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Domain-wall drift in weak ferromagnets in an oscillating external magnetic field is considered. 
The dependences of the drift velocity on the amplitude, frequency, and polarization of the field 
are obtained. The possibility of drift of a stripe domain structure is considered. 

Principal attention is paid, in both theoretical and ex- 
perimental studies of the dynamic properties of domain 
walls (DW) in various magnetically ordered crystals, to two 
main types of DW motions: 1) translational DW motion in a 
constant external magnetic field and 2) vibrational DW mo- 
tion in an oscillating external field. The theoretical depen- 
dences of the DW velocity on the external field, the maxi- 
mum steady velocities of DW, and the nonlinear regime of 
wall oscillations have been found for all principal magnet 
types (ferro-, antiferro-, weak ferro-, and ferromagnets). 

Experiment's2 has revealed one more type of DW mo- 
tion-wall drift, i.e., the onset of a constant DW velocity 
component, in an oscillating external magnetic field. A simi- 
lar effect was observed in Refs. 3 and 4 for another topologi- 
cal-soliton form, viz., a Bloch line.3g4 

Domain-wall drift in a ferromagnet (FM) was predict- 
ed from energy considerations in Refs. 5 and 6. A more con- 
sistent analysis of DW drift in FM, based on the solution of 
the equations of motion averaged over the period of the oscil- 
lations, was carried out in Ref. 7 and an analogous method 
was useds to analyze the drift of Bloch lines in DW. The 
results in Refs. 7 and 8, however, are valid only for frequen- 
cies o substantially higher than the ferromagnetic-reso- 
nance frequency. 

The drift of Bloch lines was studied in Ref. 9 by using 
the most adequate approach for this class of problems, a 
specific perturbation theory for solitons. A similar approach 
was used in Ref. 10 to study DW drift in FM at various 
polarizations of the external magnetic fields. 

The present paper is devoted to a study of DW drift in 
another class of FM-weak ferromagnets (WFM). The 
nonlinear dynamics of WFM differs substantially from the 
dynamics in a single-sublattice FM.",l2 In particular, the 
velocity limit of steady DW motion, which is determined 
only by exchange interactions, and the DW mobility in an 
external magnetic field, greatly exceed the corresponding 
values in FM. One should therefore expect the DW drift 
velocity in an oscillating field to be also substantially higher 
than in an FM. 

We use as an example a WFM of the type of rare-earth 
orthoferrites (REO), the DW dynamics of which has been 
studied in detail both theoretically and experimentally (see, 
e.g., the review in Ref. 12 and the literature cited there). 

1. GENERAL EQUATIONS 

As shown in Refs. 1 1 and 13, the nonlinear macroscopic 
dynamics of a two-sublattice WFM can be described on the 
basis of a Lagrange function L expressed in terms of the 
antiferromagnetism unit vector 1 with l2 = 1. For WFM 

REO, characterized by a symmetry 2;2; (the Cartesian 
axes x,  y, and z are oriented respectively along the a, 6 ,  and c 
axes of the crystal), the Lagrange function L{1) can be writ- 
ten in the form 

where M, is the modulus of the sublattice-magnetization 
vector, 6 and a are respectively the homogeneous- and inho- 
mogeneous-exchange constants, f l ,  and o2 are the anisotro- 
py constants, g is the gyromagnetic ratio, 

c-(gMO) (d) "12 

is the characteristic velocity and coincides with the mini- 
mum spin-wave phase velocity, d is the constant of the ex- 
change-relativistic Dzyaloshinskii interaction 

h-HI&, 

and H = H( t )  is the external magnetic field; a superior dot 
marks a derivative with respect to time. 

