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We use kinetic considerations for a plasma with multiply ionized ions to discuss the region, 
intermediate as far as the scale of the inhomogeneities is concerned, between the usual 
collisionless region, where the ponderomotive Miller force is effective, and the usual collisional 
region, where the nonlinear action of radiation on the plasma corresponds to nonuniform Ohmic 
heating. We consider the consequences, in such an intermediate collisional region of the nonlinear 
action of radiation, of a theory of the effect of the usual convective filamentary instability and of 
the effect of the absolute double filamentary instability of an electromagnetic wave in the plasma. 

1. One of the typical effects of the action of electromag- 
netic radiation on a plasma is the filamentation of beams of 
radiation propagating in the plasma. The simplest theoreti- 
cal approach to such an effect consists in considering the 
filamentary instability (see, e.g., the review in Ref. 1). One 
then distinguishes two physically opposite limits, in one of 
which the plasma is considered to be collisionless and the 
nonlinear cause of the filamentation is the ponderomotive 
action of the radiation on the plasma. Such a mechanism for 
the filamentation effect turns out, for instance, to be the deci- 
sive one for laser radiation with a sufficiently long wave- 
length and for a plasma with a sufficiently high-temperature. 
Under the oppoiste conditions the cause of the filamentation 
is assumed to be for a collisional plasma the non-uniform 
heating of the plasma by the electromagnetic field, and the 
instability threshold is determined by the balance between 
heating and heat  transfer.'^^ 

Under practical circumstances when laser radiation 
acts on a plasma the case of a plasma with a high degree of 
ionization of the ions occupies an important place. In our 
opinion the collisional theory of the action of electromagnet- 
ic radiation on such a plasma is to a considerable extent in- 
complete, and therefore the theory of the filamentation of 
radiation in a completely ionized collisional plasma is still 
not completed. We develop in what follows, in a manner 
suitable for the conditions of a linear filamentation theory, 
qualitatively new conditions for the display of the kinetics of 
charged particles in the description of the nonlinear action of 
radiation on a plasma with ions which are highly ionized. We 
then establish a new range of values of the characteristic 
scale of the field inhomogeneities the presence of which is 
caused by the high degree of ionization 2, and for which up 
to the present there was no theory. 

In the theory of the action of strong high-frequency ra- 
diation on a plasma there are many papers which are devoted 
to the limit of not very strong fields for which the amplitude 
of the oscillatory velocity of an electron, v, = eE /me w,, is 
small compared to the thermal velocity of an electron, 
(xTe/me ) ' I 2 .  In what follows we shall be interested in just 
such a case of relatively weak fields. The existing theory dis- 
tinguishes between two opposite limiting cases: collisionless 
and collisional situations. In the collisional limit (see, e.g., 
Refs. 1 and 3) the nonlinear perturbation of the electron 
density by the spatially nonuniform electromagnetic field is, 
as to order of magnitude, determined by the formula 

where ne is the unperturbed electron density, 1 is a charac- 
teristic scale of the spatial inhomogeneity of the amplitude of 
the high-frequency electrical field strength, and lei is the 
electron mean free path with respect to their collisions with 
the ions. Equation ( 1.1 ) is, according to Ref. 4, realized if 
the values of the inhomogeneity scale of the field are suffi- 
ciently large, when the inequality 

x ,  1 0  ( leelei)  "= IOZ'"l.i, ( 1.2) 

is realized, where lee = Zlei is the electron mean free path 
with respect to their collisions with other electrons. In the 
opposite, collisionless limit we have for the perturbation of 
the electron density the following expression (see, e.g., 
Ref. 1) 

One usually makes about this formula the statement that it is 
applicable when the condition lei is satisfied. This state- 
ment is exact for Z -  1 when lei - lee . The position is changed 
when we are dealing with a plasma with ions with a high 
degree of ionization. Since in that case lee %lei, the condition 
( 1.2) alone suggests the existence of an intermediate range 
of values of the characteristic scale of the nonuniformity of 
the high-frequency electrical field where Eqs. ( 1.1 ) and 
(1.3) are inapplicable. The establishment of such an inter- 
mediate range requires a more precise definition of the appli- 
cability condition for Eq. (1.3). We show below that the 
collisionless limit ( 1.3) is realized when the inhomogeneity 
scale of the field is small and satisfies the inequality - 

x <let (Ze'/Zee)'ia=ZeiZ-5't. (1.4) 

