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The quantum theory of parametric four-photon mixing in a nonlinear medium under the action of 
two laser fields is developed. The conditions for the generation of three modes of the radiation 
field in a resonant cavity, with frequencies equal to the frequencies of the driving laser fields and to 
their half-sum, are considered. Three types of stationary, stable solutions are found for the 
intensities and phases of these modes, corresponding to three regimes of generation. The spectra 
of the squeezing and dispersion of the fluctuations of the quadrature amplitudes are calculated, 
and from these there follows a new possible way of obtaining single-mode squeezed light at the 
frequencies of each of the modes in the above-threshold regime of generation. An effect is 
discovered that consists in the suppression of quantum fluctuations of the sum of the intensities of 
the modes at the frequencies of the perturbing fields below the coherence level. 

1. INTRODUCTION 

In recent years considerable advances have been 
achieved in the theoretical and experimental study of non- 
classical states of the electromagnetic field, including 
squeezed states of light." 

In one of the popular schemes for the generation of 
squeezed light, realized in the experiment of Ref. 4, nonde- 
generate four-wave mixing (FWM) in a resonant cavity un- 
der the action of a monochromatic laser field is used. The 
quantum theory of nondegenerate FWM in a medium of 
two-level atoms and in the regime below the generation 
threshold is given in Refs. 5-7. The spectrum of the squeez- 
ing of the two-mode field at the output from the cavity for 
the system indicated is calculated in Ref. 6,  and, in a phe- 
nomenological description of the nonlinear medium, in Refs. 
8 and 9. 

In Refs. 10 and 11 it is suggested that it is possible to 
obtain nonclassical light in FWM in a resonant atomic medi- 
um under the action of a bichromatic laser field containing 
two components with equal amplitudes and with frequencies 
a,, - S and w,, + S that are symmetric about the atomic- 
transition frequency w,, . In this process, in contrast to the 
standard scheme of nondegenerate FWM, single-mode 
squeezed light at the frequency w,, is obtained. As the calcu- 
lations of Ref. 10 show, in this case, as a consequence of the 
specific form of the perturbing field, with symmetric detun- 
ings from resonance, the coefficient of the parametric cou- 
pling between the conjugate modes is equal to zero, and the 
squeezing effect is determined entirely by the correlators of 
the spontaneous noise. In addition, the results of these pa- 
pers were obtained in the regime below threshold in the ap- 
proximation of a classical laser field without allowance for 
its exhaustion. 

In the present paper we demonstrate the possibility of 
the generation of nonclassical intense light during paramet- 
ric FWM in a cavity in the regimes below and above thresh- 
old under the action of two monochromatic laser fields with 
frequencies w, and w,. The conditions for excitation of three 
cavity modes, with frequencies w, and w, equal to the fre- 
quencies of the perturbing fields and with frequency 

w, = (a, + w2)/2, are considered. The nonlinear medium is 
described phenomenologically by the third-order suscepti- 
bility x ' ~ '  . In particular, an atomic beam or gas can be such a 
medium. In fact, the spectral lines of the radiation in coher- 
ent transitions of an atom in a two-component field with 
frequencies w, and w, have frequencies equal to 
( w ,  + w2)/2 + q(w2 - w1)/2, where q = 0, f 1, + 2, ... 
(Refs. 12, 13). The three indicated modes are realized for 
q = 0, & 1 and can be selected by choosing the parameters 
of the cavity in an arbitrary manner: w, = w,, - S,, 
w, = w,, + S,, w, = a,, + (8, - S,)/2. It should be borne 
in mind, however, that the phenomenological model of the 
medium certainly cannot describe the case with S, = S,, 
considered in Refs. 10 and 11, since here, as already noted, 
the coefficient of the coupling between the conjugate modes 
is equal to zero. 

In this paper all three modes of the radiation field are 
described quantum-mechanically in the framework of the 
stochastic equations of motion (see, e.g., Ref. 14), and the 
phenomenon of exhaustion of the pump fields is taken into 
account. It is important to note that for this problem, unlike 
that of nondegenerate FWM with monochromatic pumping, 
there exist three types of stable stationary solutions for the 
amplitudes and phases of the three modes, and this makes it 
possible to linearize and solve the stochastic equations of 
motion describing the dynamics of the fluctuations of the 
modes in the cavity. An important outcome of these calcula- 
tions is the conclusion that, in the system under considera- 
tion in the above-threshold regime, generation of intense sin- 
gle-mode squeezed light can occur in the regions of each of 
the frequencies w,, a , ,  w,. 

Another nonclassical effect, described theoretical- 
lyI5-l8 and confirmed experimentally for a nondegenerate 
parametric o~ci l la tor '~ and in nondegenerate four-wave 
mixing,19 consists in the suppression of quantum fluctu- 
ations of the difference of the intensities of the two generated 
correlated modes below the shot-noise level. In the nonlinear 
system that we are considering another manifestation of the 
phenomenon of intermode correlation is discovered. It is 
found that suppression of the fluctuations occurs for the sum 
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of the intensities of the fields at the pump frequencies w, and 
w, in the regime above the threshold of generation. 

The plan of the article is as follows. In Sec. 2 we give the 
stochastic equations of motion, and in Sec. 3 their stationary 
stable solutions are obtained. In Sec. 4 the results in the re- 
gime below the generation threshold are given. Section 5 is 
devoted to an analysis of the quantum fluctuations in the 
above-threshold regime, while Sec. 6 is devoted to a calcula- 
tion of the squeezing spectra for all three modes at the output 
from the cavity in the above-threshold region. In Sec. 7 the 
dispersions of the fluctuations of the quadrature amplitudes 
of the modes inside the cavity are calculated. In Sec. 8 the 
results for the quantum fluctuations of the mode intensities 
are obtained. 

