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An adiabatic theory ofmotion of solitary vortices in Josephson lattices, when the coupling with 
pinning centers is arbitrary, is suggested. The form of a fluxon can strongly depend on its position 
in the lattice with respect to pinning centers, markedly differing from the form of a standard 
soliton. The procedure is applicable to nonlinear systems described both by the sine-Gordon 
equation and by nonlinear Schrodinger and Korteweg-de Vries equations. Therefore it can be 
used also in nonlinear optics, electric circuits, plasma physics, in description of domain-wall 
motion, etc. Specific calculations of voltage relaxation for current flowing through an 
inhomogeneous Josephson junction are carried out. This process depends strongly on 
temperature and is characterized by long-time power-law tails, but is exponential for short times. 

The motion of vortex structures (fluxons) in a Joseph- 
son medium with pinning centers (defects) is the subject of 
intensive studies (see, e.g., Refs. 1-3). A similar problem 
arises also in plasma physics, nonlinear optics, charge-den- 
sity wave theory, hydrodynamics, magnetism, and other 
fields. Calculations are usually performed on the basis of 
perturbation theory in the framework of inverse-scattering 

The degrees of freedom are divided into radia- 
tive and proper soliton (adiabatic) ones. In this approach it 
is assumed that the form of a free (or renormalized) soliton 
is only slightly affected by defects, i.e., the interaction of a 
soliton with defects is considered to be fairly weak. 

In the present paper we suggest a technique of calcula- 
tion of fluxon motion for an arbitrary fluxon-defect interac- 
tion allowing for strong fluxon deformation in the process of 
its motion. In particular, the fluxon shape can differ strongly 
from the standard form given by a "free" nonlinear equation 
(defects are not taken into account). We restrict the discus- 
sion to the case of adiabatic approximation and neglect the 
interaction between fluxons. This approach allows, for ex- 
ample, to calculate the fluxon kinetics in an intersecting two- 
dimensional Josephson structure with a lattice constant 
larger than the Josephson length (the size of a fluxon). In 
this situation the form of a fluxon changes radically, when 
the latter moves with respect to the junction-intersection 
point which plays the role of a pinning center. The corre- 
sponding potential relief is a profile of narrow "canyons" 
which broaden abruptly near their intersection points. 

We have also calculated the voltage relaxation in a one- 
dimensional Josephson structure with a random array of 
pinning centers. We show that if a step-like current is ap- 
plied, the voltage relaxation has a long-time power-law char- 
acter due to wells of a very small coupling rigidity. Since the 
probability of filling these wells depends strongly on tem- 
perature, the relaxation is also determined by temperature. 
In the language of frequency dependence of impedance, 
these relaxation-time tails correspond to w2 In w as w -+O. 

1. EQUATION OF FLUXON MOTION IN A JOSEPHSON 
LATTICE 

We consider a two-dimensional Josephson lattice (me- 
dium), lying in the xy plane, in which there is a vortex state 

given by a vector potential A(x,y), H = curl A. According- 
ly, we have a magnetic flux 

m = j d x d y ~ ,  

directed along the z axis (the vector A is in the xy plane). 
The system is assumed to be uniform along the z axis (i.e., 
vortex bending is not taken into account). The flux cP is 
assumed to be an integral of motion, and for an ordinary 
vortex state = &/e. 

We introduce a vector R, which gives the position of the 
center of gravity of the magnetic flux in the xy plane: 

When a vortex (fluxon) moves in thexy plane, the potential 
A is time-dependent, and the function R( t )  characterizes the 
fluxon motion (the flux is time-independent!). Differenti- 
ating ( 1 ) with respect to the time t and taking into account 
the relation E = - c-'dA/at, we have 

Here E is the electric field, and the scalar potential is set 
equal to zero. 

If a uniform electric current j flows in the xy plane, then 
a fluxon interacts with it with energy (per unit fluxon 
length) 

The second equality here is derived with the help of the 
definition ( 1 ) . 