We show in the present paper that in the intermediate 
range of values of the inhomogeneity scale when we have 

the nonlinear electron-density perturbation caused by the 
inhomogeneous high-frequency electromagnetic field is giv- 
en by a formula of the form: 

We expound in what follows a perturbation theory for the 
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electron distribution by an electromagnetic field with rela- 
tive short wavelengths when the inequality governing the 
strongly collisional limit is violated (see, e.g., Ref. 4). The 
expression found for the perturbation of the electron density 
is used, firstly, to describe the linear convective regime of the 
filamentary instability of the electromagnetic waves in a 
completely ionized plasma with ions with a high degree of 
ionization and, secondly, to describe the threshold of an ab- 
solute parametric instability such as the double filamentary 
one (see Refs. 5 and 6).  

We note that for filamentary perturbations with a wave 
vector k we can, when we bear in mind the results of what is 
said below as well as an interpolation of Ref. 7, use the fol- 
lowing general interpolatory expression for the perturbation 
of the electron density: 

where we find for Z> 1 that we have a z 6 . 8  and Co=: 1.73. 
One may assume that the experimental results of a 

studyS of filamentation refer in accordance with the analysis 
of Ref. 9 to the intermediate range of wave vectors to which 
our theory below also applies. 

Finally, we discuss the relation of our study to Ref. 9 
which is devoted to the kinetic theory of laser filamentation 
in a plasma. That paper was based upon an interpolatory 
numerical approximation of the effective thermal conduc- 
tivity coefficient x,, : 

where x,, is the Spitzer-Harm thermal conductivity coeffi- 
cient while the quantity A, is connected as follows with the 
electron-ion mean free path lei : ' Ae = 2'I2leiZ/ 
~ T ' / ~ ( Z  + 1 ) 'I2. One should note that this formula differs 
from the one proposed in Ref. 10: 

An analytical solution of the kinetic equation in our paper 
gives for Z s  1 in the notation of Ref. 9: 

A comparison of this function with the curve given in Fig. 1 
of Ref. 9 shows that it is practically the same as the functions 
( 1.8) and ( 1.10) in the restricted range of kA, values used 
there. Therefore, in addition to the theory of filamentation 
constructed by us in the present paper, we present the qual- 
itatively new expression ( 1.10) for the effective electron 
thermal conductivity in the range of sufficiently large wave 
vectors. Finally, we comment regarding condition ( 1.5) for 
the filamentation instability, when at the instability thresh- 
old according to Eqs. (3.10) and (4.19) we have 

X t h -  ( c L I ~ ~ w , , ) ' ~ ,  

where w, is the frequency of the pump field, c is the velocity 
of light, and L is the characteristic size of the uniform part of 
the plasma slab. Accordingly, the inequality ( 1.5) can be 
written in the form of the following condition on the length 
L: 

L,Z-"z< L<L,Z-', (1.11) 

where 

When the plasma is irradiated with the second harmon- 
ic of a neodymium laser 

and for a plasma with values of the electron density n, - lo2' 
cm-3 and electron temperature T, - 700eV, typically found 
in experiments, for lee - cm, we have Lo- 1 cm. For, 
e.g., Z = 5 condition ( 1.11) therefore takes the form 

which implies that it is satisfied in the corona of the target 
plasma in experiments on inertial confinement fusion and 
also in those involving the action of laser radiation on a pre- 
viously produced plasma. 

2. For a plasma in a high-frequency electromagnetic 
field E = 4E exp( - iwot)  + C.C. we obtain an expression for 
the correction to the electron distribution function which 
varies slowly with time and which is caused by the h.f. field. 
We write the slowly changing electron distribution function 
in the form f = f ,  + Sf where fM is the Maxwellian distri- 
bution function while Sf is a small correction satisfying ac- 
cording to Eq. (2.3) of Ref. 4 the following equation: 

where SE, is the quasistatic electric field, we have 

ni is the ion density, and A is the Coulomb logarithm. Equa- 
tion (2. l )  is especially suitable when the characteristic spa- 
tial scale of the changes in fM is large compared to the corre- 
sponding scale of changes in Sf ,  SE,, and the quadratic 
combinations EiET + E :Ej of the amplitudes of the h.f. 
field. 

