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The temperature dependences of the viscosity and correlation radius of concentration 
fluctuations in guaiacol-glycerin solutions with different phase-separation regions, right up to 
AT = 0.01 "C, were obtained. It is shown that the critical exponent v of the correlation radius 
ranges from 0.63 for AT = 39 "C to 0.53 for AT = 0.0 1 "C. The measurements were performed by 
the correlation-spectroscopy method. 

1. INTRODUCTION 

Critical solutions with an upper critical point have been 
studied experimentally for a large number of solutions, and 
the basic physical features of this phenomenon have been 
determined qualitatively and quantitatively.I4 Solutions 
with a lower critical point have also been studied, though 
there are fewer such  work^.^-^ Solutions (or mixtures) hav- 
ing a closed phase-separation region or loop in the tempera- 
ture (T)  versus concentration (C) plane have been studied 
even less. Such systems have both upper and lower critical 
points. Examples are Rochelle salt,9 a mixture of gases (Ne- 
Xe),lo as well as liquid solutions' '-I3 such as fl-picoline in 
water with additions of salts or heavy water,I4-I' higher al- 
cohols in water with an addition of salts," and glycerin- 
guaiac01.'"~~ The latter solution has a number of remark- 
able properties, some of which are still not understood and 
are apparently typical of all other systems of this type. It is 
this solution that became the subject of our experimental 
investigation, described below. 

It should be noted that if the solution components are 
pure and, most importantly, as much water as possible is 
removed from both components, then the glycerin-guaiacol 
solutions are homogeneous for any concentration and tem- - 
perature. If, however, a small amount of water is added to 
the glycerin-guaiacol solution, then there appears in such a 
solution a closed region within which the solution separates 
into two phases, and the more water added, the larger the 
region in the ( T, C )  plane is. 

Thus, in the case under consideration, in the coordi- 
nates (T, C, C, ), where C, is the water concentration, the 
coexistence curve of the separated and homogeneous media 
is no longer planar but a three-dimensional surface.19 

The upper and lower critical points become the upper 
and lower lines of critical points, and the point at which 
these lines meet forms the double critical point. 

Thus a glycerin-guaiacol solution and solutions similar 
to it are valuable objects for studying critical phenomena in 
the region of the upper and lower lines of critical points and 
in the immediate vicinity of a double critical point. 

Our aim here is to investigate the behavior of the corre- 
lation radius r, of the concentration fluctuations near the 
upper and lower critical points in a glycerin-guaiacol solu- 
tion by the method of correlation spectroscopy for phase- 
separation regions of different sizes (with respect to the tem- 

perature and the critical concentration of the guaiacol), to 
study experimentally in such samples of solutions the behav- 
ior of the shear viscosity r ]  near the upper and lower lines of 
critical points and especially near the double critical point, 
to determine the background viscosity, and to determine the 
qualitative effect of some external conditions on the sizes 
(with respect to the temperature) of the phase-separation 
regions. 

The temperature dependence of the correlation radius 
of the concentration and viscosity fluctuations cannot be 
measured directly, but to determine them it is necessary to 
use definite models and modern-theory formulas which fol- 
low from these models. If it was found that the experimental 
results could be analyzed by two different methods, both 
methods were used. 

Since new approaches to the analysis of the experimen- 
tal data may appear in the future, we present the experimen- 
tal data as completely as possible. 

In our experiments the correlation functions were mea- 
sured and the widths of the central or Rayleigh line in the 
scattered-light spectrum were extracted from them. The 
temperature dependence of the shear viscosity was measured 
viscosimetrically. 

2. EXPERIMENT 

The temperature dependence of r, was investigated in 
eight solutions with the help of light scattering. The shear 
viscosity was also measured in eight solutions. The sizes of 
the regions of phase separation are given below in Tables I 
and 11. 