2. THE NONLINEAR SYSTEM AND STOCHASTIC EQUATIONS 
OF MOTION 

We shall consider the following model of the paramet- 
ric four-wave interaction in medium. The nonlinear 
medium, placed in a ring cavity with normal-mode frequen- 
cies a , ,  a,, and w,, realizes collinear mixing of the pump 
modes with frequencies w, and w, with the signal mode of 
frequency w, such that w, = (a, + w2)/2, with fulfillment 
of the synchronism condition k, + k, = 2k, between the 
wave vectors of the modes. The pump modes are driven by 
two external coherent fields with frequencies w1 and w,, and 
the mode o0 is excited spontaneously. We take into account 
the damping of the modes on account of the cavity mirrors, 
and assume for simplicity that the nonlinear medium is 
transparent and that the cavity detunings can be neglected. 
All three modes in the cavity are specified quantum me- 
chanically by means of boson creation operators a,+ and 
annihilation operators a, ( j = 0,1,2). Such a system can be 
described by the following Hamiltonian: 

The term H, represents the free part of the Hamiltonian, 
while H, describes the effective interaction of the modes in 
the nonlinear medium, with coupling constant x/2 propor- 
tional to the nonlinear s u ~ c e ~ t i b i l i t y ~ ' ~ '  . The term H, takes 
into account in the standard way (see, e.g., Ref. 20) the 
damping of the three modes wj ( j = 0,1,2) in the cavity, by 
means of the operators r, and rj+ of the reservoirs corre- 
sponding to them, which determine the damping rates yo, y,, 
and y2 of the modes o,, w,, and w,, respectively. The term H4 
describes the driving of the pump modes w, and w, by exter- 
nal coherent fields, where El and E, are the amplitudes of 
the driving fields in the cavity. 

To describe the dynamics of the modes of the radiation 
field in the cavity we shall use the method of stochastic equa- 

tions that has been developed in recent years in quantum 
optics.14 First, using the standard procedure in the Born and 
Markov approximations, we obtain the equation in the inter- 
action picture for the reduced density matrix of the three 
modes of the radiation field in the cavity: 

Here we have neglected thermal fluctuations and have im- 
plemented the following change to operators that vary slow- 
ly in time: 

Equation (2)  is then transformed into a Fokker-Planck 
equation in the space of c-numbers, by means of the positive 
P-representationZ1 of the density matrix: 

where the la) are coherent states, and the quantities a = (a,, 
a , ,  a2) and a + = (a:, a,+, a; ) are independent com- 
plex variables, there being a correspondence between the c- 
numbers a,, a,+ and the Bose operators a,, ajf . The Fokker- 
Planck equation for the distribution P (a , a  + ) is obtained 
from (2)  by means of well known operator id en ti tie^,'^'^^ 
and has the following form: 

where by "c.c." we mean terms in which the following 
changes of independent variables have been made: a, s a,+ 
and E, + E z. Equation ( 3 ) ,  which has the following stan- 
dard form: 

wherep, Y = 1,2, ..., 6 ,a  r ( a , a +  ) = (a"', a'2', ..., aC6') 
= (a,, a,+, a , ,  a,+, a,, a$ ), is equivalent to the fol- 

lowing system of stochastic differential equations: 

aaw -=- 
at  

AM(a)+RM(a ,  t ) ,  

where R p= (R,, R 2, R,, R ,+ , R,, R ,+ ) are Gaussian 
noise terms with zero mean value and with correlation func- 
tions determined by the elements Dpv(a )  of the diffusion 
matrix: 

( R q a ,  t )  Rv ( a ,  t') >=Dw (a)  6 ( t - t ' ) .  
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In accordance with what has been said, the stochastic equa- 
tions of motion of the system that we are considering can be 
written in explicit form as  follow^:^' 

60 (t) =-y~a~-! -~a ,a~a~++R~ (t), 
a, (t) =-y,a,-'lz~ao"a~++E,+~, (t), 
a z  (t) =-yZaz-'l2~ao2a,++E,+R, (t), (4) 

together with the corresponding equations for the quantities 
a,f,a,+,anda;.  

The nonzero correlators of the noise terms are equal to 

<Ro (t)Ro (t') >=xaiaz6 (t-t'), 

<Ro+(t) Ro+ (t') )=~a~+a~+G ( t - l ' ) ,  

<R, (t)R, (t'))=<R2(t)Rs (t') )=-'Iz~ao26 (t-t'), 
(R,+ (d)R2+(t') )=<R2+ (t)RI+ (t') )=-'/2~ao+zG(t-t'). 

(5 

The subsequent analysis is based on the well known cor- 
r e s p o n d e n ~ e ~ ~ . ~ ~  between quantum-statistical averages of 
normally ordered operators a,, a,+ and statistical averages of 
the c-numbers a,, a,+ with distribution function P (a , a  + ). 

The radiation field at the output from the cavity gener- 
ally speaking, has a continuous frequency spectrum; in the 
Markov approximation, however, it can be represented in 
the form of three components in the neighborhood of w,, 
each of which can be expressed in terms of the operators a, of 
the modes of the radiation field inside the cavity (see, e.g., 
Refs. 20 and 23). For the case when the input and output are 
realized on one of the mirrors of the ring cavity, we have 

where the b, and c, are, respectively, the operators of the 
amplitudes of the fields at the output and input in the neigh- 
borhood of a,, and satisfy the commutation relations 

[bj(t), bj+ (t') ] =6ij6 (t-t') , [ci(t), cj+ (t') 1 =6ij6 (t-t'). 

The average numbers of photons per unit time for these 
fields are respectively equal to 

Below we consider the case of equal pump-mode damp- 
ing constants (y, = y2 = y) and equal amplitudes and arbi- 
trary phases of the driving fields: E l ,  = E exp (ia,,, ). 

3. THE STATIONARY STABLE SOLUTIONS 

The system of equations (4) is solved by the method of 
linearization about their semiclassical stationary solutions 
a; = la;lexp(i$?), (a;)* = (a;) + , which are obtained 
from (4) for aj = R, = 0. Here it is necessary that the sta- 
tionary solutions found be stable against small fluctuations. 
Analysis of the stationary solutions, together with the condi- 
tions for their stability, which are derived on the basis of the 
linearized equations of motion (see Secs. 4 and 5), leads to 
three possible generation regimes. 

a) In the region below the generation threshold (E < 1 ), 
where 

e=EIE,, E,, =y (yolx) ", ( 8  

(E,,  is the threshold value of E ) ,  the stable stationary solu- 
tion of the system (4)  is 

In the region above the generation threshold ( E >  I) ,  
where the stationary amplitude of the mode w, being genera- 
ted is nonzero, we must distinguish two types of stationary 
solutions. 

b) For one of these the intensities of the pump modes 
(in units of the photon numbers) are equal to each other: 
la: 1' = 1 a! 12, and the solution has the following form: 

This solution is stable in the region 1 < E < 2. 
C )  Other solutions with unequal pump intensities are 

lato I ='/2(yOlx)'h Ie- (eZ-4) %I ,  
I a21 ='la (yolx)" [e+ (2-4) 81, (11") 

and the system in this case is stable in the region E > 2. The 
values E = 1,2 at which the stationary solutions are unstable 
are points of instability of the system. 