Let us now derive the equation of motion of a fluxon. 
For this purpose we introduce the notion of Josephson lat- 
tice energy H. Minimization of this energy for a given flux 
gives a vortex state localized near some points Ri and having 
a certain configuration of magnetic field, AOi (x,y), which 
differs from that of a free soliton. Substituting A,; (x,y) into 
( 1 ), we find localization centers Ri. When a fluxon moves 
under the action of external force (e.g., current j) ,  it deviates 
from equilibrium and, generally speaking, changes its form, 
if pinning is not very weak. To describe the fluxon deviation 
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from equilibrium, we introduce a notion of energy H ( R ) ,  
which is a minimized lattice energy H for a given value R( 1 ) . 
For this purpose we make use of the Legendre transforma- 
tion 

where F is a generalized force, and R is defined in ( 1 ). Mini- 
mizing 2, we find @( F) . We have 

R (F) =dB (F) IdF. (5)  

Equation (5) allows to find F(R) ,  after which we get 

H (R) =R [F (R) ] -F (R) R. (6)  

The quantity - dH(R)/d R has the meaning of restoring 
force and, according to ( 6 ) ,  it equals F(R) .  In the approxi- 
mation of viscous friction the equation of motion for a fluxon 
in the presence of external current [see (3)  ] can be written 
in the form 

where T,J is the friction coefficient, which is, generally speak- 
ing, a tensor. With the help of (2)  we can show that T,J is 
related to the electric resistivity of the medium, p, by a well- 
known expression 

where n is the fluxon density in the xy plane, so that the 
induction B = 4n-n@. The resistivityp is defined by the rela- 
t i o n E = p j f o r j - ~ , w h e n w e c a n o m i t F ( R )  in (7) ,andE 
is the average electric field in the plane: 

- 
E(t)=n ~ d x d y ~ ( x , ~ ,  t ) .  (9) 

The found relations can be easily rewritten for a single 
junction lying in the xz plane. The current j and vector po- 
tential A are directed along y,  the magnetic field along z, and 
the vortex moves along the x axis. Equation (7)  takes the 
form 

In Eq. (8 )  T,J is the fluxon density per unit junction length, 
andp is the resistance of a unit junction area. Simultaneous- 
ly, instead of the electric field (9) ,  we should consider the 
voltage drop U across the junction: 

As usual, the equations of type (7)  or ( 10) can be gen- 
eralized, if the fluxon "mass" is to be taken into account. For 
this purpose, we must add the second derivative with respect 
to time to the left-hand side of the equation: 

The "mass" m is related to the imaginary part of the medium 
impedance (capacitance) in the applicability range of 
Ohm's law j = ( i d  + I / ~ ) E  by the expression 

The equation of motion in the form ( 1 1 ) allows us to 

write the quantum-mechanical Hamiltonian ofa vortex state 
in external "electric" field eE = [ j@]/c as 

In this formulation dissipation in the system is ignored, and 
the term T,JR in the equation of motion can be restored only if 
the fluxon interaction with a random field (e.g., with ran- 
dom currents or phonons) is taken into account. For a peri- 
odic array of "defects" in the structure H ( R )  = H ( R  + K), 
where K is the translation vector of the defect lattice, and Eq. 
( 13 ) fully coincides with the one-dimensional Hamiltonian 
of the crystal lattice in an external electric field. Note that 
the idea of the Stark quantization of Josephson vortices due 
to noncommutation of the particle phase and number opera- 
tors was put forward in Refs. 7 and 8 and experimentally 
confirmed for granulated tin.9 

Equation (1 1) has the simplest form for an ordered 
one-dimensional structure, if the fluxon size is larger than 
the defect lattice constant a. In this case 

where E~ is the pinning energy, which can be found if we 
calculate H(X)  as described above. For such H(X) Eq. ( 11 ) 
takes the form 

Here we have introduced the following notation: q, = 2.rrX/ 
a, j, = eap/&, and the magnetic flux @ = ahc/e. According 
to (9a), we also have U = finab /2e. Equation ( 14) formally 
coincides with the expression for a current flowing through a 
defectless Josephson junction,'" with a critical current equal 
to ape/& and effective charge e* = e/na. Therefore all the 
characteristics of a defectless junction in the absence of mag- 
netic field (current-voltage characteristics, hysteresis, the 
Shapiro steps, etc. ) are valid also for the junctions with pin- 
ning centers, when the size of moving vortices is larger than 
the distance between the centers. 

The one-dimensional equation of motion ( 14) is easily 
generalized to the case of two-dimensional periodic lattices 
of defects. In particular, for rectangular lattices 

2H (R)  =-e,, cos (2nXla,) -em cos (2nY/a,,). 

and the equations of motion for px = 2n-X/a, and p, 
= 2n-Y /ay separate: 

where a = x,y, j,, = e/&, , jx = jy , and j, = -j,. Ac- 
cording to (91, we have 

ti - ft 
"=-% nu,&, E,  = - nu,@,. 