Analytical grade glycerin, dried by evacuation at a tem- 
perature 97-99 "C for 6 h, was used to prepare these solu- 
tions. The residual water content in the glycerin was 0.45 
vol. %. The guaiacol (commercial sample) was purified by 
repeated, successive vacuum distillation and recrystalliza- 
tion from the melt at 26-27 "C. (We note that glycerin ab- 
sorbs water avidly while guaiacol is virtually insoluble in 
water.) Twice-distilled water was used as a small additive 
forming a closed region of phase separation in the (T, C) 
plane. 

We determined the critical density of the glycerin from 
the maximum intensity of scattered light from 1 "C up to the 
phase-separation temperature. It was found to be 47.05 
vol.% in a dry solution. 
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TABLE I. Results of analysis of the viscosity measurements. 

AT, O C  I .x,,v. I ",, l n  ( Q , r . )  I Qo-', a 

Dust was removed from the solutions in a dry-nitrogen 
atmosphere filtered through Millipore FGLP teflon filters 
with pore diameter 0.20 pm. Optical cells, made from opti- 
cally quality quartz tubes 2.8 cm in diameter, were filled 
with the same solution. 'I The solutions in the cells were fro- 
zen and the vessels were evacuated with a forevacuum pump 
and sealed. The solution-filled cells were placed in a thermo- 
stat. 

The half-width r of the Rayleigh line, which, near the 
critical points, depended strongly on the correlation radius 
of the concentration fluctuations, was determined by mea- 
suring the correlation functions of the scattered light with 
the help of a Malvern Instruments K7023 correlator, as de- 
scribed previously in Refs. 8 and 24. 

The temperature dependence of the viscosity was mea- 
sured to within 0.2% with the help of a Hoeppler viscosi- 
meter and the refractive index was measured to within 
f 0.001 with the help of an RF-22 Abbe refractometer. 

During the measurements of r and rl the temperature 
was maintained constant to within 0.02 "C. The temperature 
difference AT was measured to within (0.01 f 0.002 
AT) 'C. The value of r was measured for each temperature 
at several scattering angles 8. The accuracy of the measure- 
ments of r ( 9 )  was not worse than 2.5%. 

The effect of double scattering, estimated on the basis of 
the results of Ref. 26, is significantly smaller than the experi- 
mental error and can be neglected. 

The critical phase-separation temperatures were deter- 
mined on the basis of the vanishing of a beam passing 
through the cell or on the basis of the solution becoming 
opaque.2) The cell temperature changed by not more than 
0.1 "C/min, and as a rule the rate was an order of magnitude 
slower. 

3. THE DEPENDENCE OFTHE WIDTH OFTHE CENTRAL 
RAYLEIGH SCATTERING LINE ON THE VISCOSITY AND ON 
THE CORRELATION RADIUS OF THE CONCENTRATION 
FLUCTUATIONS: BASIC FORMULAS OFTHE THEORY 

The interacting-mode an the renormaliza- 
tion-group theory3' yield a basic relation between the half- 
width r of the central Rayleigh line of the light scattered in 
the solution in the critical region, and other physical quanti- 
ties which can be measured or computed. 

This basic relation can be written as follows: 

0,0664 
0,0666 
0,0648 
O,C62J 
0,0671 
0,0632 
0,0565 
0,0553 

-0,225*0,014 
-0,224+0,006 
-0,222&0,009 
-0,208+O,b13 
-0,218-c0,012 
- 0 , 2 0 0 ~ 0 , 0 1 4  
-0,169+0,019 
- 0 , 1 5 4 ~ 0 , 0 1 0  

- 

0 (DCP) 
1,41 
2,90 
3,20 
5,237 
8,73 
25,7 
@ , o  

Here I?, , r, ,  DB, and Dc are, respectively, the background 
(B)  and critical (C) parts of the linewidth r and the back- 
ground and critical mutual diffusion coefficients D; 
q = Iqs - qL I, where q, and q, are the wave vectors of the 
scattered and exciting light, respectively; x = qr,, where r, 
is the correlation radius of the density fluctuations; 
R = 1.027; 2.36, K(x)  is the Kawasaki f ~ n c t i o n : ~ ~ . ~ ~  