We note that for all the stationary amplitudes above the 
generation threshold the following relation is fulfilled: 

i.e., the product of the amplitudes of the pump modes in the 
cavity reaches saturation. For comparison, in the regime be- 
low the threshold we have 

la," 1 ~ ~ ~ ~ = E ' l y ~ ( e < l ) .  

We shall analyze the dependence of the stationary val- 
ues of the intensities of the three modes in the cavity on 
the ratio E = E /Eth. We see that with increase of E, starting 
Som the threshold value, the number of photons in the mode 
w, increases linearly, and the number of photons in the pump 
modes remains unchanged. When the parameter E = 2, the 
average number yola: I 2  of photons in the mode w, reaches 
the sum of the corresponding average numbers of photons of 
the two pump modes: 

y o l a ~ 1 2 = y l u ~ 0 ~ ~ y  l ~ z 0 1 ~ .  

In the region E > 2 the stationary amplitudes of the pump 
modes wl and w, are asymmetric and, according to ( 11') and 
( 11" ), have a bistable character. In this region the produc- 
tion of photons in the mode w, is compensated by the losses 
in the cavity and by the inverse process of absorption of two 
photons with frequency w, with the emission of a pair of 
photons with frequencies ol and w,, and, therefore, the in- 
tensity of the signal mode w, does not change. Then for each 
pair of solutions ( 1 1' ), ( 1 1 " ), the following relation is ful- 
filled: 
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For the coherent cavity-exit field components corre- 
sponding to the semiclassical stationary solutions we obtain, 
taking into account that the mode o, is generated sponta- 
neously 

The requirement that the fluxes of energy per unit time 
for the fields incident on the cavity and emerging from it be 
equal can be written as follows: 

It is easily verified that this relation is fulfilled for all the 
generation regimes (a)-(c) . 

We must also draw attention to the phase relations in 
the stationary solutions obtained. In the above-threshold re- 
gime of generation the stationary phases of all three modes 
are known. This fact essentially distinguishes the process 
under consideration from the process of nondegenerate 
FWM with a monochromatic driving field, in which, in the 
above-threshold regime, only the phase of the pump mode 
and the sum of the phases of the modes being generated are 
known. The difference of the phases of the modes being gen- 
erated, and each of these phases separately, are undeter- 
mined, and, therefore, the procedure of linearization about 
them is not applicable. Nevertheless, analysis of the quan- 
tum fluctuations in this case, and also in the case of nonde- 
generate parametric generation, is possible if additional as- 
sumptions are made about the time dependence of the phase 
difference between the modes being 

4. RESULTS IN THE REGIME BELOW THE GENERATION 
THRESHOLD 

We turn to the linearization of the equations of motion 
in the regime below the generation threshold. Introducing 
small fluctuations 

A a j ( t )  = u j ( t )  -ajo, A z j +  ( t )  =aj+(t) - ( a ; ) .  (13) 

equations are positive. By determining these eigenvalues we 
can verify that the stationary solution (9)  is stable for E < 1. 

As follows from the equations ( 14), ( 15) obtained, be- 
low the threshold the fluctuations of the pump modes are not 
related to the fluctuations of the mode o,. The equations of 
motion for the mode o, correspond to the approximation of 
unexhausted pumping, and coincide in form with the well 
known equations of motion for degenerate parametric gener- 
ation and degenerate FWM (see, e.g., Refs. 9 and 22, and the 
citations therein). In analogy with these papers, we give the 
final results. 

For the average number of photons (constituting pure- 
ly spontaneous noise) in the mode w, per unit time at the 
output of the cavity we obtain 

The dispersion of the fluctuations of the quadrature ampli- 
tude of the mode w, in the cavity in the normally ordered 
form is equal to 

where 

X ,  (0,, t )  =a,  ( t )  e-ieo+aO+ ( t )  eieo 

is the operator of the quadrature amplitude and we have 
usedthenotation (A,B:) = (dB:)  - (A ) (B ). Forthemin- 
imum value of this quantity, realized when 
28, = @, + @, + P, we obtain 

which tells us that the mode a, is in a squeezed state 
(O< VO<l). 

The corresponding fluctuation spectrum of the quadra- 
ture amplitude of the field external to the cavity in the neigh- 
borhood of w, is given by the following expression: 

about the stationary solutions (9) ,  in the linear approxima- So (0.. t e )  = i+2yo j drei"'<:Xo (BO, t ) ,  X, (B,, t+r) :  ). 
tion we obtain the following equations: -6 

A& ( t )  =-yAak ( t )  , A&*+ ( t )  =-yAar+ ( t ) ,  k=1, 2. The minimum value of this quantity is found to be equal to 
(14) 

So(")  = 1 - 4 ~ ~ / [ ( ~ + e ~ ) ~ + ( m / y ~ ) ~ ] .  (19) 
For the signal o, mode, ha,(?) =a,(?) and 

Aa; ( t )  = a; (t),  and we obtain The expression ( 19) describes the squeezing spectrum of the 
mode w, (0 <S,(o) < 1 ), which can reach 100% in the limit 

a ( t )  R O e ( t )  
E 4 E t ,  at zero frequency. It should be borne in mind, how- 

) = - A  ( ) + ( R:+(t)  ) , ever, that in the immediate neighborhood of the threshold 
E = E,, the magnitude of the vacuum fluctuations becomes 

(I5)  infinitely large, and the linearization procedure and the re- 

where the matrix A is equal to sults ( 17)-( 19) are not applicable. 

