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We study the stability of the weak plasma-turbulence spectra to the appearance of spontaneous 
spatial modulations. We present a numerical simulation of the modulational instability of the 
spectra in the two- and three-dimensional cases. We show that in an isothermal plasma, T, 5 3 Ti, 
the development of the modulational instability leads to self-focusing and collapse of plasma 
waves. In the opposite case the transfer along the spectrum to the long-wavelength region 
suppresses the instability. We show that the development of the modulation instability in a 
magnetized plasma leads to a sharp increase in the Landau damping. As a result the width of the 
spectrum does not exceed a few times wpi even well above threshold. 

1. INTRODUCTION 

If the characteristic times for interactions between 
waves are significantly longer than their periods one can lo- 
cally consider the oscillations to be linear with slowly chang- 
ing parameters. One can in that case consistently change to a 
description of turbulence using the langauge of kinetic equa- 
tions for the waves [weak turbulence (WT) theory]. In the 
framework of weak Langmuir turbulence (WLT) the oscil- 
lations are described in quasiparticle (plasmons, phonons, 
and so on) terms and their interactions constitute decay and 
scattering of quasiparticles. 

The kinetic equations for the waves can be derived in a 
regular way from the dynamic equations, using the small 
parameter 

Here y,, is a characteristic nonlinear growth rate and Am, is 
a characteristic frequency difference of the interacting 
waves. 

To derive the kinetic equations for the waves we use two 
approximations: I. The phases of the individual waves are 
random and their statistics is Gaussian. This assumption 
makes it possible to express higher correlation functions in 
terms of the pair ones. Condition ( 1.1 ) guarantees the ran- 
domness of the phases. Even if they are initially correlated, 
the rotation of the individual phases with different frequen- 
cies leads to a decay of the correlations. 

11. The turbulence is assumed to be uniform. This 
means that the conditions 

<akak,')=n,8 (k -k ' )  (1.2) 

are satisfied. The a, are here the normal amplitudes of the 
interacting waves and n, is the number of interacting waves 
(occupation number). 

WLT theory was created more than 20 years ago (see, 
e.g., Refs. 1 ). However, up to the present there do not exist 
many experimental confirmations of WLT, and, even worse, 
many results which contradict it. 

For instance, in experiments on the parametric excita- 
tion of waves both in a magnetized and in an isothermal 
plasma the width of the turbulent spectra is usually not more 
than a few ion-sound frequencies whereas the width of the 

spectrum in WLT must increase linearly when one goes 
further away from threshold. 

Recently there have appeared a number of papers de- 
voted to a numerical simulation of Langmuir turbulence at 
low levels. It was shown in Ref. 2 that in the one-dimensional 
problem the dynamic description and the statistical descrip- 
tion using a kinetic equation for the waves (there where it is 
applicable) give identical results. However, the results of a 
two-dimensional simulation3-' demonstrate a number of ef- 
fects which are not described by WLT theory. Of course, this 
is first and foremost connected with the important role of the 
collapse of Langmuir waves, an effect absent in the weak- 
turbulence description. However, even when one is only just 
above threshold there may occur a number of deviations 
from the WLT predictions. In our opinion this can be ex- 
plained by the following effect. It was shown in Refs. 6 and 7 
that the Langmuir turbulence spectra are, as a rule, singular, 
being arranged on lines and surfaces in k-space or even con- 
sisting of a set of quasi-monochromatic waves. Such distri- 
butions may be u~table*.~ to the appearance of spontaneous 
spatial modulation of the turbulence, i.e., condition I1 is vio- 
lated. As a result of the local growth of the field condition I is 
also violated and there appear coherent electric field 
bunches, the evolution of which can lead to Langmuir col- 
lapse. 

The study of this effect is the aim of the present paper. 
We discuss in the second section of the paper the basic 

equations which describe both WLT effects and the develop- 
ment of spatially nonuniform perturbations. Moreover, we 
use these equations to study the linear stage of the modula- 
tion instabilty (MI). Unfortunately, its nonlinear stage can 
be studied only numerically. The fourth section of the paper 
is devoted to such a study. We investigate in the fifth section 
the features of the turbulence of a magnetized plasma. In the 
Conclusion we discuss experimental manifestations of the 
results. 