2e 
(15) 

Note that, according to (14a), the effective critical current 
in a regular two-dimensional lattice depends on the angle 
between j and the x axis. For 0 < 9 < a,, 

and for if,, < 9 < n-/2 
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where tan 9, = jcx/jcy. The critical current reaches maxi- 
mum, for 9 = a,,, when j,* = ( jf, + jf, ) 'I2. 

In disordered Josephson structures the potential energy 
H(R)  has the character of a random geodetic relief with a 
constant gradient due to j, so that for the current along they 
axis the potential energy has the form H(X,Y) - cPjX/c.  
The critical current corresponds to a profile slope such that 
the first infinitely long trajectory of the steepest descent ap- 
pears. The critical trajectory has at least one point at which 

(we differentiate along the trajectory). If the current de- 
creases the system becomes a superconducting state at j: > jc 
owing to fluxon inertia, i.e., the current-voltage characteris- 
tic has hysteresis.1° 

Smooth geodesic relief is typical of "dense" Josephson 
structures, when the fluxon size exceeds the characteristic 
distance between defects. In the opposite case the relief is 
like a system of intersecting canyons (see below). 

2. PINNING ON AN ISOLATED DEFECT 

As the simplest example of the use of the method sug- 
gested above, we consider a junction with a linear defect at 
x = 0. The energy H defined in Eq. (4)  has, in this case, the 
following form 

m 

1 1 
R = - E ,  j d e ( ~ - ~ o ~  6 + - - ~ ~ l ~ ( ~ ) i p )  

8 -.% a 

where x is the dimensionless coordinate (in the units of the 
Josephson length 6) ,  9 ( x )  is the phase difference across the 
junction, 9 ' = d 9  /dx, E, = 4+ijc6/e is the soliton energy, jc 
is the critical current, and Iis the dimensionless parameter of 
the pinning force. For a defect in the form of a cavity of area 
S, for example, I = S /2d& where d = d ' + U is the effective 
thickness of the junction, d '  is its thickness, and A is the 
London length. The constant A ensures convergence of the 
integral as x +  + w and is defined below. Recall that the 
magnetic field is H = @9 '/2n-d6. 

Minimizing (16) with respect to 9, we find the follow- 
ing equation 

d 
@"=sin ff-sin a+21 x 6 ( x ) ,  

.-- 
where the notation 

sin a=4F6/nE j (18) 

is introduced. Since the dimensionless "force" 4F6/rEJ 
should be less than unity, we have denoted it by sin a .  The 
fluxon magnetic flux is assumed to be equal to a flux quan- 
tum, so that the phase difference across the junction is 2r ,  
and we have the following boundary conditions for Eq. ( 17) : 

Hence the constant A in ( 16) equals cos a. 
At the point x = 0 the quantity 9 ' is continuous, and the 

phase has discontinuity. Introducing the notation 

where a,, (O,, ) is the phase on the right (left) of the de- 
fect, we find the relation 

where 9 ; = d 9  /dxl, =, is the field at the defect. 
The first integral of Eq. ( 17) has the form 

cos a-ws 6- (*-&)sin a='/&", x<O '/,'.= { 
cos a-cos 6- (6-2n-a)sin a='la@,", x>O ' 

Allowing for the continuity of 9 ' at x = 0, we find 

sin 6, sin 6-= (13--n)sin a. (21b) 

The system of three equations (20) and (21) defines the 
quantities 9 & , a +  and 9- as functions of a (i.e., of the force 
F) . 

Now, with the help of ( 5 ) ,  we can find the function 
F(X). First, substituting (21 ) into ( 16), we f indg(a)  [i.e., 
B(F) 1. In doing so, we must take it into account that due to 
discontinuity of 6 at x = 0 the derivative 9 ', apart from a 
regular contribution, has a singularity 9 f = 419 AZ6(x) . As 
a result we have 

where 9 A, a,, , , and a0 > depend on a in accordance with 
(21). Now we find from ( 5 )  

The relation (22) gives the required dependence X(a ) ,  
i.e., Eq. ( 18) taken into account, the function F(X). In the 
general form the latter can be found only numerically. How- 
ever in the limit of weak pinning, I( l ,  the problem becomes 
much easier. In this limit a 1 and 9 ( 1, and, according to 
(21a) and (21b), we have 

sin 6+~-na/6-=-na/l6~';  &'=2 sin (@+/2). 