115.5 
54,9 
49,B 
45,8 
37 , i  
32,9 
26,9 
21,06 

-3,25*0,19 
--3,95*0,07 
-3,97+0,11 
-3,81-+0,16 
--4,19+0,13 
-3,98+U,15 
-3,56+0J3 
-3,50+0,13 

K ( x )  = 3 / 4 ~ - 2  [ 1 + x2 + ( x 3  - X -  ') arctan x ]  , (2)  

The background part of the mutual diffusion coefficient, ob- 
tained in Ref. 37, is described by the relation 

where vB is the background star viscosity and qc can be 
obtained from the relations37 

TABLE 11. Results of analysis of measurements of r and the viscosity data (qg ' = 4.5 A) .  

AT, O C  I To, 
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where the dimension of q, and Qo is that of the wave vector. 
An estimate of q, will be given below, and Qo can be ob- 
tained from the temperature dependence of the viscosity3' 

where X,  is the critical exponent of the viscosity. 
It has been established that the formulas of the interact- 

ing-mode theory, which have been presented above, describe 
the experimental data well in a wide range of values of qr, 
(0.1 (qr, < 20) for  solution^^.^.^^ and for individual li- 
q u i d ~ . ~ ~ ~ ~  

4. ANALYSIS OF THE MEASUREMENTS 

The correlation radius r, can be determined with the 
help of the formulas (1)-(5) from the values of the half- 
width r of the Rayleigh line, the refractive index n, and the 
temperature dependence of the viscosity, if qr, 5 1. For 
qr, % 1 r no longer depends on qr, and only the dependence 
r a q3 remains. In order to describe the temperature depend- 
ence of r, we employed the expression18 

where T f  and T r  are, respectively, the lower and critical 
temperatures, ro is a constant, and Y is the critical exponent 
of the correlation radius. 

The temperature dependence of the viscosity (6) can be 
expressed as follows with the help of Eq. (7) : 

where the value of 7, was determined from a number of 
experimentally determined temperature dependences of the 
viscosity in solutions in which the phase separation regions 
have different sizes, as well as from the temperature depen- 
dences of the viscosity in a dry solution and in a solution with 
a phase-separation region 2.8 "C, in which this region was 
"collapsed" by adding 0.7 vol.% ethyl alcohol. It was found 
that the temperature dependences of the viscosity in a dry 
solution, where the viscosity does not have a critical part, 
and in a solution with added alcohol, where the critical part 
of the viscosity is eliminated artifically, are virtually collin- 
ear. These curves are described well by the formula 

and can serve as a basis for determining 7, graphically in all 
solutions which we studied. 

The value of 7, was found for each region of phase 
separation using the formula (9) with three points, two of 
which were chosen to be farthest from the critical tempera- 
ture-the extreme experimental points-and the central 
point was chosen graphically from the condition that the 
temperature dependences 7, ( T )  for different solutions are 
collinear. 

In analyzing the experimental results we also included 
the correction due to the interaction of strongly developed 
density fluctuations near the critical phase-separation tem- 

perature with the gradient of the velocity of the liquid in the 
vis~osimeter.~' Such an interaction results in an effective re- 
duction of the measured viscosity. A method for taking this 
correction into account for a Hoeppler viscosimeter is pre- 
sented in Ref. 42. 

In our experiments the width AT of the phase-separa- 
tion regions was different in solutions whose viscosity was 
measured and in solutions for which the angle of r was mea- 
sured. For this reason we first analyzed the viscosity data 
and then recalculated the viscosity for solutions for which 
the half-width r of the Rayleigh line was studied. To check 
the correctness of the results, the calculations were also per- 
formed for a solution in which the values of AT obtained 
from viscosity measurements were identical with the values 
of AT obtained from measurements of T. 

In order to determine r, from the measured values of r ,  
n, and 7 we expanded the formulas ( 1 ) and (2)  and then 
solved for Dc : 

where 

The ratio DB/Dc was determined from the relations (3)-  
(5),  the quantity Qo was obtained from the data on the shear 
viscosity, and the value of q, was found from the formulas 
(5). 