2. BASIC EQUATIONS AND STATEMENT OF THE PROBLEM 

It is convenient to use the averaged dynamic equations 
proposed by V. E. Zakharov" to describe Langmuir turbu- 
lence of an isotropic plasma: 
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Here q is the complex envelope of the electric potential, 
E = ?(V$e.e-i"P' + c.c.), Sn is the low-frequency change in 
the density, c, and l? are, respectively, the ion-sound speed 
and its damping rate, and v is the damping rate of the Lang- 
muir oscillations. If the condition y,, < r < c, k is satisfied 
we can assume in Eq. (2.2) that V cc eCimk' where w, is the 
dispersion law for the Langmuir waves. We can then write 
instead of (2.2) in the k-representation 

where G ( x , ~ )  is given by the expression 

x2c." 
G ( x ,  51) = 

Q 2 - ~ 2 ~ , 2 + 2 i I ' Q  ' 

Strictly speaking one must describe the low-frequency mo- 
tions in an isothermal plasma kinetically. One can show that 
in that case (see, e.g., Ref. 11 ) Eq. (2.3) retains its form but 
the function G ( x , ~ )  is given by 

Here E is the permittivity of the plasma and E, is the contri- 
bution to it from the electrons. Expression (2.4) is a rather 
good approximation of (2.4) for an appropriate choice of I'. 
Using (2.3) to eliminate Sn in (2.1) we change to the k- 
representation. Furthermore we introduce the quantity 

ah = k$h 
(4noP)'" ' 

defined in such a way that the quantity 

is the same as the total energy of the Langmuir oscillations. 
Ultimately we obtain a dynamic equation for the a,  

We easily get from (2.6) for the waves a kinetic equation 
describing the induced scattering by ions. We multiply (2.6) 
by a: and add to it its complex conjugate. Assuming the 
turbulence to be spatially uniform, 

(ahah,*>=nhS (k-k') 

and breaking up the fourfold correlations in terms of pair 
correlations we get 

an, -- + ...= c4, j T,,,,,rdh5d*1; 
at 

where 

From the symmetry properties of the permittivity, 
Ex,. = E: - a = - .,a and from (2.6) and (2.5) it follows 
that 

The solutions (2.7) have a number of noteworthy fea- 
t u r e ~ . ~ . ~  First of all they are strongly anisotropic being con- 
centrated on lines in k-space or even consisting of a set of 
quasi-monochromatic waves. The structure of the distribu- 
tion is determined by the source for the excitation of the 
oscillations and the shape of the matrix element Tkk8. In 
particular, in the case of parametric excitation of the waves 
the plasma oscillations propagate parallel to the external 
electric field and a one-dimensional model describes the situ- 
ation rather  ell.^.^ 

Moreover, the dynamics of the establishment of the sta- 
tionary solutions is also nontrivial. Equation (2.7) is Hamil- 
tonian and a stationary state is therefore reached only thanks 
to the presence of small noise terms, neglected in (2.7), and 

in a number of cases cannot be reached at all.637 Below we 
shall discuss this problem in detail. 

We now describe the transition to the quasidynamic 
equations9 which are used to describe the modulation insta- 
bility (MI) of singular turbulent spectra. 

We change to a statistical description, introducing 
n,,. = (a,a;F. ). The angle brackets indicate here averaging 
over the phases. 

We restrict ourselves to parametric excitation of the 
waves when the oscillations propagate parallel to the exter- 
nal electric field, the direction of which we choose to be 
along the z axis. Owing to the large difference between the 
group velocities along z spatially nonuniform perturbations 
are suppressed in that direction and the MI can develop only 
in directions perpendicular to z . ~  Therefore we have 

We change in (2.6) to a statistical description. We have al- 
ready noted above that the breaking up of the fourfold corre- 
lators into pair correlators can be done also in a spatially 
nonuniform situation, and the randomness of the phases is 
guaranteed by the large width of the packets along k,. It is 
convenient to change for the transverse coordinates to the z- 
representation: 

Finally we get 

49 JETP 76 (I) ,  January 1993 A. M. Rubenchik and E. G. Shapiro 49 



where 

We assume that the scale of the spatial modulations is signif- 
icantly larger than the wavelength and that we can therefore 
neglect the k, dependence in the matrix elements. To sim- 
plify the notation we drop in (2.8) and below the indices of 
k, and the index 1 of r, . We note that the kernels F,, and 
T,,, depend in the one-dimensional model only on 
(a, -ak, )/lk- k l l = ( l k -  k11)3/2ap& and that to a 
good approximation they are difference operators. We can 
further simplify Eq. (2.8) if we note that it has a solution of 
the form 

n,(r, I.')=Ak(r)Ah (I.'). 