Integrating in (22) over 6 for a and 9( 1, we find 

Using this relation to express 9, in terms of a (i.e., F) ,  we 
get 
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The vortex energy in the field of the defect has the form 

The last expression, valid in the limit of weak pinning, 
can be found by a much simpler perturbation-theory proce- 
dure. 1 9 1 '  The simplest realization of this procedure consists 
in substituting into the Hamiltonian ( 16) the solution for 6 
in the form of an isolated undeformed soliton with the center 
of gravity at the point X. 

+ - 4 P r o t g [ e x p ( r -  f)]. 
which immediately gives (24). 

The suggested method leads to nontrivial results in the 
limit of strong pinning. For example, such is the pinning at a 
solitary defect for an arbitrary parameter I given by Eq. 
(22). Another example of a system to which perturbation 
theory is never applicable is intersection of two Josephson 
junctions (a "~ross" '~) .  

Here 6, (0) are the limiting phase values on the segments at 
the intersection point. Note that for the unshifted phase Si 
Eq. (27) has the form 6,- + 6,- = 0.12 

The first integrals of Eq. (25) give 

Hence, making use of the continuity condition (26), we get 
three equations 

sin I%; sin @,=64 sin o;,,, 
(30) 

The relations (27) and (30) are four equations for the quan- 
tities 6 :,. 

Upon finding S,f, from (27) and (30) as functions of 
a, and a, , we obtain the following expression for the energy 
H [see (4 ) ] :  

Or+-br- 

H = 5 d(t (coo ad-coo (t- (B-aJsin a()*. 
2"a i ~ z , y  el*-et- 

3. PINNING ON JUNCTION INTERSECTION 

The geometry of a cross in the xy plane is shown in Fig. 
1. The four line segments comprising the cross are denoted 
by the index i = 1,2,3,4. The equations for the phases 6, on 
the segments have the form [cf. ( 17) ] : 

where at = a, for i = 1,3 and at = a, for i = 2,4, while a,,, 
is related to the force projections F , ,  by ( 18). Far from the 
intersection point the phases satisfy the conditions 

(it is assumed that the flux quantum is trapped on the seg- 
ments 1 and 3).  To give the problem more symmetric form 
we shift the phase 6, by - 277, upon which 6, ( ) = a,. At 
the intersection point the magnetic field is continuous, i.e., 

and the phases have discontinuity, so that 

where 

FIG. 1. 
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To find an analytic solution we consider first the limit- 
ing case, when the force Fis absent (i.e., < a, = a, = 0). In 
this case we have five solutions: 1 ) 8 & = O,6 x;y = - r/2. 
This corresponds to an equilibrium fluxon localized at the 
center (see Ref. 12), i.e. R = 0; 2) 6: = - T, 6: = 0. 
This is an undeformed soliton on segment 1 whose center of 
gravity is infinitely far from the intersection point (X = w , 
Y=0) ;3)6 :  =n-,6; = - ~ , a n d 8 2  =O.Thisisasoli- 
tononsegment3(X= - W ,  Y=0) ;4)6 :  =0,6;  =n; 
and 6; = - T. This corresponds to a soliton on segment 2 
(X=O, Y= w ) ;  and 5)  6: =0,  6; = r ,  and 6; 
= - T. This is a soliton on segment 4 (X = 0, Y = - w ). 

Consider now solutions in the vicinity of these points. 
1 ) Small deviations of a fluxon from equilibrium at the 

pinning center (R / S  4 1 ). In this region a,, a, 4 1, 8 ,;, 
- - - ~ / 2  + S,,,, S,,  4 1, and 6 & 1.' For these restric- 

tions on the parameter values the solution of Eq. (30) has 
the form 

Now we can integrate in (3 1 ) to an accuracy of order a'. AS 
a result, after fairly cumbersome calculations, we get 

where A is a numerical factor: 

Differentiating now H given by (32) with respect to a and 
using Eqs. ( 5 ) and ( 18 ), we find 

The expression for the energy takes the form 

V. V. Bryksin 97 



For R = 0 Eq. (34) gives the energy of a localized fluxon, 
EJ ( 2  - 2'12), which is smaller than the energy of a free soli- 
ton E,. This determines pinning at the center of the cross.'' 
The corrections proportional to R give small oscillations of 
a strongly deformed localized fluxon in the framework of the 
equation of motion ( 1 1 ) . The external current j ( t )  plays the 
role of a driving force (e.g., in the problem of absorption of 
electromagnetic radiation). 

