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Particular solutions in the shape of solitons play an important role in integrable wave systems and 
an even more important one in nonintegrable systems. Nonintegrable systems with wave 
repulsion are able to form dark solitons-local reductions in the wave intensity. In the present 
paper we use a thermodynamic analysis and the stability of the dark solitons of the nonlinear 
Schrodinger equation (NLS) to formulate a hypothesis about the possibility that their 
modulational amplitude increases and that they display attractor properties. We state the initial 
conditions for the NLS which make it possible to check experimentally and numerically the 
predicted manifestations of attractor properties of dark solitons. 

1. INTRODUCTION 

Particular soliton solutions are able to emerge as the 
result of the evolution of a broad class of initial conditions. 
For integrable systems the solitons appear in the decay of 
localized perturbations and the amplitude of the solitons is 
in that case unchanged when they collide with one an- 
o ther . '~~  One can say that the solitons were superimposed on 
one another in the initial condition. The evolution merely 
made it possible for them to disperse and to be made visible. 
In the more general nonintegrable systems, solitons can 
grow by absorption of waves and this makes them even more 
important. Initially only solutions of integrable systems 
were called solitons and the term "solitary wave" was used 
for nonintegrable systems. Later, however, all localized so- 
lutions were named solitons and we shall follow this more 
recent tendency. 

The statement about the condensation of waves into 
solitons for nonintegrable systems appeared as an analytical 
prediction based on statistical considerations and the maxi- 
mum-entropy pr in~ip le .~ .~  The main result is the domination 
of the fusion of solitons over splitting the the possibility of an 
unbounded growth of strong solitons, and this made it possi- 
ble to call them statistical attract or^.^-^ The analytical theo- 
ry is complicated and contains unclear assumptions, so that 
it was of great value to have a straightforward numerical 
verification of the hypothesis of the growth of solitons for the 
NLS with an attractive kind of nonintegrable potential5 and 
without a prohibition of a decrease in the number of solitons 
during the evolution. A similar result was obtained indepen- 
dently by another group of authors6 who used another ther- 
modynamic-equilibrium construction which required in the 
last stage computer calculations. 

The thermodynamic predictions seem completely gen- 
eral but encountered difficulties when being applied to NLS 
with wave repulsion, 

which have solutions of the type of local lowering of the 
intensity IY l 2  (dark  soliton^^.^). The "depth" of such 
"holes" is clearly restricted by the intensity of the back- 
ground, and an unbounded increase in the amplitude of the 
modulation of dark solitons is impossible. Moreover, there 
appear additional boundary conditions connected with the 

fact that the change in the phase of the scalar field Y is con- 
stant and that it is impossible to change the advance in phase. 
This makes dark solitons, in contrast to the usual solitons of 
the NLS with an attractive type potential, single-parameter 
solitons. The velocity of a dark soliton is strictly related to 
the amplitude of its modulation and this must be taken into 
account in a thermodynamic analysis. An important feature 
of the waves of the NLS with a repulsive type of potential is 
that they are able to interact with the background, and this 
leads to a more restricted equilibrium distribution than in 
Refs. 3 to 6. 

In the present paper we give a thermodynamic analysis 
of the "dark soliton + waves" system. We show that the 
condition for an increase in the modulational amplitude of 
dark solitons to be thermodynamically favored is connected 
with the condition that they be Lyapunov stable. Such a sta- 
bility is proved for dark solitons of the NLS with an integra- 
ble repulsive potential and a modulational amplitude not 
larger than some limit; this possibly enables us to explain the 
experimental results of Ref. 9. The authors propose a 
straightforward numerical and experimental study of the 
dark solitons of the NLS, which would make it possible to 
check their attractor properties. 