Since the components of the vector 1 are connected by 
the relation 1' = 1, it is convenient to rewrite the Lagrange 
function ( 1 ) in terms of two independent angle variables 8 
and e, which parametrize the unit vector 1: 

4-cos 0, L+il.==aip 0 e*, (2)  

2 
- - 6 (h, sin 0 cos cp+h, cos 0+h, sin 8 sin qt)2 

+t# sin 0 coa 0 cos q )  +h,@ sina 8 

The dynamic stopping of the DW, due to dissipative 
processes, will be taken into account by using the dissipative 
function Q: 
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where il is the relaxation constant. 
The equation of motion for the angle variables 8 and q, 

take, with allowance for the relaxation terms, the form 

4 
- - (hs sin 8 coa cp+h, coe 8+ha sin 8 ein 9)  

6 

4 
+hz cos 9 sin cp) + - [ti, sin cp-hz cos cp 

6gMo 
4-2ip sin2 0 (h, cos cp 

+hz sin cp) +h,@ sin 20) 

+h, cos 9+h, sin 8 sin cp) (-h,sin cp+hz cos cp)sin 0 

+hz sin cp) sin 0 cos 0-h, sinP 9-h,8 sin 20 

2d +hz sin cp) ] + -sin 8 (h, cos cp+h, sin cp) 
6 

2. PERTURBATION THEORY. FIRST APPROXIMATION 

If P2,P1 > 0, the vector 1 in the absence of an external 
field is collinear with the x axis in the homogeneous ground 
state. Two types of 180-degree DW can exist then in an R E 0  
far from the spin-reorientation region. The vector 1 rotates in 
thexz plane in one of them and in thexy plane in the other. If 
f12 >PI,  the stable DW is the one with rotation of 1 in the xz 
plane.11s14 This DW corresponds to 0 = 0, = r/2, and the 
angle variable q, = q,,(y) satisfies the equation 

(we shall assume that the magnetization distribution in the 
DW wall is not uniform along the Y axis; a prime denotes 
differentiation with respect to this coordinate). A static 180- 
degree DW in which the functions pO(y) satisfy the bound- 
ary conditions p,( - w ) = 0, po( + co ) = P, and 
q, 6 ( * w ) -0, are described by the relations 

where yo = (a/P, ) 'I2 is the wall thickness. 
We consider now the solutions of the equations of mo- 

tion in an external magnetic field. I, 

A DW moves in a constant field of definite orientation 
(in our case along the z axis) with a fixed velocity deter- 
mined by the balance of the magnetic pressure acting on the 
DW and the dynamic stopping force." In an oscillating 
field, the wall oscillates at the field frequency15 and we shall 
show below that its center drifts with a certain definite veloc- 
ity. In addition, the presence of the field distorts the shape of 
the DW. 

Assuming the external-field amplitude to be small 
enough, we determine the drift velocity of the DW and the 
distortion of its form, following Refs. 9 and 10, by one of the 
nerturbation-theory versions for solitons. To this end we in- 
troduce a collective variable Y(t), which has the meaning of 
the coordinate of the DW center at the instant t, and seek a 
solution of Eqs. (5)  and (6) in the form 

where f = y - Y(t). The function pO(f) describes the mo- 
tion of an undistorted DW [the structure of p,({) is the 
same as that of q,,(y) in the static solution (8)  1. The wall 
drift velocity is defined as the instantaneous DW velocity 

averaged over the oscillation period 

v d r  V(t) 
(the bar denotes averaging over the external-field oscillation 
period ) . 

We represent the functions $(f,t) and $ ( ( , t ) ,  describ- 
ing the distortion of the DW shape, as well as the wall veloc- 
ity V(t), by series in powers of the field amplitude, recogniz- 
ing that we are interested only in stimulated DW motion: 

where the subscripts n = 1, 2, ... denote the order of small- 
ness of the quantity relative to the field amplitude $, , $,, 
V, -h" .  

We substitute the expansions ( 10) in Eqs. (5)-(6) and 
separate terms of different orders of smallness. Obviously, in 
the zeroth approximation we obtain Eq. (7), which de- 
scribes a DW at rest. 