5. ANALYSIS OF QUANTUM FLUCTUATIONS IN THE ABOVE- 
THRESHOLD REGION 

For the analysis of the system of equations (4)  above 
with c--~a?al 9 and the nonzero correlators of the noise the threshold it is convenient to separate out the phases $, of 
have the form the modes and to change to new variables: 

The stationary solution (9) is stable provided that the In the variables the system of equations of motion takes the 
real parts of the eigenvalues of the matrix A of the linearized following form: 
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&(t  )=-2yono+2~no(nlrz,) cos q+P,,(t). 
nl ( t )  =-2yn,-xn0(n,n,) " eos g+2nI"E cos(@,-g,) +PI ( t ) .  
4 (t =-2ynz-~no (n th )  '" cos $+2n,'"E cos (Oa-$,) +Fa ( t ) ,  

IDo ( t )  =x(nInz) " sin rp+fo(t), (21 

X 'C E 
h ( t ) = - n 0 ( 4 )  2 sin * + - ; ; s i n ( ~ ~ - ~ ~ ) + f ~ ( t ) ,  4 

(22) 

where $ = $, + $, - 2&, and the noise terms are equal to 

F,=aj+Rj+a,Rj+, fj=Rj/2iaj-R,+/2ia,+. (23) 

The stationary solutions in the new notation have the 
following form: 

For both regimes (b) and ( c )  the stationary values of the 
phases are the same and equal to 

Determining the fluctuations of the photon numbers 
and the phases about their stationary values: 

under the condition that they are small, we obtain the fol- 
lowing systems of linearized equations of motion in matrix 
form: 

A$(t) =AA$ ( t )  +PO ( t ) ,  (29) 

where 

Aa=(Ano, An,, An,)'. A$=(Aga, A$+, 

P=(F,U. F,". F:'')r. fo=(foO, fI0,  fi")' 

and the superscript T denotes the operation of taking the 
transpose. These equations describe the dynamics of the 
quantum fluctuations and are valid for both generation re- 
gimes (b)  and (c). The matrixes A and 2 are equal to 

while the noise terms Fy and fy are obtained from (23) by 
substitution of the corresponding stationary solutions (b )  or 
(c). The nonzero correlators of the noise are equal to 

<Fo"(t)FOo ( t i )  >=2yono0b(t-t' ) , 

The linearization method used is valid if the stationary 
solutions are stable, i.e., if the eigenvalues of the matrices A 
and 7 have positive real parts. Using the Hurwitz criterion, 
we can show that, as was noted previously, the stationary 
solution (6)  is stable in the region 1 < E < 2, while the solu- 
tions ( c )  are stable in the region E > 2. The values E = 1,2 are 
points of unstable equilibrium (instability). 

The linearized equations (28), (29) obtained are con- 
venient of the investigation of various two-time correlation 
functions of the amplitudes, intensities, or phases of the 
three modes, including for the calculation of the dispersions 
of the fluctuations of the quadrature amplitudes. For the 
analysis of the spectral correlation functions of the fields at 
the output from the cavity it is more convenient to use the 
equations of motion in the spectral representation. 

Introducing the Fourier components for the fluctu- 
ations: 

and analogously for the noise terms, from Eqs. (28) and 
(29) we obtain 

( A - i d )  A n ( o ) = P ( a ) .  (33) 

(A-imZ)Ag(o) =f ( a ) ,  (34) 

whereIis the unit matrix, and the nonzero correlators of the 
Fourier components of the noise terms are equal to 

<FO0((oF,,@(o') >=-2(Pl0 (o)FZ0 lo') >=2yono06 ( o f o ' ) .  

We shall give the results for the numbers of photons per 
unit time at the output from the cavity, to within terms of 
second order in the fluctuations: N, = 1 bYl2. From Eqs. ( 12) 
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in the region 1 < E < 2 we obtain 

and in the region E > 2 

We must draw attention to the fact that in the entire 
region above threshold, including also the region E > 2, the 
light intensities at the output from the cavity in the regions of 
the frequencies w, and w2 are equal to each other, even 
though inside the cavity the occupation numbers n: and n: 
of the modes differ for E > 2. This is due to the interference of 
the amplitudes a:, and (c,,, ) in the quantities N,,, , the con- 
tribution of the interference being different for the two 
modes. The difference between N, and N, in the region E > 2 
is manifest when higher-order fluctuations are taken into 
account, as follows from the results of Secs. 6-8. It is also 
easy to see that, as the instability point is approached 
( ~ + 2 ) ,  both from below and from above, for both pump 
modes we have (c,,, ) = (2y) "*a:,, and the coherent com- 
ponents b :,, at the output (and, consequently, N,,, as well) 
vanish. 

6. SQUEEZING SPECTRA IN THE ABOVE-THRESHOLD 
REGION 

The aim of this section and Sec. 7 is a detailed analysis of 
questions concerning the generation of squeezed states of 
light in the regime above threshold. The nonclassical squeez- 
ing effect for the system under consideration here consists in 
the suppression of quantum fluctuations of the quadrature 
amplitudes 

Xj(O,, t )  ==aj ( t )  e-"l+a,+ ( t ) e ib  (39) 

for each of the modes w, ( j = 0,1,2). This effect is manifest- 
ed, in particular, in the fluctuation spectrum of the photo- 
current in the method of optical heterodyning via the 
squeezing spectrum. This quantity, for the field at the output 
from the cavity in the neighborhood of the frequency w,, is 
defined as follows: .. 

sj(ej, o)=1+2yj J d r e i ~ ~ ( : ~ ; ( ~ , .  t ) ,  xj(ej, t + r ) : > .  
- n 

(40) 

Using the correspondence between normally ordered aver- 
ages for the slowly varying amplitude operators a, and a,+ 
and time-ordered averages for the c-numbers a, and a,+ in 
the P-representation that we are it is not difficult 
to show that, in lowest order in the quantum fluctuations 
(27), the minimum value of S,(O,,w) is realized at 
0, = $$' + ~ / 2  and is equal to 

The first term in the right-hand side of (41) corresponds to 
the level of the vacuum fluctuations; the squeezing effect 
occurs for S, (w) < 1, and the value S, (w) = 0 corresponds 
to absolute ( 100% ) squeezing. 