In what follows we restrict ourselves to a case such that 
we can neglect JSf / a t  and asume that SE,  is a potential field, 
SE,  = - V S p .  It is then convenient to write Sf in the form 
(we write I = e21E12/4mjwiu2, ) 
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We take the spatial dependence of @and of the combina- 
tions EiEY + E *E, in the form exp (ikr). The expression 
for 87 then takes the form 

where (2.6) 

ME= (EJ3j'+E,'E,-2/,6,jlE 1 ") ( u ~ u ~ - ' / ~ ~ , ~ v ~ ) .  

In the limit of a high degree of ionization, Z S  1, in 
which we are interested we can neglect the electron-electron 
collision integral of the anisotropic part 63  This makes it 
possible to write 

and to use for the function Sf, a somewhat simpler expres- 
sion: 

We solve this equation by writing the function Sf, as a sum of 
an isotropic, Sf, = (Sf, ), and an anisotropic, 
Sf, = Sf, - SfO, part where ( ) indicates averaging over the 
angles of the vector v. We can then write according to (2.8) : 

8 V h  x { (2n)'V~: 1~ 12du,(afN)}7 (2.9) 

ezv., 
ikv6fo+i (k\76fa-(k~6fa) 1 =Je,[6fal + 4m2002v,e2 

x{3 (5) *% (3 - L) ~ , f ~ } .  (2.10) 
2vT2 

We continue the solution by assuming that the terms on the 
left-hand side of (2.10) containing Sf, are small. This is 
possible if the conditions 

vZ 
1hl161.l~max{kv16f.l; v e i l h %  v 13 --I} (2.11) 

2vT2 

are satisfied. If these conditions are satisfied we can write the 
solution of Eq. (2.10) in the form: 

I (-i ( tv)  at. + 
6fa ' %a- 4m20o~~r2  e2ve* 

where ~ ( v )  = 3 ~ v e i v 3 , / v 3 .  Substituting (2.12) into 
(2.1 1 ) shows that conditions (2.11 ) are satisfied if we as- 
sume that 

which we must consider for different values of the electron 
velocities. 

For velocities of the order of the thermal velocity, 
v- v, , condition (2.13) has the simple form: 

We can rewrite Eq. (2.13) in the form: 

Comparing this inequality with inequalilty ( 1.2) we can 
show that Eq. ( 1.1 ) is defined for relatively large values of 
the electron velocities up to 

At the same time it is understandable that under conditions 
when the density perturbation is formed by the electron dis- 
tribution in the low velocity region, Eq. (2.13) [or (2.15) ] 
can correspond to relatively small values of a. 

Assuming (2.13) to be satisfied we get after substitut- 
ing (2.12) into (2.19) the following equation for the func- 
tion Sf,: 

If we write Sf, in the form: 

we can formulate for the function @(x)  the following 
boundary value problem, where the function @ (x )  is defined 
by the following equation: 

-XS@ (X) = - 1 

and the boundary condition: 

lim [ X * ( D f ( X ) ] = N ,  
X-1, 

where 
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We shall now assume that in what follows N) 1. Ifthe condi- 
tion 

W'7=0,67Z"7(kle{)'/7m [ (leele6) '"x- '] '~T>~ (2.22) 

is satisfied, the solution of the boundary value problem 
(2.19) and (2.20) is, according to Appendix 1, given by Eq. 
(A1.15): 

where 6 = XN'". Inequality (2.22) makes it possible to 
speak about a range of values of the spatial nonuniformity 
scales which is an additional range characterized by inequal- 
ity (1.2). At the same time inequality (2.22) together with 
(2.15) imposes the following condition on the range of ve- 
locities, 

for which, according to (2.15), the solution (2.23) is suit- 
able. We shall see in what follows that this condition is not of 
great importance. 

According to Eq. (2.5) we have: 

where 
OD 

9n'12neZ 
an..= I dv6fo = --TT N-'I. duusta@ (~N-~~ ' ) exp  (-uN-s). 