The first-order perturbation-theory equation can be 
written in the form 

4 
PI- (/L,aincpo(E)-h,cos cpo(E)), 

Bt8gMo 
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where 

is the activation frequency of the lower spin-wave mode, 

is the characteristic relaxation frequency, and 

The operator 2 takes the form of a Schrijdinger equa- 
tion with a nonreflecting potential: 

h 

The spectrum and the wave functions of the operator L 
( 13) are well known. It has one discrete level with eigenval- 
ue A, = 0 corresponding to a localized wave function 

and also to a continuous spectrum 

corresponding to the eigenfunctions 

where 

and L is the crystal length. 
The functions Cf,, f k )  form a complete orthonorma- 

lized set, and it is natural to seek the first-approximation 
solutions of Eqs. ( 11 ) and ( 12) in the form of an expansion 
in this set. For a monochromatic external field of frequency 
w we put 

One important remark is in order here. The first-ap- 
proximation equation ( 11 )-( 12) describes excitation of lin- 
ear spin waves against a DW background. The last term in 
the expansion of the function $,(f,t) corresponds to the 
Goldstone mode, i.e., to DW motion as a whole. The corre- 
sponding degree of freedom of the system, however, has al- 
ready been taken into account by introducing the collective 
coordinate Y ( t )  into the definition of the variable f. The 
Goldstone mode should therefore be left out of the expan- 
sion ( 17), i.e., one must put 

(for a detailed discussion of this question see Rajaraman's 
book16 ). This condition leads to the requirement that the 
right-hand side of (12) be orthogonal to the function f,, 
which determines in turn the equation for the DW velocity 
V, ( t )  in the approximation linear in the field: 

The solution of Eq. ( 18) describes the DW oscillations 
in an oscillating external field and, as can be easily seen, does 
not lead to a DW drift, i.e., 

If h, = 0, the equation agrees, apart from the notation, (in 
the limit of low velocities Vgc) with the equation obtained 
for the DW velocity in Ref. 15 by a somewhat different meth- 
od in the framework of the adiabatic approximation. The 
presence in the right-hand side of ( 18) of a second term not 
connected with the Dzyaloshinskii interaction attests to the 
possibility of exciting stimulated DW oscillations in a 
"pure" antiferromagnet in which d = 0. This effect was first 
noted in Ref. 17. 

The coefficients ck ,  c,, and dk in the expansions (16) 
and ( 17) can be found in standard fashion multiplying the 
right-hand sides of ( 11 ) and ( 12) by f: and f ,* and integrat- 
ing with respect to the variable f.  

For a monochromatic external field of frequency w,  
with all three components different from zero and with arbi- 
trary phase shifts, 

we obtain from Eqs. ( 11 ) and ( 12) 

We have introduced here the notation 

G(E) =: j dk (th(Vyr)sin kk-ky, cos ke) 
- rn bbY(h-q,+iqdah (;rky$2) ' 

where 

It follows from (20) and (21 ) that the external-field compo- 
nents h, and h, excite bulk oscillations only with k = 0, 
whereas the presence of the field component h, makes possi- 
ble excitation of bulk spin waves with k #0. 
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3. SECOND APPROXIMATION. DW DRIFT 

We analyze now the second-approximation equations 
for the amplitude of the external magnetic field. 

We shall not write down the pertinent equations in gen- 
eral form, since they are extremely cumbersome, but only an 
equation, averaged over the period of the oscillations, which 
follows from Eq. (6 ' : - 

LOdE) -L~(~Yv~+u~& t ) ,  (22) 
BMO 

where 

I 
I and the function N(c,t) is defined as 

+ 2 (b. 9 8 - L  fin p r ) * S  
6 

The second equation of the system, which follows from 
Eq. (5 ) and defines the function 8, ((,t), has a similar struc- 
ture, but contains no second-order term in the expansion of 
the DW velocity ( V,) and will therefore be of no interest. 

Just as in the first-approximation equation ( 12), we 
must stipulate that the expansion of the funGion @,(() in 
terms of the eigenfunction of the operator L contains no 
shear mode, i.e., it is necessary that the right-hand side of 
(22) be orthogonal to fo(c) ( 14). This yields an expression 
for the DW drift velocity V,, = V,: 

Substituting the functions $,({,t) and 8,(6,t) (20)- 
(21 ) calculated in the preceding section in (23), and inte- 
grating over the oscillation period and integrating in (24), 
we obtain for the drift velocity V,, 

where vxz (w: X)  and v,, (w: x1 ) are certain functions of the 
frequency and of the phase shifts, which we shall call nonlin- 
ear mobilities (NM) of the domain wall (their structure will 
be given below). 