The quantity q, arises in the interacting-mode theory 
as the upper limit of integration over the wave vectors in the 
relations for the critical parts r, and 7,. The physical rea- 
son for introducing this upper limit is that such an integra- 
tion can be carried out as long as hydrodynamics is applica- 
ble or the medium can be regarded as continuous. We 
adopted the value q; ' = 4.5 b;. 

It should be noted that since Q; ' and therefore q; ' 
increase strongly as the phase-separation region shrinks, the 
accuracy with which q, ' is determined is not significant for 
determining r, near the double critical point (DCP). We 
verified this by performing a calculation with q, ' = 7.5 b; 
(see Table V below). 

In determining r, from measurements with the help of 
the formula ( 10) an iteration procedure was used for each 
value of the scattering angle and for each temperature, since 
the right-hand side of Eq. ( 10) also contains r, . The value of 
Dc obtained with x = 0 was used as the zeroth-order ap- 
proximation of such calculations of r, . 

The quantities Y and ro were determined by fitting the 
temperature dependence to the formula (7). At the same 
time, the temperature dependence of the viscosity was fitted 
to the formula (8); this made it possible to obtain for each 
solution the quantities X ,  and Qo. This fit was made taking 
into account the correction due to the interaction of concen- 
tration fluctuations with the gradient of the fluid velocity in 
the visc~simeter .~~ The value of Qo, refined with the help of 
the correction, gives in turn refined values of D, /D, and r, 
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for each temperature. These refined values were once again 
fitted to Eq. (7)  and employed to obtain a new estimate of 
the correction to the v i s~os i ty .~ ' .~~  After five iterations the 
parameters so obtained no longer varied and these values of 
v and ro were used to calculate the final value of the viscos- 
ity from the formula (8).  The results are given in Table 11. 

To check the convergence of the results of the proce- 
dure described above, the quantities X, and Qo presented in 
Table I were taken as the initial data for obtaining from r, n, 
and the viscosity the entire set of quantities (v, rO, X,, QO) 
characterizing the temperature dependences of rc [the for- 
mula (7) ] and the viscosity [the formula (8)  ] (see Table 
11). According to Table 11, the result of the check of the 
convergence agrees, to within the limits of error, with the 
data in Table I. 

Another published method for analyzing the results- 
calculation with qD/qc = const--consists of the follow- 
ing:16.17 a)  When describing the viscosity measurements the 

temprature T,, as also X, ln(Qoro) and X,v, is assumed to 
be a variable parameter, and the temperature dependence of 
the viscosity is linearized by varying T, in double-logarith- 
mic coordinates in the calculation using the formula (8)  ; the 
correction due to the interaction of the fluctuations with the 
gradient of the fluid velocity in the v i s ~ o s i m e t e r ~ ~ ' ~ ~  is as- 
sumed to be small and is neglected. b) The ratio qD/qc is 
assumed to be constant for all regions; specifically, it is as- 
sumed that qc = 4Q0. 

If our experimental data are analyzed by this method, 
we obtain the results presented in Table 111 and IV (to calcu- 
late X, it was assumed that v = const = 0.625). 

5. DISCUSSION 

In this work we measured experimentally the tempera- 
ture dependences of the half-width of the Rayleigh line in the 
scattered-light spectrum, the shear viscosity, and the index 
of refraction, and we also determined experimentally the 
temperatures of the upper ( T f )  and lower ( T:) critical 
points. 

The calculation of the critical exponent v of the correla- 
tion radius of the density fluctuations, using the formulas 
presented in Secs. 3 and 4 required knowledge of the back- 
ground shear viscosity q, , which was also found experimen- 
tally, as described above. 

The product of the critical exponent X, of the shear 
viscosity by the critical exponent of the correlation radius v 
(7)  was determined in the same experiments. 