,4k lei o 

The main contribution to the density perturbation (2.26) is 
in the limit (2.22) given by the first term on the right-hand 
side of (2.23). We then have: 

where 

C,= (5184nl343) ' I T  (21,)r (y,)lr ('1,) =1,73. 

Since the main contribution to the integral in Eq. (2.27) 
arises from the u - 1 region, this means that the important 
range of velocities determining Sn, correspond to low val- 
ues of the velocity: 

v'/v~,'- N-",- (Zk2Je;)-'f7. (2.28) 

According to this the condition (2.13) for the discussion 
given here has the form: 

This condition is automatically satisfied for Z )  1 and N) 1 
[see (2.22)] which corresponds to the condition which is 
the opposite of inequality ( 1.2) : 

We show in Appendix 2 that under the condition ZT, )Ti 
the effect of the potential S p  of the quasistatic field, caused 
by the high-frequency electromagnetic field, on the pertur- 
bation of the electron density is negligibly small. We see 
therefore, comparing n,I and Sn,, in Eq. (2.25), that the 
usual result ( 1.3) of the collisionless discussion is realized 
under condition (1.4). In contrast we have for the density 
perturbation, under condition ( 1.5) (1 = k - ') and neglect- 
ing Sp: 

This formula is the final result of this section. 
3. We use the expression obtained in the previous sec- 

tion for the perturbation of the electron density by a high- 
frequency electromagnetic field and apply it to the descrip- 
tion of the filamentation effect of a beam of electromagnetic 
radiation. The structure of the radiation field describing the 
filamentary instability has the form: 

where E,, is the electric field strength of the pump field and 
the E, , , are the amplitudes of the filamentary perturba- 
tions. Up to terms which are linear in such amplitudes we 
have 

IE 1 2 =  1 E o ~  1 '+ (E,,EO,*+E~,E:~,)~X~ (iky) 

The linearized reduced Maxwell equations can be written in 
the form (see, e.g., Ref. 3): 

The pump field is here assumed to be independent of the 
coordinates and the characteristic spatial scale for changes 
in the E, , , amplitudes as function of the z coordinate is 
taken to be large compared to k - I .  Here we have 
n, = mewi/4?re2; k, = (w,/c)J=. 

In accordance with the previous section and Eq. (3.2) 
we have in Eqs. (3.3): 

Equations (3.3) and (3.4) make it possible to assume that 
El, and E % ,, are proportional to exp(Gz) and to write for 
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the coefficient G of the spatial amplification of the filament 
the following expression 

where 

The maximum value of the spatial amplification coefficient, 

(wherec, = 2-2/9.3.7-77~9~55118~0.89),isrealizedforthe 
following value of the wavevector of the filament 

A comparison of Eqs. (3.7) and (3.8) enables us to see that 
the inequality k, >G, is satisfied. Of course, the wave- 
length of the filamentary perturbations,a = k - I ,  must satis- 
fy conditions (1.5) in orderthat Eqs. (3.5), (3.7), and (3.8) 
be applicable. 

If we use for an estimate of the filamentation threshold 
G, L = 27~, where L is the thickness of the plasma layer, we 
have according to ( 3.7 ) 

An estimate for the wave vector at threshold then gives 

where C, = (20/9) 'I4- 1.22. 
4. Equation (2.3 1 ) suffices also for a description of the 

threshold of the double filamentary instability effect which 
occurs when there is in a plasma a surface reflecting the 
electromagnetic radiation, in which case the interference be- 
tween the incident and the reflected pump waves, acting on 
the plasma, leads to an absolute parametric instability. The 
theory of the double filamentary instability under the action 
of short-wavelength radiation is given in Ref. 5 where only 
the usual mechanism of the ponderomotive action of radi- 
ation on a plasma is taken into account. The results of a 
theory of the double filamentation effect under the condi- 
tions ( 1.2) is given in Ref. 6. Here we consider the threshold 
for the double filamentation instability under the conditions 
(1.5). 