2. PROPERTIES OF THE DARK SOLITONS OF THE NLS WITH 
A REPULSIVE TYPE POTENTIAL 

The NLS with a repulsive type potential describes the 
propagation of modulated ion-sound waves [ U= I Y 1 (Ref. 
9) 1 and of nonlinear waves in light conductors with a "nor- 
mal" dependence of the refractive index on the lightguides 
(U=IYI2 +alYI4) (Ref. lo) ,  U=(YI2 (Refs. 7 and 11 to 
15), as well as the spatial picture of diffraction of a laser 
beam passing through a diffraction lattice and scattering 
material [ U= IY l 2  (Ref. 16) 1 .  In the last case x is the coor- 
dinate in the cross section of the beam and t is the coordinate 
along the beam. 

A study of the structure of laser pulses propagating 
along lightguides is important from the point of view of ap- 
plications which may arise.17 In many  case^'^.'^ the laser 
pulse can be assumed to be much longer than the minima in 
the wave intensity which occur on its background. This 
makes it possible to consider an NLS with nonvanishing 
boundary conditions (for x + + w ) . 
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The first analytical results about the properties of the 
solutions of an NLS with non-vanishing boundary condi- 
tions were obtained in Refs. 2,7,8, and 18, where an integra- 
ble quadratic potential was considered ( U- I Y 1 2 ) .  It was 
shown in Ref. 18 that small perturbations of the background 
solution of the NLS equation can in the first approximation 
in the nonlinearity and dispersion parameters be described 
by a sound-wave type equation close to the KdV equation, 
which has soliton solutions.' It was showns by using a modi- 
fied inverse scattering method that the evolution of any suffi- 
ciently strongly localized initial solution leads to the appear- 
ance of a set of dark solitons and waves. 

The analytical form of the dark solitons of an NLS with 
integrable (quadratic) potential UZ 1 Y 1 ', 

and the boundary conditions: 1YI2 -+ao ( 1 ) and Y: - 0  (2) 
as x- + w , was given in Refs. 7 and 8. 

The solution of the NLS was found in the form7 

3. STABILITY OF THE DARK SOLITONS OF THE NLS 

If a particular solution claims to play an important role 
in the asymptotic behavior it must at least be stable. The 
stability of a soliton of an NLS with an attractive power-law 
potential is independent of its amplit~de, '~ this does not con- 
tradict the possibility of the unbounded growth of strong 
solitons. Small-amplitude dark solitons of an NLS are de- 
scribed by a sound-wave type equation which is close to the 
KdV equation which has solitons which are stable'' and 
show attractor properties.4 In the present section we show 
the stability of dark solitons with a finite modulational am- 
plitude which are not described by the KdV equation. 

The stability of dark solitons of an NLS with an integra- 
ble repulsive type potential can be proved by the Lyapunov 
integral method. A dark soliton Yo is an extremal of the 
functional L composed of the usual integrals (characteristic 
for the nonintegrable NLS) : 

The total advance in phase, IS0 I = 2.arctan p=iJ YY,''-Y*Y,'~~, , , 

x V2 - 1 ), can vary between the limits 0  and a .  The 
where E, N, and Pare, respectively, the energy, number of velocity V of the dark soliton is, in contrast to the usual 
waves, and momentum integrals. The second variation has soliton, completely determined by the modulation ampli- 

tude, since in a dark soliton the constant amplitude IYoI is the form 

also fixed, as well as the rate of change in phase Yhx = 0  as 
i 0 

x - +  w .  - - a 2 ~ =  Jla~;-~veu 1' 
The collision of N dark solitons of the integrable NLS 2 

was considered analytically in Ref. 8 and it was shown that 
their modulation amplitude is unchanged after collisions. 
Numerical experiments have in practice confirmed this con- 
clusion for dark solitons, both those moving in opposite di- 
rections and those moving in the same directi~n,".'~ which 
is characteristic for an integrable NLS which has a denumer- 
able set of integrals of motion.I9 

The aim of our paper is a consideration of the behavior 
of the solutions of an NLS with a repulsive type potential in 
the general, nonintegrable case. This means that we consider 
an equation of the form 

The perturbation Hint can here contain both nonlinear terms 
as well as corrections to the dispersion. If Hi,, is small the 
functional form of the dark solitons will be close to the inte- 
grable case (5) which we considered. The role of Hint re- 
duces to switching on interactions and the possibility to 
change the modulational amplitude and the number of dark 
solitons. In that sense the situation is similar to constructing 
a model of the thermodynamics of a perfect gas-one ne- 
glects the interactions when considering equilibrium, but 
one understands them to be necessary for the establishing of 
the equilibrium. 