It follows from (25) that the DW drift occurs only if at 
least two components of the magnetic field differ from 
zero--either h, and h, or h, and h, . This fact can be inter- 
preted in the following manner: the z or y component of the 
field, as follows from ( 18), cause DW oscillations, while the 
x component ensures different values of the wall's linear mo- 
bility as it moves in the positive and negative y direction. If, 
however, the field is oriented in the yz plane, there is no DW 
drift. 

We consider next DW drift in a field polarized separate- 
ly in the xz or xy plane. 

A. Field inxzplane 

The nonlinear mobility vxz which determines the drift 
velocity in an oscillating field polarized (in general, ellipti- 
cally ) in the xz plane [see ( 19 ) for h, = 0)  is of the form 

where 

CP [ (9,-llcos ~ + q a  sin X J  
D ( ~ ; x )  -- 

$18 (~ I - - f )~+q ,=  

We see from (26) and (27) that the nonlinear mobility 
v,, is determined by two terms of different type. The first 
[D(w; x) ]  is connected with the presence Dzyaloshinskii 
interaction in the WFM, while the second term [A(w;x)] 
differs from zero in a "pure" AFN. 

To compare the contributions of both terms at different 
values of the frequency and phase shift x and to obtain a 
numerical estimate of the drift velocity we use the values of 
the parameters indicative of the typical and well-investigat- 
ed WFM of R E 0  typeyt t r ium orthoferrite YFeO, (see, 
e.g., Ref. 12): 

The relaxation frequency W, can be calculated from the ex- 
perimentally known linear mobility p of a DW in a static 

where Hd is the Dzyaloshinskii field. For YeFeO, we have1': 

This yields an estimate of the characteristic nonlinear mobil- 
ity yo: 

It follows from (28) that the characteristic DW drift 
velocity 

is much lower than the DW stationary velocity in a static 
field of the same strength (by an approximate factor 
H d H ,  ). For an oscillating field of amplitude - 10 Oe we 
obtain V,- 3.5 cm/s. 

The DW drift velocity increases substantially at definite 
resonance frequencies. Consider, for example, the drift in a 
linearly polarized field (X = 0).  From (37) we have for 
x = 0: 
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Numerical estimates of the frequencies o, and w, yield 
for all frequencies, up to optical, a value 

so that the contribution of the term 

to (26) is small at practically all frequencies, and the princi- 
ple role is assured by the term D(w;O) due to the Dzyalo- 
shinskii interaction. 

In the limiting case of low frequencies (w 4 w,) the drift 
velocity is 

A negative V,, means that the DW moves in the negative Y 
direction. At high frequencies (w)o,) we have 

V,, ( w )  z VO (d2/PIS) ( O ~ W ) ~  > 0. 

In the frequency region near o, (activation frequency 
of the lower mode of the bulk spin waves) the function 
D(w;O) has a singularity of the "resonance-antiresonance" 
type. The maximum (in absolute value) drift velocity is real- 
ized at 

and reaches a value of the order of 

Therefore even in relatively weak ( - 10 Oe) fields the drift 
velocity at resonance is of the order of 10 m/s. 

The second term A (w;O) has the two usual resonances 
at the frequencies 

and 

which coincide respectively with the activation frequencies 
of the localized and upper bulk spin-wave modes. At the 
resonances we have 

A(01.2; 0 ) - I ,  

which is comparable with D(o,,,;O). 
The dependence of the drift velocity on the frequency at 

x = 0 (normalized to the characteristic value of V,) is 
shown schematically in Fig. la. 

At phase shiftsx(0 <X < ~ / 2 )  that differ from zero but 
are not too close to ~ / 2  the frequency dependence of V,, 
remains approximately the same as for x = 0. The function 
D(w;x) has as before a resonance-antiresonance behavior 

FIG. 1 .  Frequency dependence of domain-wall drift velocity at various 
values of the phase shift X:  x = 0 (a),  7r/3 (b), 7r/2 (c ) .  

near o = o,, but it becomes asymmetric: the negative ampli- 
tude 

- ( ~ ~ 1 2 0 , )  ( 1-sin X )  

decreases with increase of X, but the positive 

increases. 
If x#O the function A(w;x) changes at o = o,, 

changes from resonant to resonant-antiresonant. The ampli- 
tude values of the function A(o;x) at frequencies close to 
w, = w0a1" are equal to 

which is much less than the amplitude of the function 
D(w;x) at ozo,. These values, however are comparable 
with and may even exceed the value D(o,;x),  which de- 
creases with increase of X: 

At sufficiently lark, x the contribution of the antiferromag- 
netic term A(w;x) can therefore make the DW drift velocity 
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negative in a narrow frequency interval, of order w, near 
w = wl. 