The structure of the electromagnetic field correspond- 
ing to the double filamentary instability has the form 

E= (Eo0+EV.(z)exp ( i ~ k y )  Iexp (iak0z)e.. (4.1) 
Il,a=*1 

where the E ,  * , are the amplitudes of the incident and the 
reflected pump waves, the E + , , are the amplitudes of the 
filamentary components excited in the usual way by the inci- 
dent pump wave (see section 3 above), and the E ,  , - , are 
the amplitudes of the filamentary components which would 
be excited by the reflected pump wave if we neglected inter- 
ference. Assuming the plasma to be uniform and occupying a 

layer of thickness L we use for the field amplitudes the usual 
boundary conditions (compare Ref. 6) : 

Eol (z=O) =Eo,  E,, (z=O)=O, 
E,-, (z=L) =rEol (z=L), E,-, (z=L) =rE,, (z=L) 

(4.2) 

( r  is the coefficient for reflection from the rear boundary of 
the layer) and the following set of reduced equations: 

Since we have in the linear approximation in the amplitudes 

we can now in accordance with Eq. (2.3 1 ) write for the per- 
turbation of the electron density which occurs in (4.3) 

As a result the set of reduced field equations takes the form: 

EL (2) Ett (2) E-'~-,(Z)+ r. &-I (2) = - ~ q ~ ( ~ + - + r -  Eat Eat Eel ). 
(4.6) 

It follows, in particular, from the set of Eqs. (4.6) that: 

= A+ exp (&)+A- exp (-Gz). 

where g ( k )  = , / ( k 2 / k i ) ( q 2 ( k ) ( 1  + lrI2) - k2/4 .  We 
then have according to the set (4.6) 
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l+lr12 
A + - { Q [ ~ x P ( Q ) - ~ ~ ~  ql+q[ l  -m cosec q]] 

Equations (4.8) to (4.1 1 ) and (4.14) determine, apart from 
a constant, the coordinate dependence of the amplitudes of 
the field excited in the double filamentary instability. Final- 
ly, the condition that Eqs. (4.14) and (4.15 ) can be solved 
gives the following dispersion equation 

fQ/q)shQsin q-ch Q ~ o s q = ( 1 - - J r ( ~ ) / 2 ) r l ~ .  (4.16) 

written in the form which was used before in the theory of 
the double filamentation (compare Refs. 5 and 6) .  The fact 
that Q depends here on the mean free path and on the wave- 
vector is qualitatively new. 

Equation (4.16) determines the limiting value of the 
pump field strength as function of the wavevector of the ex- 
cited filament. Using (4.16) to find Q = Q(r] = k 'L /2ko) 
we obtain 

A - (4.17) x(- (erp(G&i)  -exp(G.L) I 
C * As an ilIustration we consider the consequence of Eq. (4.16) 

where (4.1 1 ) 

G,=C*ikZ/2k,,. 

When we wrote down Eqs. (4.10) and (4.11 ) we used the 
last boundary condition from (4.2). 

When we take the boundary conditions (4.2) into ac- 
count, substitution of the values z = 0 and z = L into (4.7) 
gives the following two equations 

for lrI2 = 1 on the threshold for the absolute filamentary 
instability. It is clear in this case that the value Q = 0, which 
is the smallest in absolute magnitude, is realized for 
cot r ]  = 0, i.e., for r] = r n  - r/2, n = 1,2 ,... . Values Q) 1 
are realized in the approximation Q = r] cot r ] ,  i.e., for 
r] = m, when Q '(7) --+ - cc . Finally, for r] = 0 the function 
Q(r]) has a maximum Q = Q, where Qo is determined by the 
equation Qo tanh Q, = 1, i.e., Q 0 z  1.2. We show in Fig. 1 the 
function 

which according to (4.17) describes the boundary of the 
double filamentary instability. We note that there exists a 
solution Q(r]) of (4.16) and, hence, that the function F(r]) 
is defined, for all values of r]. We show in Fig. 1 that part of 
the region where F(r]) is defined, namely the range of values 
of r] from 0 to 77, = 7~/2, in which the function F(r]) reaches 

Substituting Eqs. (4.8) and (4.9) into (4.13) for z = L we 
find: 

A+ [Q sin q+q cos q 1 +A- [-Q sin q+q cos q] =0, 

(4.14) 

where Q = GL and r] = k 2L /2ko. Thesame substitution into h 76 

(4.10) and (4.1 1 ) and the subsequent substitution of Eqs. 
(4.10) and (4.11 ) into (4.12) for z = 0 gives: FIG. 1 .  The function F ( 7 )  for the I rIZ = 1 case. 
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its minimum value, equal to 1.74 (the minimum occurs for 
7, z 1.3 ) . Thus, at the threshold of the double filamentary 
instability filaments are created with wavevector: 

A comparison of this expression with (3.10) gives: k,,,,/ 
kd = ,/=~ck z 1.9. 