Here A, satisfies the equation 

In a transparent medium where TkkZ, v =  0 Eq. (2.9) 
changes into a many-component nonlinear Schrodinger 
equation. For a spatially uniform distribution of the oscilla- 
tions we are led to the one-dimensional Eq. (2.7) by intro- 
ducing n, = IA, 1'. In the general case (2.9) describes both 
the transfer along the spectrum due to induced scattering 
and the effects of the modulation instability. 

It is well known (see, e.g., Refs. 6 and 7) that in 
the case of parametric excitation of waves the turbulence 
spectrum consists of a set of narrow peaks, 
n, = I;, N, S (k  - ko - sk di, ) which are spaced at distances 
k,,, = f r; from one another, corresponding to the 
maximum of the induced scattering. One can in that case 
simplify (2.7) by changing to the satellite approximation. 
The equations describing the interaction between the sepa- 
rate peaks have the form 

Here yo is the parametric instability growth rate, v is the 
damping rate of the waves, T is the maximum of the matrix 
element T,,. = T(k - k ') = T(kdi, ). We can similarly 
simplify Eq. (2.9). Putting 

we get the generalization 
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In obtaining (2.12) we used the fact that 
Fk,,,+, = F( ki - ki + , ) = F( kdi, ) is equal to zero, as can 
be seen from (2.4), while F(2k ,, ) is small. The number of 
satellites is, as in homogeneous turbulence, determined by 
the ratio yo/v. We also note that F= - (a;/4nT) 
X G(0) -ai/4nT is a positive quantity. If we consider only 
one of the coupled nonlinear Schrodinger equations (2.12) 
the sign of Fcorresponds to the possibility of the appearance 
of the MI. 

3. MODULATION INSTABILITY OF SINGULAR SPECTRA 

Equation (2.9) determines the spatially uniform sta- 
tionary solutions of the form A, = A O,exp(iR, t )  where A 2 
and Ro are determined from the conditions 

We consider the instability of (3.1 ) under small, spatially 
nonuniform perturbations 

Linearizing (2.9) we get 

We introduce the quantities 

U k  =Aho (8Ak+6Ak'), vk=Ak0 (6Ak-6Ai) 

and, eliminating v, , we obtain 

Notwithstanding the fact that Eq. (2.9) resembles the non- 
linear Schrodinger equation qualitatively, the appearance of 
an MI is completely unexpected. The fact is that the transfer 
along the spectrum (as we shall show in what follows) can 
effectively suppress the occurrence of local intensity maxi- 
ma. It is impossible to study (3.2) in the general case and we 
restrict ourselves to considering some simple, but the most 
interesting physical situations. 

If the linear damping of the waves is small, one may 
assume the stationary distribution of the waves to be uni- 
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form, IA 0, l 2  = const = No. We have already noted that one 
can assume the kernels T,, , and Fkk , to be difference opera- 
tors for k % k 

O h - O h '  k-k' 

In this case we easily get from (3.2) the dispersion equation9 

Here we have 

J F(x)riqxdz. JT(x)riCdz, F q = -  T ,  = - 
(2n) '" (2n) '" 

T(x) =T (k-k'), F(z)=F(k-k'). 

Because it is odd T,, . = Tq is a purely imaginary function, 
Tq = if(q) . Similarly, Fq is purely real. It is also clear that as 
q -+ 0, we have Tq a q. We have for uniform perturbations 
from (3.3) two branches of indifferently-stable perturba- 
tions Q = 0 and Q = 2f(q)No. In the long-wavelength limit 
one of them changes into second sound. It is clear from (3.3) 
that spatially nonuniform perturbations are unstable for 
IT, I < IF, I. A simple calculation gives for the matrix ele- 
ments which describe Eq. (2.4) 

It is clear that I Tq I = IF, I and there is no instability that can 
be eliminated by the induced scattering. We show that this 
fact is not accidental and is not connected with any actual 
approximation of the kernel. In the general case (2.5) the 
function Gin the matrix elements can be expressed in terms 
of the permittivity of the electrons and is analytic in the up- 
per half plane. Hence we have 

whence also follows the relation I T, I = I Fq 1 .  
An instability appears if we take into account the modu- 

lation which is always present, of the intensity of the turbu- 
lence along the "jet." It is simplest to show this for spectra 
consisting of a set of identical satellites. We consider pertur- 
bations which involve only even or only odd peaks. It is clear 
from the system (2.12) that then there is no interaction be- 
tween neighboring peaks and there appears separately a 
modulation instability of each excited peak. 