In Fourier components the expression (41 ) can be writ- 
ten as 

whence it can be seen that, to calculate the squeezing spectra 
for the modes w,, it is sufficient to calculate the averages 
( (a ' )  A$, ( a ) ) ,  i.e., to confine ourselves to solving the 
system of algebraic equations (34). These solutions have the 
following form: 

(n,") " 

2%" 

where 

a) Squeezing spectrum for the signal mode 

First of all we shall calculate the squeezing spectrum for 
the field in the neighborhood of the signal-mode frequency 
a,. The solution (43) and the correlators (36) lead to the 
following result for the second-order average: 

in which, for convenience, we have used the following di- 
mensionless parameters: 

and the quantity d(w) is equal to 

We note that d(w) is nonzero in the entire region E > 1. 
Substituting the expression (45) into (42), we obtain 

for the minimum value of the squeezing spectrum of the 
mode w, 
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FIG. 1. Squeezing spectrum So(@) for the signal field as a function 
of w/y, for various values of the parameters E and c a)  E = 1.1, 
r = 2 (dashed curve); E = 4, r = 2 (solid curve); b) E = 1.5, r = 10 
(dashed curve); E = 2.1, r = 10 (dashed-dotted curve); E = 4, 
r = 10 (solid curve). 

b) Squeezing spectra for the pump modes 

Analogous calculations on the basis of the solutions 
(44) lead to the following result for the correlation function 
of the fluctuations of the phases of the pump modes w, 
(k = 1, 2): 

Finally, for the squeezing spectra of the fields at the frequen- 
cies w, and a,, we obtain from Eq. (42) 

The results (47) and (49) have been presented in gen- 
eral form, and describe the phenomenon of the suppression 
of quantum fluctuations of the quadrature amplitudes of 
each of the modes o,, w,, w, below the vacuum level in both 
the above-threshold generation regimes ( 6 )  and (c). In each 
of these regimes the values of the quantities n; are different, 
and the dimensionless parameters are equal to 

b )  i C e ( 2 :  q,=q,=pp=e-1, 
C) e>2: q,=l, q l , a ~ 2 /  [8'-2*e (8'-4)"'] 

for the solutions (25'), and to 

FIG. 2. Dependence of the quantity S,(o,,, ) on E for various values of r: 
l ) r = 2 ; 2 ) r = 4 ; 3 )  r =  10. 

for the solutions (25" ). Thus, the choice of the solution 
(25') or (25" ) leads only to a change of the indices 1 s 2  in 
the expression (49). 

As is shown by analysis of the expressions (47) and 
(49), which are represented in graphical form in Figs. 1-4, 
in the above-threshold regime effective squeezing occurs 
both for the generated mode w, and for each of the pump 
modes o, and w,. This is an extremely interesting feature of 
the FWM process under the action of two driving fields. We 
recall that in nondegenerate FWM with a monochromatic 
driving field two-mode squeezed states are formed for the 
generated modes, while squeezing effects involving all of the 
modes, including the pump mode, are absent. 

The squeezing spectrum (47) for the mode w, is given 
in Fig. 1 for various values of the parameters E and r. Near 
the threshold E = 1 and for small r the spectrum has one dip 
at zero frequency w = 0. The value of S,(w) at w = 0 de- 
pends only on E, and a large value of the squeezing ( 100%) 
occurs in the limit E +  1. As we move away from the thresh- 
old, with increase of E, the spectrum acquires two minima, 
symmetrically placed about zero frequency, and a large 
magnitude of the squeezing is reached for relatively large 
values of r. Figure 2 shows the dependence of the quantity 
So(wopt (the squeezing spectrum S,(w) at the points 
w = w,,, of its minimum values) on the parameter E. It is 
easy to see that for values of r that are already 2 10 it is 
possible to achieve suppression of the fluctuations that is 
close to absolute (100%) in the entire above-threshold re- 
g i o n ~ >  1. 

The pump-mode squeezing spectra described by Eq. 
(49) are given in Fig. 3. In the region 1 < E < 2, in which the 
intensities of the two pump modes in the cavity are equal, the 
squeezing spectra also coincide [S, (w) = S,(w) 1, and have 
one minimum at zero frequency. The maximum squeezing 
(50%) is reached here near the point E = 2, irrespective of 
the value of r. In the region E > 2 the intensities of the pump 
modes in the cavity differ, and the corresponding squeezing 
spectra are also different [q, #q, in Eq. (49) 1. Effective 
squeezing in the entire range E > 2 occurs only for that pump 
mode (for definiteness, the mode 0,) whose intensity in the 
cavity decreases with increase of E. We recall that the corre- 
sponding intensity at the output increases in this case. The 
maximum effect is reached at side frequencies in the regions 
of the two minima of the spectra for definite values of r. The 
dependence of S2(wOpt ) (the squeezing spectrum S,(w) at 
the points w = mop, of the minima) on r for various values of 
E is shown in Fig. 4. For the pump mode that increases in 
intensity in the region E >  2 the squeezing is effective 
( - 50%) at zero frequency near the value E = 2, and vanish- 
es with increase of E. 
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J,, , lull 5, lwl 

FIG. 3. Squeezing spectra S , ,  ( a )  of the pump fields as a function 
of o/y. In the region 1 < E  < 2 the spectra are the same (S,  = S, ) ,  
and the curves 1 (E = 1.2, r = 1 )  and 2 (E = 1.7, r = 1) in Fig. (a) 
correspond to them. The curves 3 (E  = 2.5, r = 2) and 4 (E = 5, 

,/ r = 1) pertain to that pump mode whose intensity in the cavity 
decreases in the region E >  2. Figure (b) corresponds to the pump 
mode (for definiteness, o,) that increases in intensity: Curve 5 )  
~=2.1,r=10;cu~e6)&=2.1,r=1;curve7)&=3,r=1. 