Solutions for which S2L has a fixed sign are Lyapunov- 
stable. It was made clear numerically (by an expansion of an 
arbitrary test function SY in Fourier harmonics) that 
S2L > 0  if the advance in phase 10 1 < a/2. The dark solitons 
with a modulational amplitude less than are thus Lya- 
punov-stable. In proving the stability we did not use the inte- 
grability of the NLS. This possibly enables us to extend the 
conclusion about the stability of a dark soliton with a finite 
(though smaller than critical) modulation amplitude to ar- 
bitrary potentials which are sufficiently close to the integra- 
ble one considered, since the nonintegrable NLS conserves 
all three integrals E, N, and P. 

4. THERMODYNAMICS OF THE "DARK SOLITON + WAVES" 
SYSTEM 

Thermodynamically an equilibrium distribution of 
waves in a dark soliton is possible only in the case where the 
dark soliton is not only a stationary point of some integral of 
motion, but also realizes its maximum (minimum). 

An integrable NLS has a denumerable set of polynomial 
type integrals of motion.I9 The establishment of a thermody- 
namic equilibrium distribution is therefore impossible on a 
hypersurface of the function L considered above which does 
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not take into account the limitations imposed by the integra- 
bility. 

A change in the potential or in the dispersion of the 
integrable NLS leads to the loss of additional integrals. It 
becomes possible to establish a thermodynamic "dark soli- 
ton + waves" equilibrium distribution on a hypersurface 
given by the conservation of the main integrals of the NLS 
(energy, mometum, and number of waves) similar to the 
thermodynamic "soliton + waves" thermodynamic equilib- 
rium considered If the changes in the integrable 
NLS are small the hypersurface of the fixed-sign functional 
L considered above changes little and the thermodynamic 
equilibrium distribution is established on a surface close to 
an L hypersurface. We shall therefore, as we have already 
said earlier, use for our construction of an equilibrium model 
integrals of motion which are analytical expressions for dark 
solitons and waves and were obtained for the integrable 
NLS. If there is no complete equilibrium the thermodynam- 
ics shows a tendency for the evolution of the process. 

On the basis of the maximum entropy principle the ten- 
dency of the "soliton + waves" system of an NLS with an 
attractive type potential to increase the amplitude of the soli- 
tons was justified in Refs. 3 and 4. The thermodynamic equi- 
librium distribution of any system contains only thermody- 
namic constants however many integrals of motion there 
are." The distribution of waves considered which is in equi- 
librium with the dark soliton has the following form 

where Ew , Pw , and Nw are the energy, momentum, and num- 
ber of waves; the T, a, and b are thermodynamic parameters. 

The integrals EL,  PL,  and NO, of free waves on a con- 
stant background I Yo12 = w, can be calculated analytically. 
Indeed, perturbations SYk of the background of the NLS 
with an integrable attractive type potential are given up to 
second order in the small amplitude, by the  expression^^^ 

Oh* 
t$,"'=#b* [coa (w,*t-kz)  -i - sin (o.f t - k r ) ]  , 

k2 

where A, B, and Care real parameters which are inessential 
for evaluating N O,, PO,, and E O, : 

The thermodynamic parameters a and b in Eq. ( 10) are 
determined by the condition that the chemical potentials of 
the waves and of the dark soliton which is in equilibrium 
with them are the same. This condition of thermodynamic 
equilibrium is equivalent to regarding the functional L con- 

sidered in the preceding section as extremal. Therefore we 
have 

a = - o , ,  b=- Vl2;  E,+aNw+bPw= L-Lo ( V )  =1/262L, ( 13) 

where Lo( V )  is the value of L in a dark soliton which moves 
with velocity V. 