The nonlinear stage of the instability can be studied 
only numerically. In reality the situation is even more com- 
plicated. As we have already mentioned, the reaching of a 
stationary state in the WLT framework always takes a long 
time and may not occur at all. It is therefore unclear how 

much a study of the stability of stationary spectra reflects 
reality. 

In the case of parametric excitation of waves, and for 
weak damping of waves yo& v, there occurs a periodic split- 
ting of pulses propagating in the small-k range which is the 
range where the energy is absorbed owing to the Langmuir 
~ollapse.~.' The propagation of a pulse in the inertial range is 
described by an equation following from (2.10) 

It has a travelling soliton solution6 

F (r) =N. (I + 
4-b+b ch 6z 

If the soliton amplitude is much larger than the noise level 
No, i.e., a ) 1, we have for the parameters of (3.5) 

For the amplitude of a soliton excited with a growth rate yo 
the estimate 

was found in Ref. 6. This soliton propagates with a velocity 

and (as is clear from (3.5) ) only 2 to 3 peaks are excited at 
each time. The propagation velocity does not depend criti- 
cally on the noise level, v - 4 yok - TNk A modulation 
instability with a characteristic growth rate FN must devel- 
op after the time it takes the soliton to traverse a distance 
kdi,. We see thus that the condition FN < k ,i,/~, or F < T is 
necessary for the suppression of the instability. It is clear 
that the possibility for the development of a modulation in- 
stability and the subsequent collapse depends on the ratio F/ 
T, i.e., on the ratio of the electron to the ion temperature. An 
elucidation of the actual value of this ratio, of the nature of 
the development of the instability, and so on, can only be 
given after a numerical simulation to which the next section 
is devoted. 

4. NUMERICAL EXPERIMENT 

To simulate the effect of the development of the modu- 
lation instability on turbulence spectra we used the system 
(2.12) written in dimensionless variables 
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Here T = T/F = W2r. We shall show in what follows that 
this ratio determines whether it is possible that a modulation 
instability can develop. 

Under actual physical conditions the pumping range is 
small, and is not more than ten steps and in the small k 
region there is an energy source caused by the Langmuir 
collapse. To simulate it we used in our numerical calcula- 
tions a running boundary condition for the last of the peaks, 

We varied the number of peaks up to ten, using noisy initial 
conditions. For the sake of simplicity we considered only 
axially symmetric distributions, V2qhi = l/rd/dr r d$i/dr. 
The size L of the computing region in r was L = 10, much 
larger than the typical size of the MI , L - 1, for [ $ I 2  - yo/F. 
We used as boundary condition d$/dr = 0 .  

Of most interest are the cases where one is well above 
threshold; we therefore started with calculations for v = 0 .  
The evolution of the oscillations depended in substantially 
on the parameter T. We show in Fig. 1. the evolution in time 
of the maximum amplitude of the separate peaks. The ap- 
pearance of collapse is clear and the collapse occurs not typi- 
cally in the directly excited peak, but in the scattered ones. 

The first scattered peak collapses at T = 1. When IT in- 
creases the oscillations are transferred along the spectrum 
and the collapse occurs after multiple scattering. Figure 1 
corresponds to IT = 1.4.  The spatial distribution of the inten- 
sitites of the oscillations in the various satellites is shown in 
Fig. 2. When the intensity of the collapsing satellite starts to 
exceed the intensity of the neighboring ones significantly, 
one can neglect the interaction with them and the growth of 
the field is described by the well studied nonlinear Schro- 
dinger equation. This means that in the collapse a finite ener- 
gy is absorbed" and it serves as an efficient dissipation 
mechanism. 

