
mum of the density of states, which corresponds to the upper dielectric order can arise in the limit of weak interaction 

CDW or SDW subband, turns out to be smallest. This dop- [ g  = AN(E, ) & 1, where A is a dimensional interaction con- 

ing corresponds precisely to the greatest proximity of the stant for band-1 electrons and band-2 holes] is given by the 
equation system to charge instability connected with the carrier inter- 

action in the oxygen and upper CDW or SDW subband. In 
the next section we consider the exitation spectrum and den- 
sity of states of a system close to charge instability. 

5. BEHAVIOR OF A SYSTEM CLOSE TO CHARGE 
INSTABILITY 

As the model of a bare excitation spectrum of a system 
tending to charge instability we use the two-band spectrum 
( 1 ), where it is necessary, however, to replace E, by - E, /Z 
(E, is the band gap width). Furthermore, we assume that 
the semiconductor is a direct-band one, i.e., we set Q = 0. 

In the isotropic case [ ~ ( k )  = k2/2m] at T = 0 the po- 
larization operator ( l l ) [it is necessary to replace N(0)  by 
the quantity N(Eg)  = m(mE, )1 ' 2 /2~  having the dimen- 
sions of the density of states] is 

As noted in the previous section, in HTSC doping leads 
to relative motion of the oxygen and upper CDW or SDW 
bands. With increasing p (we assume for definiteness that 
p >O, which corresponds to hole HTSC Eg decreases. 
Therefore in the framework of the model considered we 
must assume that E, is a function of p ,  and for a certain 
composition range (in which, as shown by experiment, con- 
ditions optimal for superconductivity are realized in HTSC) 
the system is close to but above the point of formation of 
long-range dielectric order. Equation (30) may not have any 
solution for any value of the parameterp. In what follows we 
will consider precisely this situation, which is evidently real- 
ized in HTSC. 

The condition that II(q = 0,p) has a maximum, as a 
function of p, gives an equation for p,, : 
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Using ( 10) and (29), we find the solution for the order 
parameter A ( q )  in the case of charge instability: 

where the correlation length is 

In configuration space we have correspondingly 

Using (32), we find from (17) the following expres- 
sions for self-energy parts Xi (w,k), i = 1,2 (the upper sign 
corresponds to i = 1, the lower to i = 2) : 

where 5 = w - p, k = 1 kl and a dimensionless parameter u 
is introduced: 

Using Eq. (16) for the density of states N, (w) together 
with (34), we find (as before, the upper sign corresponds to 
i = 1, while the lower one to i = 2): 

N ,  (a)=Ni+ ( a )  +Ni-(a), 
N,+ ( a )  = (1/4n2) [1+ (a2-n~E8g-2/m) '1 IG 11" 

x m [2nt ( ~ ~ - n u ~ , g - ~ / r n ) ' - E ~ / 2 ] " '  
x ~ [ A B -  (E ,Y~+I IUE,~ -~ /~L)  1, 

N,- ( a )  = (uE,/8na2Ez) 
X [2nz(~a-E,/2) ]"fJ ( T O - E ~ / ~ ) ,  

u<l.  (36) 

The contribution of Ni+ (5) to the density of states is 
related to well defined quasiparticles (with infinite lifetime) 
having the dispersion law 

Ei(k) =* [ E ?  (k) +n~E,E-~/rn] 'v, 

The renormalization constant (residue) of these quasiparti- 
cles is 

The contribution N , -  ( 5 )  to the density of states is re- 
lated to the splitting of a part of the density of states from 
band i (owing to which the residue z, (k)  corresponding to 
the quasiparticles El (k), which form N ,+ (G), is strictly less 
than unity) and transfer of this part to the extremum of the 
opposite band. 

The relations N ,+ ( 5 )  and N ,- ( 5 ) ,  i = 1,2 (thin lines) 
and N(5)  = N,(5)  + N,(h) (thick line) are shown in Fig. 
6. The density of states corresponding to the seed spectrum 
E, (k )  is shown by dashed lines. 

6. CONCLUSION 

In the present study we have used a microscopic ap- 
proach to examine the formation of regions having medium- 
range charge or spin order and the influence of these regions 
on the excitation spectrum and density of states of a system 
above the point of phase transition into the state with long- 
range CDW or SDW order. As a source of medium-range 

FIG. 6. Density of states for a system near charge 
instability. 
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order we have used an impurity potential of the "random 
field" type. However, as already noted in Introduction, all 
the results, with appropriate notations, can be transferred to 
the case of dynamic fluctuations resulting from charge or 
spin electron-electron correlations in the system. 

We have assumed that T = 0, but the results will be 
qualitatively valid if we consider the system near the whole 
line of phase transition into the state with long-range order 
in the "temperature-doping" coordinates. 

We have considered the system above the point of tran- 
sition into the state with long-range dielectric order. How- 
ever, the effects of medium-range order will also play an 
important role below (but near) the point of this transition. 
In particular, as shown in Sec. 2, the effect of medium-range 
order formation is stronger than the "1/r effect" of long- 
range order suppression. Therefore, below (but near) the 
point of transition into the state with long-range ordering 
the quantity I ( A )  1 determined by the long-range order is 
smaller than the quantity ( I Al)  determined mainly by the 
medium-range order (as usual, the brackets mean averaging 
over the impurities in the system). Therefore the pseudogap 
structure of the density of states will be observed also below 
the phase transition point. 

The long-range order will manifest itself in suppression 
of the density of states in the middle of the pseudogap on 
small (of order I ( A )  I energy scales. 

In conclusion the authors wish to express their grati- 
tude to A. V. Luk9anov for his help with computer calcula- 
tions. 
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