The eigenfunctions of the NLS differ in the particular 
case of a small-amplitude dark soliton (almost constant 
background, 1Y012=oo) little from free waves and their 
thermodynamic equilibrium distribution can be found ana- 
lytically. The potentials a and b of the free waves are not 
arbitrary, owing to the interaction with the background: 
a = - w,, b = - (the sign of b is determined by the 
direction in which the dark soliton moves, in the present case 
in the positive direction). Another difference between the 
free waves and the waves considered in Refs. 3 and 4 is that 
the eigenmodes ( 11 ) are each a sum of two functions which 
depend exponentially on the time. The equilibrium distribu- 
tion of the waves is therefore not determined by a modified 
Rayleigh-Jeans law, as in Refs. 3 and 4. Indeed, at thermody- 
namic equilibrium we have lS2L = T and from (12) and 
( 13) we get the following equilibrium distribution for the 
free waves: 

Although there were, as in Refs. 3 and 4, originally three 
integrals of motion, the distribution ( 14) depends only on 
two parameters ( T and w,). The dependence on the third 
parameter-the momentum-has been removed by the spe- 
cial choice of the coordinate system (the boundary condi- 
tion Y: - 0 as x - 00. The branches have for k 4 6 dif- 
ferent asymptotic forms: (4, 12, T/2w0, 14; I2 ,4~/k  '. 
The distribution 14; 1' describes equilibrium waves moving 
in a direction which is the same as the direction in which the 
small-amplitude dark soliton moves. Indeed, the equilibri- 
um distribution of the waves in the KdV is the same for k-0 
as the 14; I 2  distribution. The 14, 1' distribution describes 
equilibrium waves moving in opposite directions and it can- 
not be obtained from the KdV equation. 

The phase volume AFof the waves in equilibrium with a 
dark soliton moving with a velocity Vis 

and, hence, the entropy of the waves will increase if the quan- 
tity Ew - w a ,  - 4 VPw increases during an increase in the 
modulational amplitude of the dark soliton. According to 
( 13) we have E, - woNw - 4 VP, = 4S2L. We have shown 
in the preceding section that the quantity S2L is positive if 
the modulation amplitude of the dark soliton is not more 
than some finite magnitude (m for a dark soliton of a 
NLS with a nearly integrable potential). When the modula- 
tion amplitude of the dark soliton increases, the number of 
waves in it decreases and Nw correspondingly increases. The 
increase in N, causes an increase in the positive definite S2L 
so that up to a well defined finite modulation amplitude the 
dark soliton can show attractor properties. 

There exist circumstantial experimental data which 
make it possible to confirm the suggestion made above that 
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the increase in the modulation amplitude of a dark soliton 
saturates. For instance, in Ref. 9 the experimental evolution 
of an initially maximally modulated ion-sound wave led to a 
diminution in the modulation amplitude. 

We now consider a thermodynamic system consisting 
of several dark solitons. If there are no direct collisions, each 
dark soliton interacts only with waves. Such an interaction 
was considered above and leads to the growth of the modula- 
tion amplitude of each not too strongly modulated soliton. 
There are no explicit integral restraints on such a process- 
the conservation of merely the three integrals of motion (8 )  
is not difficult as one can dump energy, momentum, and 
numbers of waves from the dark solitons into the functional- 
ly rich nonequilibrium distribution of the waves. 

The possibility of the simultaneous growth of the modu- 
lation amplitudes of a system of dark solitons distinguishes 
them from the system of KdV solitons and solitons of the 
NLS with an attractive type potential considered in Refs. 3 
and 4, where the simultaneous growth of the soliton ampli- 
tudes was impossible. The reason is that a growth of the 
solitons is accompanied with absorption of waves and con- 
servation of the total number of waves is possible only by 
reducing the amplitudes of some of the solitons. 