The number of transfer steps kr,Jm/M can in practice 
not be larger than ten. This means that already for F-3, 

which corresponds to T, = 3Ti our calculations show that 
the modulational instability does not manage to develop and 
the transfer to the small k region, the collapse region, is de- 
scribed by weak turbulence It has the nature of a 
periodic splitting of oscillation pulses (solitons), as is very 
clearly seen in numerical experiments.' We note if we con- 
sider an initial stationary uniform distribution of peaks, our 
calculations show it to be stable for 3 in the range of 
about 10 peaks. In that case the perturbations manage to be 
carried to the boundary of the interval before the collapse 
manages to occur. 

The following question is interesting: Does the collapse 
effect occur at all in Eqs. (4.1 ) in the case of a large T for a 
large inertial range? Unfortunately we did not manage to 
answer this analytically. To check this numerically we per- 
formed the following experiment. Initially we considered the 
excitation of a pulse and its propagation over a distance of 
several transfer steps. After this we made the beginning and 
the end of the interval the same and the pulse propagated 
along a ring. The calculations show that collapse occurs even 
for large values of IT, after a sufficiently long time. However, 
it is impossible to say with confidence that this is not con- 
nected with the periodicity of the problem due to the build- 
up of the perturbations when one goes many times around 
the ring. 

At finite excesses above threshold the spectra consist of 
n - yo/v satellites. Numerical calculations show that if the 
peak with number n, in which the collapse develops is closer 
than ( y d v )  k diff to the source of the excitation, the process 
looks the same as for v = 0 .  If, on the other hand, n, 2 y,/v 
the collapse does not occur. The dynamics of the peaks is 
nonstationary, in agreement with Refs. 6 and 7, and changes 
from being periodic just above threshold to rather enta- 
gled. l3  

So far we have considered the two-dimensional Eqs. 
(3.6), which corresponds to a study of a real three-dimen- 
sional turbulence. Recently a detailed numerical simulation 
of parametrically excited turbulence has been reported in a 

FIG. 1. Temporal evolution of the_amplitudes of the different 
modes in the center of the packets for T = 1.4. One can see a stage- 
by-stage energy transfer along the modes corresponding to the 
weak-turbulence description. A field singularity develops in the 
fourth peak after a finite time. 
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FIG. 2. Spatial distribution of the amplitudes of the different modes at the 
moment immediately before the collapse for the calculations represented 
in Fig. 1 .  

number of papers3"*14 in the framework of the two-dimen- 
sional dynamical equations. They correspond in our model 
to the one-dimensional Schrodinger equation. The develop- 
ment of the modulation instability does not lead in that case 
to the development of collapse, but only to the formation of 
soliton structures. Therefore, weak-turbulence transfer 
should be observed also for 3. The development of the 
MI leads to a transverse broadening of the spectrum, ( Ak / 
k)2-FN. This broadening is reached after a few steps. We 
show in Fig. 3 the picture of the spectra, averaged over the 
time. The width Ak was determined from the relation 

In dimensional variables we get 

These results correspond to the numerical calculations in the 
framework of the dynamical eq~a t ions ,~ -~  where a pulsed 
energy transfer was observed to small k and a transverse 
broadening, less for the first peak and appoximately equal 
for the later ones. 

The development of the modulation instability can be 
interpreted as the scattering of Langmuir plasmons by quasi- 
static density fluctuations which change after a nonlinear 
time and which occur under the action of the ponderomotive 
forces. The scattering in that case takes place along a con- 
stant frequency surface. In the approximation used by us this 
is transverse broadening. More precisely, this is a k = const 
surface, as can clearly be seen from the figures given in Ref. 
3. Correspondingly, the sound perturbations propagate 
mainly in a transverse direction. 

It was noted in Ref. 5 that the results of the simulation 
using the dynamical equations were not the same as those of 
the one-dimensional WT equations and that the number of 

FIG. 3. a) Time-avzrage spectra of the various satellites for two-dimen- 
sional turbulence, T =  1, ydv = 30. b) Spectral widths of the various 
satellites corresponding to Fig. 3a. 

satellites in the first case was smaller. In our opinion this 
does not mean that WT theory is inapplicable. The trans- 
verse broadening of the spectra indicates that one can no 
longer replace the matrix elements by their maximum values 
and use the one-dimensional description. An increase in the 
width of the spectrum in the two-dimensional simulation as 
compared to the one-dimensional model was observed in 
Ref. 7. 