7. TEMPORAL ANALYSIS AND VARIANCES OF THE 
QUANTUM FLUCTUATIONS t 3 n (A-AJ) 

To complete our analysis, it is necessary to give the re- An(t)= J dt' ~ e r p [ h h ( t l - t )  I '** F " ( t ' ) ,  

sults of the temporal analysis of the quantum fluctuations -00 k 0 l  n (L-a,) 
above the generation threshold. The solution of this prob- ,=+I (52) 

lem, on the one hand, makes it possible to elucidate a number 
of questions pertaining to effects involving two-time photon 
correlations, and, on the other, simplifies the calculation of n ( J - X J )  

A+(tl== j d t ' ~ s x p ( X , ( t ~ - t ) l  I~~ the dispersions of the fluctuations of the quadrature ampli- f (t'), 
tudes. We shall discuss this aspect in more detail. -- L-I 

We shall give the formula for the dispersions of the 
fl (%-XI) 

i=#h (53) 
quantum fluctuations of the quadrature amplitudes of the 
modes o, inside the cavity: 

v,(e,)=i+<: (ax,(e,, t )  Y:), 
where A, and 2, ( k  = 1,2, 3) denote the eigenvalues of the 
matrices A and x ,  respectively. 

in lowest order in the fluctuations about the stationary val- a)The region belowthe instability point(1 <E<2)  
ues of the photon numbers and phases. For the minimum We shall give the results for the generation regime (b)  
value of this quantity for Oj = $; + 1~/2 we can obtain the with the stationary intensities (24) and phases (26). In this 
following result: case the eigenvalues of the matrices A and 3 are equal to 

As can be seen directly from comparison of Eqs. (41 ) 
and (50), there is an obvious relationship between the quan- X*,2={2Yof 2'f-Ye* [ (2~0+2~-Ye)~-8'foY~] ")I2, Xs=ye. 
tities defining the integral squeezing and spectral squeezing (55) 
of the fluctuations of the quadrature amplitudes: 

From the eigenvalues A, and X, written out in explicit form 

(51) it can be seen directly that, as was noted previously on the 
basis of the Hurwitz criterion, the stationary solution (b)  is 
stable in the region 1 < E < 2. 

From a practical point of view, however, for calculation of The solutions (53), with use of the correlators (32), 
the quantities 5 '~q. ( 50) based On the picture, is make it possible to obtain expressions for the two-time corre- 
more convenient. lation functions of the phases. Omitting the intermediate cal- 

We return to the 'ystems of equations (28)9 (29). In culations, we shall give the final results for the dispersions of 
general matrix form their for large times t% 7; ' the fluctuations of the quadrature amplitudes of the modes 
can be written in the following form: a, in the cavity from Eq. (50). 

For the signal mode w, the dispersion is equal to 

This result describes the phenomenon of squeezing of the 
mode o, (0  < Vo < 1 ), which can reach 50% a values of E 
close to the threshold value or at large values of the param- 
eter r = yo/y. The dependence of the dispersion V, on E for 
various values of r is presented in Fig. 5. 

For the dispersions of the fluctuations of the pump 
modes we obtain 

FIG. 4. Dependenceofthequantity S,(o,,, )on r: 1 )  E = 2.2; 2 )  E = 3; 3) (8-1) (1+r-e) V,=V,=l - 
E = 6. 2e (j+r-e/2) ' 
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FIG. 5. Dependence of the dispersion V, of the fluctuations of the quadra- 
ture amplitude of the mode o, in the cavity on E: 1 ) r = 0.2; 2) r = 1; 3) 
r = 10. 

This result is evidence of the suppression of quantum fluctu- 
ations below the vacuum level for both pump modes in re- 
gime ( b )  , if the inequality 1 + r - E > 0 is fulfilled. For large 
values of the parameter r )  1 we obtain 

V ; , P ~ -  (e-iJl2e, 

i.e., the squeezing of the modes w, and w2 ceases to depend 
on r, and can reach 25% as E--2. The dependence of the 
dispersions (57) on E is presented graphically in Fig. 6. 

b)The region above the point of instablllty ( ~ > 2 )  

We shall give the results for regime ( c ) ,  in which the 
intensities of the two pump modes in the cavity have an 
asymmetric dependence on E for the case when one of the 
intensities is much greater than the other. Suppose, for defi- 
niteness, that ny )ni. We note that for E = 4 the ratio 
ny/n; ~ 2 0 0 .  In this case, in the matrices (30) we can neglect 
elements proportional to l/ny in comparison with elements - l/n(:. Then the equations of third degree for the eigenval- 
ues A, and X, of the matrices A and 2 factorize, and we 
obtain 

;I,.: [ y =  ( y - - 4 y r L n o U I ~ ~  1ir]/2, hS=y. (58) 

, = + I 2  * e + / 2 ) 2 - 2 y y - y o o l n l ' h ,  L=y. 
(59) 

Omitting the intermediate calculations, which are anal- 
ogous to those described above, we shall give the final ex- 
pressions for the dispersions ( 50). For the mode w, the dis- 
persion of the fluctuations of the quadrature amplitude is 
equal to 

/.-I + 2 - . L [ l +  I 1+2r+2r/f (e) 2+l/r 2r+4r/f (e) ' 

where f ( ~ )  = E* - 2 - E ( E ~  - 4)'12. In the region E ~ )  1 we 
have f ( ~ )  =: 2~',  while for rE2) 1 we obtain the simple expres- 
sion 

from which it follows that the dispersion ceases to depend on 
E, and, for r )  I, tends to its minimum value 1/2 (50% 
squeezing). 

For the pump mode (for definiteness, the mode w2) 
whose intensity in the cavity decreases with increase of E, the 
dispersion of the fluctuations is found to be equal to 

FIG. 6. Dependence of the dispersions V,, ,  of the fluctuations of the quad- 
rature amplitudes of the pump modes on E: 1) r = 0.2; 2) r = 1; 3) r = 10. 

For E') 1 this expression is simplified, and for r ~ ' )  1 it takes 
the form (61), indicating that the maximum possible 
squeezing (50%) for this mode is reached at large values of 
r. As regards the pump mode that increases in intensity, 
V, = 1 for it in the approximation under consideration. We 
note that, although there is no integral squeezing for this 
pump mode, in the corresponding fluctuation spectrum at 
the output, in the region E 2 4 (in which ny )ni ), there is a 
dip below the vacuum level at zero frequency. However, the 
amount by which the magnitude of the fluctuations exceeds 
the vacuum level at the side frequencies of the spectrum can- 
cels this suppression, leading to absence of integral squeez- 
ing. 