The growth of small-amplitude dark solitons must have 
interesting features. In fact, it has been shown earlierI8 that 
in the case the solution of the NLS with a repulsive type 
potential is described by an equation close to the KdV the 
solitons of which cannot grow simultaneously. The contra- 
diction appearing here is connected with the fact that the 
above-mentioned reduction of the NLS to the KdV contains 
an assumption that the interaction between waves moving in 
different directions is small. This leads to the appearance of 
"weak" integrals-the momenta of waves moving to the 
right and moving to the left are conserved separately; a re- 
straint emerges on the use of the background as a wave reser- 
voir. This all probably leads to a slowing down of the simul- 
taneous growth of dark solitons with a small modulational 
amplitude or even to the disappearance of some of them- 
until the increase in the moudlational amplitude of the re- 
maining dark solitons lifts the prohibitions imposed by the 
"weak" integrals. 

A direct numerical and experimental simulation of the 
evolution of dark solitons of the nonintegrable NLS might 
give more rigorous results. Experiments with nonlinear 
waves in light conductors make it possible to study the inter- 
action between dark solitons of the NLS with a controlled 
nonintegrable correction crl\VI4 to the quadratic potential 
U -  I \V 1 '.I0 The possibilities for numerical simulations are 
greater. Depending on the scheme chosen it is easy to add to 
the integrable NLS either dispersion corrections or one can 
change the potential. 

As initial conditions one can choose: 

1)  either a weakly modified background-to confirm 
the attractor properties of dark solitons with a small modu- 
lational amplitude and to clarify the features of their simul- 
taneous growth; 

2)  or strongly modulated waves-to verify the hypoth- 
esis about the saturation of the attractor properties of dark 
solitons with a modulational amplitude above some critical 
value. 

5. CONCLUSION 

We have given for the nonintegrable nonlinear Schro- 
dinger equation (NLS) with a repulsive type potential an 
analytical description of the "dark solitons + waves" equi- 
librium showing the thermodynamic advantage of a growth 
in the modulational amplitudes of the dark solitons up to 
some finite value. 

The growth of the modulation amplitude of a dark soli- 
ton, in contrast to the growth of the usual soliton, is accom- 
panied by the emission of waves and not by their absorption. 
The simultaneous growth of all dark solitons is therefore not 
prohibited by the necessity to conserve the standard inte- 
grals (8 )  of the NLS. At the same time the simultaneous 
growth of dark solitons with a small modulation amplitude 
is apparently made difficult by the existence of "weak" inte- 
grals of motion of the NLS operating only when the modula- 
tion amplitude of the background is small. These integrals 
prohibit the use of the background as a wave reservoir and 
can lead to the annihilation of some of the dark solitons until 
the growth in the modulation amplitude of the remaining 
dark solitons lifts the restraints imposed by those "weak" 
integrals. 

The situation remains unclear for dark solitons with a 
modulation amplitude above a critical value (J1/2 for the 
NLS with a nearly integrable potential). In that case there 
exists both a group of waves with S2L <O and a group of 
waves with S2L > 0 and it is thermodynamically advanta- 
geous to transfer waves by means of a dark soliton. Of 
course, the growth of the waves will be restricted by nonlin- 
ear corrections and it also unclear what will happen to the 
modulation amplitude of the dark soliton. It is possible that 
such a dark soliton with a modulation amplitude close to the 
maximum one will split up during the evolution of an NLS 
with a repulsive potential close to a collapsing one 
( U = IT 1 4 ) .  It is advisable to study its behavior by numeri- 
cal or experimental methods. Such a study might involve 
determining the relative growth rates of dark solitons with 
different modulational amplitudes which is essentially a 
nonlinear problem. 

The considerations presented in this paper might in 
principle be applied also to the two-dimensional case as was 
done in Ref. 23 for the case of two-dimensional solitons of 
the NLS with an attractive type of potential. 

The authors express their gratitude to K. V. Chukbar 
for critical remarks and to A. I. D'yachenko and A. N. Push- 
karev for giving them the possibility to acquaint themselves 
with the results of numerical experiments. 
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