It was shown in Ref. 14 that the results of the two-di- 
mensional dynamical calculations were the same as the solu- 
tion of the WLT equations, which is more exact even than 
their satellite approximation (2.10) when one is not too far 
above threshold. The authors of Ref. 14 were not able to 
make the comparison when one is well above threshold be- 
cause of the limited computer resources. We show in Fig. 4 
the results of the temporal evolution of the oscillations in the 
framework of (2.10) and (4.1 ) . In the first curve we show 
the evolution of the intensity of the peaks in (2.10) and in the 
second one the evolution of the integral intensity 5 I $i I2dx. It 
is clear that when the first few pulses split the results of the 
calculations are practically the same. However, when time 
goes on the gaps between the temporal maxima start to be- 
come less distinct and a stationary solution is reached. This 
is not surprising since the system (4.1) is not Hamiltonian. 
Equations (4.1 ) are local and the transfer rates in different 
points along x are different. The nonlinear interaction corre- 
lates x but since the growth rates of the transfer and of the 
MI are comparable the total intensity of the peaks does not 
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FIG. 4. a) Evolution of the integral intensity J I  qi I *dx for two-dimension- 
al turbulence when one is well abcve threshold. We show in the figure the 
intensities of the first four peaks; T = 3.7, ydv = 13. b) Evolution of the 
peak intensities in the satellite approximation [Eqs. (2.10)] for the pa- 
rameters corresponding to Fig. 4a. 

drop to zero and stationarity is reached. There occurs then 
an appraciable deformation of the spatial distribution of the 
waves as compared to the initial stage of the process. It is 
well known6 that the establishment of a stationary state is 
connected with taking noise into account in (2.7) which is 
primarily non-thermal but caused by the terms neglected in 
the derivation of (2.7). 

One usually6 considers effects connected with the high- 
er nonlinear effects, which are neglected in (2.7), such as the 
four-wave interaction. 

Our calculations show that the establishment of a sta- 
tionary state is caused by the development of the MI. We 
show in Fig. 5 the spatial distribution of the amplitude of one 
of the peaks at the time when the deviations from the satellite 
model become noticeable, and at later times when on the 
average a stationary state is being established. It is clear that 
the deviation from the satellite model is caused by deep am- 
plitude modulations which are smoothed out with time. 

We note also that in our model we replaced the matrix 
elements by their maximum values. This may lead to an 
overestimate of the role of the short-wavelength transverse 
modulations as compared to the simulation of the dynamic 
Eqs. (2.1) and (2.2). 

5. TURBULENCE OF A MAGNETIZED PLASMA 

A weak magnetic field (o, (ap ) affects the above de- 
scription of turbulent spectra qualitatively little. The situa- 
tion changes suddenly for w, > op when the dispersion law 
of the magnetized Langmuir waves has the form 
w, = w, lcos 8 1 where 9 is the angle between the wave vec- 
tor and the magnetic field. In that case in an isothermal plas- 
ma when there is induced scattering by the ions, 

FIG. 5. Spatial distribution of the intensity of one of the peaks (the sec- 
ond) for the parameters corresponding to Fig. 4. The upper figure gives 
the intensity profile at the time of the field maximum ( t  = 1.35 in Fig. 4) .  
The lower gives the field distribution in the quasistationary state ( t  = 5 in 
Fig. 4 ) .  

energy losses of the plasmons in the scattering process do not 
lead necessarily to a decrease of the wave vector; it can also 
increase in the transfer process. A detailed study of the WLT 
spectra has ~ h o w n : ' ~ . ' ~  the spectra have a jet character, 
n, = n(9)6(k - k,) and they are isotropic in the axial an- 
gle p. The transfer leads to condensation of the oscillations 
in the large k region which is stopped only by the Landau 
damping, while ko is determined by the condition 
yL (ko) -- (k,r, )'vei where is vei is the collisional damping 
rate. 

In the present case the jet is two-dimensional and ex- 
tends along Band p. The modulation instability (MI) devel- 
ops only across the jet, i.e., it is essentially one-dimensional. 
As we have already said earlier, in the one-dimensional case 
the MI does not lead to collapse but only to a broadening of 
the spectrum. However, even a small broadening of the spec- 
trum, Ak/k- (k,r, )', leads to a steep increase in the Lan- 
dau damping so that the MI can lead to a significant growth 
in the dissipation of the plasmons also in that case." An 
analytical description of the problem is extremely difficult 
and to elucidate the general physical picture we used a nu- 
merical simulation. 