The ratio of the threshold of the double filamentary in- 
stability to the threshold of the ordinary filamentary insta- 
bility is given by the formula: 

This ratio is for lrI2 = 1 approximately equal to ~ 0 . 0 4 .  In 
other words, the threshold of the double instability lies about 
25 times lower than the threshold for the ordinary filamen- 
tary instability. We show in Fig. 2 the function F ( 7 )  of 
(4.18) obtained by solving Eq. (4.16) for lrI2 = 0.1 for that 
part of the region where it is defined, namely the region of 7 
values from 0 to 7, -- 3.8, where the function F(7) reaches 
its minimum value, equal to 4.63 (the minimum occurs for 
7, z 1.6). In that case we have therefore k,,,, /kd -- 1.7, and 
the ratio (4.20) equals 0.2. The threshold of the absolute 
double instability is therefore also in this case 5 times lower 
than the threshold of the convective instability. This corre- 
sponds to the usual excess of the threshold of the convective 
instability over the threshold of the absolute double instabil- 
ity. 

APPENDIX 1 

We give here the approximate solution of the boundary- 
value problem (2.19) and (2.20) in the asymptotic N) 1 
limit. We note first of all that the boundary condition (2.20) 
reduces to the simpler one: as X - +  0 we have 

W(X)+N/X" for X-tO. (Al . l )  

Since for small values ofX the function W(X) is proportion- 
al to the large parameter N one may expect that the region of 
small Xvalues may be very important. It is in this connection 
advisable to understand in what region the asymptotic for- 
mula (Al.  1 ) is applicable. To do this we use Eq. (2.19) to 
obtain corrections to Eq. ( Al.  1 ) : 

FIG. 2. The function F ( 7 )  for the lrJZ = 0.1 case. 

This expansion is applicable for 

N X 1 w  I, 

i.e., for very small values of the velocity as compared to the 
thermal one. 

In the asymptotic limit X, 1 it follows from Eq. (2.19) 
that 

where 
L 

Below we shall verify that 

A comparison of Eqs. (A 1.2) and (A1.4) when there is 
a large parameter Npresent enables us to rely on the applica- 
bility of the asymptotic formula (A1.4) also for small, but 
not too small X values. Indeed, for X& 1 there follows from 
Eq. (2.19) the following asymptotic expansion in powers of 
N - I :  

This expansion is applicable for 

NWNX"~W10. (A1.8) 

Since the asymptotic formula (A1.4) holds in a wide range 
of X values (including those for which X<  1 ) it is clear here 
that for the determination of @(X) it is sufficient to consider 
the consequences of Eq. (2.19) only for X& 1 when it has the 
following form 

We solve this equation, neglecting the integral terms, which 
corresponds for X<  1 to the assumptions: 

m 

1 ~~X'~X~(-X')O'(X')I <I@'(X)I, (A1.lO) 
x 

The solution then has the form 
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where I,  and Kv are Bessel functions of imaginary argument 
and C, and C, are constants which we shall now determine. 
From a comparison of this expression with the asymptotic 
expansion (A1.7) it follows that C,  = 0. Moreover, forX+O 
we have 

Comparing this expression with the asymptotic formula 
(Al . l )  we find 

We have thus determined (A 1.12). 
To give estimates, which enable us to establish that the 

inequalities (A1.6), (A1.10), and ( A l . l l )  which we as- 
sumed earlier are satisfied, it is convenient to write (A 1.12) 
in the form 

For u - 1 the first term on the right-hand side of (A1.15) is 
of the order of magnitude of N8I7 whereas the second term 
which is proportional to - N6I7 is small as compared to the 
first one. In the asymptotic u) 1 limit we have 