The results of Secs. 6 and 7 have been obtained in the 
linearized theory, and are valid provided that the fluctu- 
ations are small: 

It is clear from physical considerations that these conditions 
are certainly fulfilled for large mode intensities ny) 1. The 
derivation of more-exact conditions requires a special analy- 
sis. For example, the conditions (62a) with allowance for 
Eq. (50) can be written as I V,  - 1 14 4n; and can be made 
more detailed using results of a calculation of the disper- 
sions. The conditions (62b) can be analyzed on the basis of 
the results of Sec. 8 [see Eqs. (76) and (77)l.  

8. SUPPRESSION OF QUANTUM FLUCTUATIONS OF THE 
SUM OF THE INTENSITIES 

The results obtained in the preceding sections can aIso 
be used in the investigation of other effects of a nonclassical 
nature. In particular, Eqs. (28) and their solutions (52) de- 
scribe phase-independent effects involving correlations be- 
tween instantaneous fluctuations of photon numbers of in- 
teracting modes. These effects can be manifested in various 
physical quantities containing interference of photon 
numbers. 

The phenomenon of mutual correlation of fluctuations 
of the intensities of two light beams obtained in parametric 
processes leads to lowering of the level of the fluctuations of 
the difference of their intensities below the coherence level. 
This phenomenon was discovered for the radiation field of a 
nondegenerate parametric oscillator and in nondegenerate 
four-wave mixing,15-l9 and has been discussed in connection 
with possible applications, including in ultraprecise optical 
measurements, in spectroscopic absorption. 
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As shown by the calculations presented below, the phe- 
nomenon of the correlation of fluctuations of the photon 
numbers in FWM in two laser fields displays a number of 
new properties. These are discussed in application to the fol- 
lowing experimental scheme. Two photodetectors measure 
the intensities of the two pump modes at the output from the 
cavity, and the fluctuations of their sum or difference are 
investigated by analyzing the fluctuation spectrum 

fi (r)--2 pT ma r r ~ i ,  ( t ) ,  i, ( t + r ) )  (63) 

of the sum or difference of the corresponding photocurrents 
i, = il -j= i,. 

The average photodetection currents from each of the 
pump modes at the output from the cavity are equal to 

where Q is the total charge of the current pulses and r] is the 
dimensionless efficiency of the detector (0  < r]( 1 ), chosen 
to be the same for the two modes. 

According to the standard theory of phot~detect ion,~~ 
for the correlation function of the photocurrent we have 

The first term here determines the shot contribution, pro- 
portional to the intensities of the two modes and the same for 
the difference and sum of the currents: 

<i ( t ) i ( t+r )  > *h==<il ( t )  i ,  ( t + ~ )  ) + <i t  ( t )  i 2 ( t + ~ ) )  sh 

where ro is the duration of the current pulses and 9 is the 
Heaviside function, the appearance of which is related to the 
discrete character of the absorption at the photodetector. 
The second term, in which the operators N, are equal to 

describes the fluctuations of the sum or difference of the 
intensities of the two fields in the neighborhood of the pump- 
ing frequencies at the cavity output. 

Using the expression (6),  and confining ourselves to the 
second order of smallness in the fluctuations (27), we obtain 

where b O = 1 b 1 = 1 b i 1. This quantity contains fluctu- 
ations of both the photon numbers and the phases of the 
modes. In the calculation of the correlation function 
(:N, (t),N, ( t  + 7):) with the aid of (66) and (67), in 
second order the contribution of the phase fluctuations can- 
cels and the final result acquires the following form: 

a) Variances of fluctuations of the photon numbers 

We shall give the results of the calculations for the 
above-threshold region 1 < E < 2, in which the average pho- 
ton numbers in the pump modes in the cavity are equal: 
no - 0 1 - "2. 

Using the expressions (64) and (68) we obtain for the 
variances ((Ai, (t)),) = (i, (t),) - (i, (t)),  ofthesum 
or difference of the photocurrents 

This result is written in terms of the variances of the fluctu- 
ations of the sum or difference of the photon numbers in the 
cavity: 

where An, = An, + An,. 
In the region 1 < E < 2 under consideration, as follows 

from the solutions (52), the quantities An * ( t )  are equal to 

An, ( t )  = - 2r0 dtl{exp[A, ( t l - t )  1 
A1-l-z -_ 

x[F,O(tl)+F,O(t') 1 .  (71) 
t 

A n  ( t )  J t  x p t - t  I [ F 1 o ( - O ( t l  (72) 
-OD 

where the eigenvalues A, are given by the expressions (54). 
Using Eqs. (31) for the correlators of the noise, and 

calculating the second-order averages (An + (t12), after al- 
gebraic transformations we obtain 

where ny = ni  = y&. Suppression of fluctuations of the 
photocurrents below the shot-noise level occurs with de- 
crease of the dispersions D ,  of the quantum fluctuations 
below the coherence level: D , < 2 4 .  From the results (73) 
and (74) it is easy to see that this effect is realized for the sum 
of the photon numbers of the pump modes when the condi- 
tion E - r - 1 > 0 is fulfilled, and the suppression can reach 

18 JETP 76 (I), January 1993 G. Yu. Kryuchkyan and K. V. Kheruntsyan 18 



50% for r g  1 near the instability point E = 2. 
We shall also give the results of calculations of the var- 

iances of the fluctuations of the actual photon numbers of 
the three modes in the cavity: 

Using the general formula ( 5 2 )  and the correlators ( 3  1 ), for 
regime ( b )  we obtain 

r(2-&)+2(&-i )"  
(An,  ( t )2>=<Anz( t )Z>=n,@ 

2~  (2-13) ' ( 7 6 )  

Analogous calculations for the generation regime ( c )  
with asymmetric behavior of the pump intensities in the cav- 
ity in the approximation n': ) n! give 