We performed the calculations in the framework of the 
one-dimensional system (4.1 ), used already above, with 
VZ$i = $xxi and with in each of the equations an additional 
term .i., $i, simulating the Landau damping. In the k-repre- 
sentation the operator .jl, is equal to 
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The magnitude of a was chosen such that for a modulation 
broadening Ak corresponding to being above threshold by 
an amount or order unity, ~ ( h k ) ~  was of the order v. Nu- 
merical experiments showed that the nature of the evolution 
of the system and its integral characteristics were not sensi- 
tive to a. Before going over to a description of the numerical 
calculations we discuss what information we hope to get 
from them. The assumption of a strong dissipation occurring 
thanks to the simultaneous action of the MH and of the 
damping (5.2) is not obvious. It is possible, in principle, that 
there are situations when together with a broadening there is 
a significant shift to the region of negative y and the effective 
absorption is small. Our calculations showed that although 
such a shift does occur, a significant part of the energy is 
contained in the "Landau damping" region and that its role 
increases when the pumping growth rate increases. 

As a good indicator of the efficiency of the damping we 
can use the width Aw of the spectrum. In our discrete model 
its role is played by the effective number, E ,  of excited peaks, 

In the framework of the uniform model (2.10) ii increases 
when the damping v decreases, on average as ii- l/v. We 
show in Fig. 6 the results of evaluating ii for the model 
(2.10). Including the damping (5.2) leads to the fact that 
magnitude of E ceases to increase and reaches saturation. 
The effective decrease in the width of the spectrum is very 
clear also in Fig. 4 where the spectral densities of the intensi- 

ty of the different satellites, averaged over time, are shown. 
This result is reasonable. As to order of magnitude, the effec- 
tive damping must be equal to the growth rate of the modula- 
tion instability, y,, - F ( $ 1  - FN. Since we have for the 
numberofpeaksii-yp/ve,-y,/(v+ y, )-yp/FI$12,itis 
clear that when the growth rate increases, E reaches a con- 
stant value. More precisely, we can write for the stationary 
state 

Assuming the change in intensity from peak to peak to be 
small, 

we get N, = N,e - 'F'2nk , N , - - yp/T, i.e., the width of the 
spectrum is - 2~ /F, or, in dimensional variables, 
A o  = (2T/F)kcs, and is independent of the magnitude of 
the growth rate. This corresponds to the experimental re- 
sults mentioned in the Introduction. 

CONCLUSION 

We have thus shown that the weak-turbulence descrip- 
tion of Langmuir turbulence is valid only when one is not too 
far above threshold. In an isotropic nonisothermal plasma 
there occurs a regime of weak-turbulence energy transfer to 
the long-wavelength part of the spectrum with subsequent 
collapse. When the ion and electron temperatures are com- 
parable, self-focusing of the oscillations, a local increase of 
the field, and collapse occur in the spectral transfer process. 

In a magnetized plasma the MI leads to a significant 
increase in the Landau damping and a modification of the 
turbulent spectra. We have shown that in an isothermal plas- 
ma, both in an isotropic and in a magnetized plasma, the 
width of the turbulence spectrum is not larger than a few ion- 
sound frequencies. In an isotropic plasma the development 
of the MI and collapse lead to energy absorption already 
after a few transfer steps. In a magnetized plasma the devel- 
opment of the MI increases the Landau damping and the 
spectral transfer is halted. 

Even at low levels of plasma turbulence the WLT theo- 
ry is inapplicable for its description, but its modification, the 
introduction of an effective damping, makes it possible ade- 
quately to describe the experimental situation. 

Experimentally the modification of WLT manifests it- 
self in that the width of the turbulence spectra in an isother- 
mal plasma is not more than a few spectral transfer steps 
both in the isotropic situation and also when a magnetic field 
is present, even when one is well above threshold. 

We have shown that the Landau damping is an effective 
energy absorption mechanism for the waves. Therefore, even 
at low pumping levels, part of the absorbed energy goes not 
into heating the plasma but in accelerating a small group of 
electrons-an effect well known to experiments. 

v-' 
FIG. 6. Width of the spectrum (the number of satellites) as a function of 
the damping for the turbulence model of a magnetized plasma. The results 
of the calculations carried out using Eq. (5.3) are indicated by crosses. 
The asterisks show the results obtained when Landau damping is includ- 
ed. 
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