We now discuss whether the assumptions under which we 
obtained the solution (Al.  15) are satisfied. First of all we 
estimate the magnitude of (A1.5) which can be done in a 
natural way by using Eq. (Al .  15). However, the same esti- 
mate also occurs when we use the asymptotic formula 
(A1.16). The largest contribution to the estimate of the 
magnitude of (A1.5) then comes from the first term of Eq. 
(Al .  16) which gives C-N5I7. Inequality (A1.6) therefore 
holds for 

We now turn to a discussion of inequality (Al. 10). To do 
this we majorize the right-hand side, 

Inequality ( A1.lO) will thus be satisfied if the inequality 
I@' (X) I , I @ (X) I is realized for X( 1. This last inequality is 
clearly satisfied in the region where the asymptotic expres- 
sions (Al. 1) and (A1.7) hold. In the intermediate region 
between these two asymptotic expressions, when u - 1, we 
have I @ (x) k- N 817 according to (A 1.15 ) and 
@'(X) = N2/'@'(u) - ~ ~ / ~ ~ ~ / ~ . ~ n e ~ u a l i t ~  (Al.  10) isthus 
satisfied, if inequality ( A1.17) is satisfied. Finally, we con- 
sider inequality (A 1.1 1 ). It is obvious that it is satisfied in 
the region where the asymptotic formula (Al. 1 ) holds. In 
the u -- 1 region inequality ( Al. 1 1 ) reduces to N 417 > 1 
which is a weaker condition than (A 1.17). We see thus that 
the solution (A 1.15 ) can be used when we calculate correc- 
tions to the electron distribution function @ (X). 

APPENDIX 2 

Bearing in mind the connection between the electron- 
ion, lei, and the ion-ion, I,, , mean free paths, lei = I,/ 
2'12) (ZTe/Ti ) 2  we can write the left-hand side of inequality 
(1.5) in the form: 

In the case, in which we are interested, of a high degree of 
ionization of the ions (Z, 1) and a ratio Te/Ti which is 
fairly large as compared to unity the left-hand side of in- 
equality (A2.1) is large compared to the ion-ion mean free 
path. We are therefore interested in the strongly collisional 
ion limit. Neglecting the direct action of the electromagnetic 
field on the ions and also using in the ion-electron collision 
integral an expansion in powers of the ion to the electron 
velocity ratio we can write the ion kinetic equation in the 
following form: 

5 
4ne2ed2A df - d f V )  (A2.2) m.m, dv, 

where Jii is the ion-ion collision integral, while we have tak- 
en the ion distribution function to be of the form f 
= fMi + Sf. where Sf, is a small perturbation as compared 

to the Maxwellian ion distribution fMi . 
In accordance with Eqs. (2.5), (2.7), and (2.12) we 

have: 

6fa(v) 
dv; W(v)- ~ d v ~ 8 f a ( v ) - - i k j  dv- 6vv ( v )  

46 JETP 76 ( I ) ,  January 1993 A. V. Maksimov and V. P. Silin 46 



We can thus write the kinetic equation (A2.2) in the form: we can, using (2.27) and bearing in mind that ZT, $ Ti, 

k  a f M i  
state that by virtue of the latter inequality the first two terms 

i k v - i  - 6  - - ) = J [  (A2.4) on the right-hand side of (2.25) are large compared to the 
mi hi ni analogous contribution to (A2. I )  while the contribution of 

The obvious solution of this equation has the form the term in (A2.7) which contains P is small compared to 
Sn, in (2.25) in as far as the inequality N2"$ 1 is satisfied. 

T. ei69 
f i f i ( V * ) = ( ~ ~ - ~  (A2.5) 

Hence it follows, in particular, that the perturbation Sn, of 
the ion density is 

Using this equation, Eq. (2.25), and the electroneutrality 
relation, which is realized under the conditions kr,, 4 1 in 
which we are interested, we can determine the contribution 
of the electric field potential to (2.25) as follows: 

Since we have 
% 

p=- nJ ( - ~ 2 )  " I ~ X X  exp (-X) o (x) 
4k21,i2 u 
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