The picture is similar also at frequencies close to 

A typical dependence of the drift velocity on the frequency 
for elliptic polarization of the magnetic field in the xz plane 
at x = 1~/3 is shown in Fig. lb. 

If the phase shift is equal to 1~/2 the behavior of the 
function D(w;n-/2) becomes purely resonant (the negative 
peak vanishes), and the amplitude at the maximum is double 
the corresponding value for x = 0. The function A(w;n-/2) 
exhibits a symmetric resonance-antiresonance behavior 
with amplitudes of order 1. The two terms of (25) are of the 
same order outside the resonance regions and are small: 

A plot of V,, (o) for x = 1r/2 is shown in Fig. lc. 

B. Field inxy plane 

The nonlinear mobility vxy ( o ; ~ )  in the case of an oscil- 
lating field ( 19) is given for h, = 0 by 

where the functions Pn = Pn ( o ) ,  n = 1, 2, are defined by 
the integrals 

+ 00 

Using the approximation 

where 7, are certain constants of the order of unity, we ob- 
tain from (30): 

It follows from (32) that the frequency dependence of 
the nonlinear mobility vxy differs somewhat from v,, ( 0 )  
[Eqs. (26 )  and (27) 1. First, vxy -w and vanishes as w +O; 
second, at high frequencies we have vxy - w - ' in place of 
vx, - w - '. The resonant properties of vxy ( w ; ~ , )  are similar 
to the corresponding properties of the function A(w;x) 
(27). In the case of a linearly polarized field (x, = 0) we 
have at the frequency w = wo the usual resonance with am- 
plitude of the order of v,pdw, at the maximum. In an ellip- 
tically polarized field (x, #O the function v,,, ( w ; ~ ,  ) has an 
asymmetric resonance-antiresonance behavior, which be- 
comes symmetric a t x ,  = r/2. The maximum amplitudes of 
the drift velocity in fields of the order of 10 Oe are - 10 m/s, 
just as in the previously considered field in the xz plane. 

4. DRIFT OF A STRIPE-DOMAIN STRUCTURE 

We consider now the possibility of a drift in an external 
alternating magnetic field with a stripe-domain structure 
(SDS), consisting of 180-deg DW. It must be borne in mind 

here that neighboring DW in the DS have opposite topologi- 
cal charges determined by the boundary conditions of Eq. 
(7). In addition, the rotation of the vector 1 in various DW 
can be about either a positive or a negative direction of the z 
axis. These two factors determine the DW drift direction in a 
field of fixed frequency w and a phase shift x (or X, ). An 
SDS drift is possible, naturally, only when neighboring DW 
move in one and the same direction. 

We define the topological charge R = + 1 of the DW 
and the parameterp = + 1 that describes the rotation of the 
vector 1 in a DW as follows: 

The domain walls considered in the preceding section, hav- 
ing a magnetization (8), correspond to R = p = + 1. In the 
general case we have in lieu of (8)  

Analysis shows that in the general case the drift velocity 
of DW with the given values of the parameters R and p is 
determined by an equation similar to (25) 

where the nonlinear mobilities v,, and v,, are described as 
before by (26) and (30). 

We see thus from (33) that SDW drift in a field polar- 
ized in the xy plane is altogether impossible, since the topo- 
logical charges R of neighboring DW are different. In a field 
polarized in thexz plane, SDW drift is possible, but provided 
that neighboring DW have different values of the parameter 
p and of the topological charge, i.e., the rotation of the vector 
1 in neighboring DW must be in opposite directions. A simi- 
lar situation (possibility of SDW drift in a field polarized in 
the DW plane) obtains also in ferromagnets." 
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