The interacting-mode theory was developed for a con- 

tinuous medium, and for this reason in the integrals for r, 
and v, the upper limit of the integration over the wave vec- 
tors cannot be infinite. It must be limited to some value qD, 
which must satisfy the requirements of a continuous medi- 
um, but otherwise can be arbitrary. Here we set q; ' = 4.5 
A, and this means that the molecular structure of the solu- 
tion studied will not be felt over linear distances of - 30 A, 
and for this reason such a medium can certainly be regarded 
as continuous. We note once again that we also performed 
calculations for q, = 7.5 A, and we obtained the same re- 
sult (see Table V) in the region of the double critical point. 
Thus the numerical value of q g  ' does not play a significant 
role, but the presence of a cutoff in q is significant, and the 
chosen value of q, ' is assumed to be the same for all regions 
of phase separation. 

In our experiments we endeavored to vary the size of the 
phase-separation region in the (T, C )  plane so as to ap- 
proach as close as possible the double critical point T f ,  and 
we came close enough to it so that the width of the phase- 
separation region was T = 0.42 "C. We were even able to 
reach practically the double critical point itself: 
AT= 0.01 "C. 

All measurements performed in this work were made in 
the regions of both the upper and lower critical points, as 
well as in the region of the double critical point itself. The 
results obtained for the temperature dependence of the shear 
viscosity are presented in Table I, and the results of the mea- 
surements of the temprature dependence of the half-width of 
the Rayleigh line of the scattered-light spectrum are present- 
ed in Table 11. 

The critical exponent v for the correlation radius rc of 
the density fluctuations for the upper, lower, and double 
critical points in eight different solutions were found from 
the measurements and the formulas presented above. For 
large phase-separation regions the critical exponent v was 
found to be 0.63 1 + 0.004, which is the same as the values of 
v obtained in our ~ o r k s ~ ~ - ~ ~  and in the works of other au- 
thors. 16,17.20 

When the phase-separation region is smaller than 
AT= 1.5 "C, however, the critical exponent v tends to de- 
crease and approaches the value v z 0.5 (Tables I and I1 and 
Fig. 1).  

This last result indicates that as the double critical point 
is approached Landau's mean-field theory43 gives an in- 
creasingly better description of the phenomenon. This result 
is unexpected. 

The problem of describing the phenomenon with the 

TABLE 111. Results ofanalysis ofviscosity measurements by the method of calculation with q D /  
q, = const = 1.1 .  
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0,0590 
0,0525 
0,0556 
0,0504 
0,0619 
0,0561 
0,0517 
0,0521 

-0,166+0,011 
-0 ,172~0,008  
-0,186-+0,006 
-0,1G6+0,007 
-0 ,197~0,010  
-0,173 *0 ,008 
-0,144-+0,@fi 
-0,141+0,008 

0 (DCP) 
1,41 
2,90 
3,20 
5,87 
8,73 

25,87 
40.0 

40,33 
36,5 
38,fi 
36,6 
31,8 
23,O 
19 , l  
16,9 

3,69+0,14 
3,28*0,10 
3,47-+0,08 
3,1510,08 
3,87-+0,11 
3,51+0,10 
3,23*b,16 
3,25+0,10 



TABLE IV. Results of analysis of data on r by the method of calculation with q,/ 
q, = const = 1.1 .  

TABLE V. Results of analysis of r measurements with q; ' = 7.5 b;. 

AT. O C  1 -1 Q;'. A 

0,01 
0,42 
1,24 
1,32 
7,74 

32,67 
39,9 
65,5 

help of the mean-field theory43 or the fluctuation theory can 
be solved by calculating the Ginzburg (or an 
equivalent number) or Ginzburg's radius.24 

For the time being, however, the required quantities 
contained in the Ginzburg criterion cannot be determined 
accurately enough in the vicinity of the double critical point, 
and for this reason no definite conclusion can be drawn 
about the applicability of one or another theory. This phe- 
nomenon requires further theoretical and experimental 
study. 

As far as we know, in our work we have approached 
closer to the double critical point than in any previous 
works. 