2) The fluxon is far away from the pinning center on 
segment 1 (X /S) 1, Y /S ( 1 ). In this case the fluxon shape 
differs from that of a free soliton at a junction only slightly. 
In this region a,<O, laxi, a , ( l ,  $:(I, if: 
= - ?r + S . and S + ( 1. For such restrictions the solution 
of Eq. (30) has the form 

The Hamiltonian (3  1 ) for a, -0 is nonanalytic, so we con- 
sider first the case a, = 0 (29; = 0).  First of all, note that 
for a, = 0, i.e. 6 ,  = if; = 0, the value of fi (31 ) is easily 
found and equals E,. Then it is convenient to find the quanti- 
ty d g  /da, for a, - 0. Integrating over if in ( 3  1 ), we find 

Then, taking into account the conditions for 2, when a, 
= 0, we get 

Now we find corrections to fi due to small a,. The ex- 
pansion of H in a, has analytic character and begins with 
corrections of order a:. After simple calculations we get 

Hence, taking into account (5 )  and the relation ( 18) be- 
tween F and a (for a ( 1 ), we find R as a function of a :  

and, in accordance with (6), 

H (a) =='l$,[$+na. ( l-'lr%2) 11. 

Expressing a, and a, in terms of X and Y from (36) and 
substituting them into the found expression for H ( a ) ,  we 
finally get, with the help of ( 6 ) ,  the following expression 

Case 3) can be found from (37) by the change X-. - X, 
case 4) by the change - Xz Y, and case 5) by the change 
x- - Y, Y+X. 

As seen from (37), the profile of potential energy 
H ( R ) ,  when the pinned fluxon flows from one site to an- 
other, has the form of narrow canyons. Their width is 

smaller the farther is the fluxon from the pinning center, if 
the fluxon size S is smaller than the distance between the 
centers. The physical cause of formation of a canyon profile 
relief is a great loss in energy, when the fluxon stretches to 
the granule size in its attempt to go around the granule from 
both sides at once. 

The largest pinning force Fp equals aEp/S, where Ep 
= (2'12 - l ) E J  is the pinning energy, and a is a numerical 

coefficient which can be found only if the energy H(X,O) is 
calculated exactly for all X. The critical current J,  for an 
ordered canyon structure in the form of a square lattice and 
for the current flowing along the [Ol ] axis can be found by 
setting the right-hand side of Eq. ( 10) to zero and making 
the following change: F(X) - Fp and j- J ,  . As a result, we 
have 

i.e., J,  is of the order of the critical current of a plane junc- 
tion. As far as the dependence of J,  on the angle between j 
and the axes of the square lattice is concerned, it is the same 
as in the case of weak pinning [see the text following Eq. 
(1511. 

Note also that for a canyon structure of the potential 
energy the fluxon velocity is directed along the canyon bot- 
tom rather than perpendicular to the current. Therefore, if 
there is a preferred direction in the canyon structure, the 
field arising upon vortex motion is not parallel to j. As a 
result, the even Hall effect may arise, whose sigh is indepen- 
dent of the sign of the magnetic field. This effect has been 
observed in HTSC ceramics.13 

The picture changes dramatically for disordered lat- 
tices. For homogeneous junctions the force F ( R )  is the same 
at all junction intersections, and disorder manifests itself 
only in random orientation of the current j with respect to 
the axes of the"cross." Since the fluxon moves along the 
bottom of canyons and chooses its path at canyon intersec- 
tion in accordance with the condition of the steepest descent, 
the trajectory of fluxon motion from one site (intersection) 
to another has a one-dimensional determined character. 
Such a trajectory can be constructed in the following way. 
Let the current j be directed along they axis and the fluxon 
move mainly along the x axis. Consider an initial site and 
draw rays from this site along the directions of canyons. If 
path segments between neighbors are not straight, the rays 
are directed along tangent lines. Let the angle between the 
rays and the x axis be if. Since the force of the current is 
proportional to cos if, the trajectory of the steepest descent 
corresponds to a ray with the smallest if satisfying the condi- 
tion /if I < ~ / 2 .  Thus the nearest, along the trajectory, neigh- 
bor is chosen. Then the same construction is repeated at the 
neighboring site. There can be as many as possible trajector- 
ies entering each site on the left, but only one, which leaves it 
on its right. Such merging of trajectories leads to decrease in 
their density with x .  For sufficiently large x (i.e., in sample 
depth) the 'trajectory segments between the neighboring 
points of their mergence become long and contain many 
sites, and the motion assumes a "one-dimensional" charac- 
ter. If the motion is one-dimensional, the fluxon will always 
encounter a site, for which 19 1 >n/2, so that, no matter how 
large the current, there is a barrier and the fluxon stops. To 
release it from this trap we need the pressure of other fluxons 
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which have approached the trap, i.e., to describe fluxon ki- 
netics it is necessary to introduce fluxon-fluxon interaction 
into the equation of motion ( 11 ). Strictly speaking, it is pos- 
sible to operate in terms of "particles" (fluxons) only if their 
concentration is small. Taking into account only pair inter- 
action, we can rewrite the equation of motion in the form 

where f (R, ,R,. ) is the force of fluxon repulsion. If the pin- 
ning only slightly affects the fluxon shape, we have 
f(R,R1) = f (R - R'), i.e., the repulsion force is indepen- 
dent of location of a pair with respect to pinning centers. 

As to the direct fluxon interaction with the external 
currentj, entering into the right-hand side of ( 11 ), in (38) it 
is replaced by boundary conditions, and the distribution it- 
self of the current in the sample is to be found from (38). 
This problem is similar to that of distribution of current over 
the sample cross section for currents smaller than critical in 
the presence of creep considered in Ref. 14. 

The solution of the system of equations (38) is a very 
difficult problem and is not considered here. Note only that 
Eq. (38) also contains the problem of formation of a critical 
profile, when magnetic field penetrates into the sample. In 
the critical state R, = R, = 0, and d H  /d R, - F is the 
critical pinning force independent of k. The equation 

gives the value of soliton coordinates in the critical profile. 
An equation of this type has been considered in Ref. 15. 

For a strongly compressed state of fluxons, it is neces- 
sary to consider many-soliton states (see Refs. 1 and 2)  and 
make use of different procedures of perturbation theory 
based upon the inverse scattering p r ~ b l e m . ~ . ~  Note also that 
fluxon activation from traps in disordered lattices can occur 
not only due to fluxon-fluxon interaction, but also due to 
interaction with random forces which can be inserted into 
Eq. (11). 

4. FREQUENCY DEPENDENCE OF CONDUCTIVITY OF A 
DISORDERED JOSEPHSON LATTICE 

Equation (10) allows to find the response to an alter- 
nating current 

for one-dimensionally and randomly arranged pinning de- 
fects. A random potential H(R)  has a set of I minima at 
points X, defined by the relation H(X, ) = 0. Expanding H 
in terms of X - XI, we find in harmonic approximation: 

0 
qx-8" (XI) (X-XI) = - j (t). 

C 
(40) 

It is technically more convenient to find the time-de- 
pendence of voltage, if a step-like current is applied: j ( t )  = 0 
for t < 0 and j ( t )  = j for t > 0. The frequency dispersion of 
resistivity can be found with the help of usual relations (see 
below). The solution of Eq. (40), satisfying the initial condi- 
tionXI,=, =XI,  is 

Hence a soliton in the 1 th well gives, with Eqs. (9a) and (8)  
taken into account, the following contribution to the vol- 
tage: 

u=pj exp{-R" (X,) tlq) . (41) 

To find the total voltage we have to multiply (41) by the 
probability of finding a vortex in the I th well, sum the result 
over all wells, and average over all possible realization of 
random potential: 

U = p i N g ( t ) l g ( O ) ,  (42) 

where Nis the total number of vortices in the system, p = 1/ 
kT, and d is the vortex length. The "Boltzmann statistics" 
used here is applicable if the number of minima in the system 
is larger than N (small vortex density). If vortex density is 
large, "Fermi statistics" can be used provided the force of 
vortex repulsion in one well is infinitely large. 

Note that in Refs. 16 and 17 a formula of the type (42) 
has been used to calculate the response to an alternating 
signal for Josephson structures and charge density waves. 
However the calculation has been based on averaging over 
the rigidity H " with the Gaussian distribution function, so 
that the results obtained there have nothing in common with 
those found below. 