Johnson et ~ 1 . ~ ~  studied the scattering phase function of 
a guaiacol-glycerin solution in a wide range of angles and for 
different sizes of the phase-separation region from 
AT = 65.9 to 1.6 "C. The susceptibility and the correlation 
radius were determined under the Ornstein-Zernike as- 
sumption about the angular dependence of the intensity of 
the scattered light, and the critical exponent v for the corre- 

AT. "(: v 

- 

lation radius was not found from experiment but rather was 
set equal to 0.63; the value of Tc was adjusted so as to obtain 
a fit to the data. 

The work of Sorensen and LarsenL6"' is also of interest. 
They used correlation spectroscopy to study a solution off3- 
picoline and water. When heavy water (D20)  is added to 
such a solution, it acquires a double critical point. The 
widths of the phase-separation region were varied from 
AT = 78.5 "C to 3.55 "C, and the data for the lower critical 
point were used to analyze the results. Analysis of the mea- 
surements by the method of calculation with qD/qc = const 
enabled the authors to conclude tht the critical exponent v 
can range from 0.665 to 0.52, depending on the values cho- 
sen for the ratio qD/qc . 

Table IV gives the results of the analysis of our measure- 
ments performed by the method employed in Refs. 16 and 
17. Specifically, it was assumed that the ratio q,/q, = const 
and the interaction of the gradient of the velocity with the 
concentration fluctuations was neglected when determining 
the shear viscosity. As the data in Table IV show, up to the 

0,574*0,005 
0,605*0,009 
0,621 *0,005 
0,644*0,007 
0,618*0,~09 
0,687*0.624 
O,F29+0,011 
0,640*0,01~5 

0,Ul 
0,42 
1,24 
1,32 
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1,62+0,13 
1.38+0,06 
1,18+-0,07 
1,41rt0,10 
0,96tO,16 
1,42*0,12 
1,03*0,04 

7.74 
32,67 
39,9 
ti5.5 

0,53-+U,OU5 
0,566*0,0(18 
O,585*0,Ob5 
lt,dl7*0.(;06 
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60,O 
37,O 
34,O 
29,5 
35,6 
13.8 
18,7 
11,8 

0,639+0.011 
O,689+l1,025 
O,623&U,b12 
0.652rt0,004 

4S6 

"" 
0.58 

L.59 

- 

r 

A~ 

T 

t 
- 

FIG. 1. Critical exponent v as a function of the width ATof the - 
phase-separation region of guaiacol-glycerin solutions. 



width AT = 1.32 "C of the phase-separation region the criti- 
cal exponent v remains practically constant and equal to 
0.64 + 0.01, which agrees with the results ofRefs. 16 and 17. 
For phase-separation regions A T  < 1.32 "C v decreases 
somewhat. 

On the other hand, because the ratio q, /q, is constant, 
q, ' is found to be different for different widths AT, and we 
see no justification for this. 

Several solutions for higher alcohols in water with addi- 
tion of salts were studied by Davidovich and Shinder. I R  The 
solutions had a double critical point, but the critical expo- 
nent for r, was not measured but rather set equal to v = 0.62. 

The behavior of the shear viscosity in the critical region 
is of interest in itself. Our value for the critical exponent X ,  
for wide phase-separation regions agrees satisfactorily with 
previous r e s ~ l t s , ~ ~ , ~ '  and the product X ,  v remains constant 
for all phase-separation region (see Table I ) .  

Binary solutions with small additions of a third compo- 
nent, which have closed phase-separation regions and a dou- 
ble critical point, are objects in which small external actions 
result in serious intemolecular effects. Thus, for example, it 
was shown that a "dry" guaiacol-glycerin solution does not 
have a phase-separation region; it is homogeneous for any 
concentrations and temperatures. The addition of a small 
amount of water engenders a phase-separation region, while 
the addition of a drop of ethyl alcohol to this solution "col- 
lapses" the phase-separation region, and the solution once 
again becomes homogeneous. 

Our investigations show, in particular, that the results 
of experimental and theoretical studies of such systems are 
undoubtedly of interest. 

We thank V. P. Zaitsev for assisting in the experiments. 
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