Averaging in Eq. (42) reduces to calculation of the fol- 
lowing expression 

where 

Integration over only positive values of K corresponds to the 
choice of minima, H " (x )  > 0, among the extrema given by 
the equationH1(x) = 0. To find (44) we have used the iden- 
tity 

Here and below we omit all constant factors in the expres- 
sions for g( t )  and q( t ) ,  since, according to (42), they do not 
enter into the result. 

Further calculations require a model for the potential 
H(x) .  We consider pinning centers randomly arranged at 
the points X = X, of a junction of length 9 .  We restrict the 
discussion to the weak pinning model, when the potential at 
an isolated center is given by (24). If the center density is not 
very large so that 1L / S 4  1 (L  = 9 / v ,  where v is the total 
number of pinning centers), the potential H(x )  can be writ- 
ten as 

In such a model averaing in (44), after we have used the 

99 JETP 76 (I), January 1993 V. V. Bryksin 99 



Fourier transformation for the 6-function, takes the form 
m 

6 
G' (9 = - I dzfrf exp (lj+qfu) 

L -- 
Upon integrating overs and a near the saddle point, we find, 
omitting insignificant constant factors: 

* 

g ( t ) -  O ~kdkl~,(q)~"(q)l-~exp{-k(~ - q ) + ~ ( r ( ) ) .  

One has to bear in mind that r ]  is a function of k in accor- 
dance with (49). Now it is convenient to go over in (50) 
from integration over k to integration over 7. As a result, we 
have 

where k = 
y =  IEJfld 
(Y ,Y-+  w ,  

2S2K/IEJ is the dimensionless rigidity, and 
/2. Turning to an infinitely long chain 
Y/Y = L),  we get a much simpler expression 

Here r], is that value of r] for which k = 0, i.e., m 

p(k)= I dr do exp[ika+G(is, io )  1. 

It is easy to show that r] ,  > 0. 
The exponent in (5 1 ) has a maximum at 7 = t / 2 ~ .  

Therefore the functiong(t) behaves differently for r ] ,  > t /27- 
and r ] ,  < t /2r. For r ] ,  > t /2r the maximum is within the inte- 
gration interval. Expanding the exponent in a series near 
r ]  = t /27, we get 

Then Eq. (43 ) acquires the form 

Here, going over from (5 I ) ,  we keep the constant factor in 
order to determine g(0)  properly: 

where 7- = 6'r]/1EJ is the characteristic time of the problem. 
The case of small density of defects (6/L < 1 ) is trivial. 

Expanding the exponent in (47) in G to an accuracy of terms 
in G, we integrate over k, s, u and x. As a result, we get 

Finally, according to (41 ), for r ] ,  > t /2? we have 

which corresponds to the usual exponential relaxation. This 
result is evident, if we recall that in a sparse lattice a vortex is 
pinned at a solitary center, and the fluxons localized at 
neighboring centers overlap only slightly. However, the cri- 
terion of validity of Eq. (48) turns out to be more rigid than 
6/L < I .  Analysis shows that Eq. (48) is valid for S exp(y/ 
L )  < 1, i.e., for very sparse lattices and not very low tempera- 
tures. The fact is that there are always regions of center con- 
densation, where pinning is anomalously strong, and there- 
fore fluxons are localized just near them. 

The lattices and temperature ranges, for which 
6 exp( y/L) % 1, are of significantly greater interest. The pa- 
rameter Sl/L remains small, so that it is assumed that Eq. 
(45) holds. In this case the integrals over s and u can be 
taken by the saddle-point method. The saddle point is s = 0 
and a = - ir], where r ]  is given by the equation 

Now we turn to long relaxation times r] ,  < t / 2 ~ .  In this 
range the main contribution to the integral in (51) comes 
from the vicinity of the point r] -- r]o Hence, allowing for 
(52), we have 

Now we get U(t) for r ] ,  < t /27: 

M-G' (q) =O. (49) 

where ~ ( 7 )  =G(o,r]) and 
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Note that G '(0) < 0, and therefore U(t) > 0 for j> 0. 
To find the actual time and temperature dependences of 

U from (54) and (55), it is necessary to carry out the inte- 
gration in the expressions for G and G,. Using the relations 

we can write the expression for G ( r ] )  in the form 
I 

6 du 
~ ( q )  4 exp (7-2q+ ( 8 ~ - 7 )  P-6qaa). 

L , (1-u)Iih 

Consider now the most interesting limit y) 1, when the 
vortex energy is larger than kT. The exponent in the inte- 
grand has its maximum at u = u,, = (8r] - y)/12r], and the 
asymptote for G has different forms for 8r]> y (i.e., for 
u,, > 0 )  and 8r] < y (u, < 0) .  For 8r] < y the main contribu- 
tion to the integral comes from the vicinity of the point 
u = 0, and 

For 8r]> y the main contribution comes from the point 
u = u,, and 

In a similar way we find G2 (7) : 

Now we can find r] ,  from (52). For this purpose we differen- 
tiate G(7)  with respect to r ] :  

Hence one can see that, in particular, r] ,  = y/4. 
Thus, the function U(t) has three characteristic re- 

gions. In the first one, 0 < t /T < y/4, according to ( 54), 

(56) 

Hence, for t /T < 1 exponential relaxation occurs: 

In the intermediate region, y/4 < t /T < y/2, 

3 ( ~ - 2 t /  t) U ( t )  =pjN 
(21)" (4t/r-q)"(2t/r+y)" 

xexp -el  1 - 6 (27) " t / r  
{ E' { (&/~-7)"* (2t / r+7)  

The long-time asymptote (55) has a power-law character: 

where we have used the relation 

Thus, at short times the relaxation has a rapid exponen- 
tial character given by (56), the relaxation rate being the 
greatest at very short times t /T. In this region the relaxation 
is similar to that at an isolated defect [see (48) 1. However, 
the voltage relaxation on the lattice occurs much faster with- 
in times of order 

where y = Ep/kT, and E, = ZEJd /2 is the energy of vortex 
pinning at an isolated defect. The relaxation time T* drops 
exponentially with temperature. At this stage the deepest 
pinning centers, which correspond to defect condensation 
and have the largest rigidity, undergo relaxation. Since for 
small vortex density (for the Boltzmann statistics) the lar- 
gest part of vortices are localized just at these centers, the 
largest part of drop of the initial voltage pjN down to the 
magnitude of order pjN exp( - GeY/L) corresponds to the 
exponential region of relaxation. The parameter SeY/L is 
assumed to be large. However, if we want the voltage to be 
still noticeable upon its exponential drop, we must have a 
sparse lattice, S/L<1, and not a very large parameter 
E,/kT. 

Here we must note the following. First, the pinning en- 
ergy being proportional to the vortex length, the sample 
thickness should not be very large. Furthermore, for a large 
vortex length it is necessary to allow for its deformation 
(bending). Second, for not too small vortex density (for the 
Fermi statistics) the fraction of vortices at ultradeep centers 
decreases, therefore the voltage drop in the exponential re- 
gion should decrease as well. In the intermediate time region 
the relaxation assumes a slower character ( 57). 

Finally, in the region of the longest times, t > T E , / ~ ~ T ,  
the relaxation drop assumes a power character (58), for 
which U a  t -'. In this region the relaxation is governed by 
centers with very small rigidity, so that the effective relaxa- 
tion time here grows with time,  at In t. Note that in the 
power region of relaxation the current-voltage characteristic 
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U( j) probably becomes nonlinear already for a very small j, 
since the centers with the small rigidity are separated from 
the neighboring wells by low barriers. This means that even a 
small current leads to above-the-barrier transition, and the 
linearized Eq. (40) becomes invalid. 

The relation between the time dependence of relaxa- 
tion, U(t), and the system response to the alternating cur- 
rent j exp(iwt) is 

According to (56a), the function U(w ) in the high frequen- 
cy limit has a character of the Debye losses, U(w) aim/ 
( 1  + i w * ) .  In the low frequency range U(w) a w2 In w. 

Note in conclusion that the adiabatic approximation 
used above is valid only in the case of sufficiently slow fluxon 
motion, since the effects of fluxon radiation excitation relat- 
ed to the inner degrees of freedom of a vortex state are ig- 
nored, as are the processes of fluxon creation and annihila- 
tion. For a weak interaction with defects the radiation effects 
arise in the second order of perturbation theory and are suffi- 
ciently well s t ~ d i e d . ~ , ' ~ - * ~  For a strong interaction the radi- 
ation effects can, in principle, be studied by allowing for non- 
adiabatic corrections to the technique exposed in the present 
paper. These effects can be completely ignored in the case 
when the time of interaction of a solitary wave with a defect 
is larger than the period of intrafluxon structure oscillations, 
i.e., if u/64w0, where u is the fluxon velocity, S is its size, and 
w, is the characteristic frequency of the radiation modes. 
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