(An, (t)'>=n,O 
4+2Pf(e)+&+r[2-f (e) 1' 

g ( e )  [2r t - f ( e ) l  
(Anz(t)9=n,3; ( 7 7 )  

where 

The results ( 7 6 )  and ( 7 7 )  show that the level of the 
quantum fluctuations of the intensities of each of the modes 
exceeds the coherence noise level (n,) = n; in both above- 
threshold generation regimes. Calculations of the variances 
of the fluctuations of the sum and difference of the pump 
intensities in regime ( c ) ,  for ny ) n!, which can be per- 
formed on the basis of the general solutions ( 5 2 ) ,  also indi- 
cate the absence of suppression of these fluctuations below 
the coherence level. 

b) Spectra of the fluctuations of the photocurrents 

Equations (63 ) - (65 )  and ( 6 8 )  lead to the following 
expression for the fluctuation spectra of the sum or differ- 
ence of the photocurrents: 

in which 

* (An,(o')Anz(@)>+<Anz(@')Anl(~)) 
(n I / -  -I9 ( 7 9 )  

and we have used the following frequency-independent sim- 
plified expression for the shot noise: 

which is valid for wr0 ( 1. 
The Fourier components An,,, ( w )  of the fluctuations, 

as the solutions of the system of equations ( 3 3 ) ,  have the 
following form: 

ronoo + [% - ie ( y - i o )  ] F ~ : ~ ,  ( a )  - - (2y0-ia3)~:(,, ( a ) } .  
1221 1 )  2na(fi,O 

where 

no(, yo" (n,")' 
B ( o ) = d s t ( ~ - i o l ) = y O z y ( a + $ )  - - 2y02 

n 1 ~ . , ~ n ~ "  

By means of these solutions and the noise correlators 
( 3 5 )  we can calculate the averages (An, (w ' )  An, ( w  ) ) and 
then the quantities C ,  ( a ) .  Omitting the intermediate re- 
sults, we give the final expression for the normalized fluctu- 
ation spectrum of the sum and difference of the pump photo- 
currents: 

where 

and we have used the notation: 

This result has been written in general form for application 
to both regimes [ ( 6 )  and ( c )  1 .  In each of the regimes the 
stationary photon numbers are different, and the parameters 
p and q are respectively equal to 

In Fig. 7  the result ( 8 2 )  for the sum of the photocur- 
rents is presented in graphical form for the case of ideal pho- 
todetectors with g = 1. A decrease of the fluctuations below 
the shot-noise level ( 0  < P + ( w ) / P s ,  < 1 ) occurs in the re- 
gions of the side frequencies of the spectrum and is absent at 
zero frequency. Here, the greatest effect is close to 100% for 
E =: 2  and for small values of the parameter r = yo/y. 

In the region E > 2  the effect decreases with increase of E 

and vanishes for E' ) 1. 
Analysis of the expression ( 8 2 )  for P -  ( w )  shows that 

for the difference of the photocurrents suppression of fluctu- 
ations is absent in the entire range of the spectrum. 

The suppression of the fluctuations in the sum of the 
intensities can be explained qualitatively as follows. For two 
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coherent fields at the input of the cavity, as is well known, 
correlation of the instantaneous fluctuations of the photon 
numbers is absent: (An:(?) An:(?)) = 0. As a consequence 
of the nonlinear four-photon interaction in the cavity the 
two beams acquire the correlated statistical properties that 
are characteristic for two-photon absorption. As a result, the 
correlation of the fluctuations of the photon numbers in the 
pump modes becomes negative: (An, ( t)  An, ( t )  ) < 0, and, as 
is easily seen from (79),  quantum fluctuations are found to 
be suppressed in the sum of the photon numbers. This cir- 
cumstance can also be seen from Eqs. (28), if we draw atten- 
tion to the fact that a decrease of the fluctuations of one of 
the coupled modes (say, An, ) leads to an increase of An, as a 
consequence of the fact that in (30) the corresponding ma- 
trix element A,, > 0. 

Analogous predictions concerning the suppression of 
fluctuations of the sum of the intensities have been made 
recently for such processes as FWM with monochromatic 
pumping,24 second-harmonic generati~n,~' and two-photon 
absorption bi~tability.~' 

9. CONCLUSION 

FIG. 7. Normalized spectrum P +  (w)/P,, as a func- 
tion of w/y: a )  E = 1.3, r = 0.05 (dashed-dotted 
curve); E = 1.8, r = 0.05 (solid curve); E = 1.8, 
r = 0.1 (dashed curve); b) E = 3, r = 0.05 (solid 
curve); E = 3, r = 0.1 (dashed curve); E = 6, 
r = 0.05 (dashed-dotted curve). 

although the maximum squeezing can be 50%. We shall give 
some numerical results. For E = 5 the intensities 
N,,, = 4.4y0y/x, and the maximum squeezing for r = 0.8 
amounts to 43% in the region of spectral frequencies wop,/y 
= f 5.8. For E = 10 we have N,,, = 48y0y/x, and the max- 

imum squeezing for r = 0.6 amounts to 48% for 
wop,/y = f 10.7. 

For the other nonclassical effect-the lowering of the 
level of the quantum noise in the sum of the photocurrents to 
below the shot level-the optimum values are values of E 

near the instability point E = 2 and small values of r, for 
which the suppression of the fluctuations is close to 100%. 

Another feature of this nonlinear system, requiring spe- 
cial consideration, is the bistable behavior of the intensities 
of the pump modes in the cavity in the region E > 2. 

"See, e.g., the special journal issues'~~ devoted to this problem, and the 
review Ref. 3. 

*'Henceforth we assume the Stratonovich form for the stochastic equa- 
tions and integrals,I4 in which the usual rules of analysis are preserved in 
the calculations. 

An important distinctive feature of the nonlinear sys- 
tem considered has turned out to be the fact that it permits 
an analytical treatment above the generation threshold in 
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The results obtained convince us that the process of FWM in 
two laser fields is extremely promising for the generation of 
single-mode squeezed light with suppressed quantum fluctu- 
ations of the quadrature amplitudes. This process leads also 
to the formation of a nonclassical two-mode field on the fre- 
quencies of the pump fields; for this field the fluctuations of 
the intensities of the two modes are mutually anticorrelated. 

The light-squeezing effect in the region of the signal- 
mode frequency wo can reach - 100% in the entire above- 
threshold region E > 1 and for r 2 10, but the intensity is 
bounded by the value No = 4y0y/x. Generation of more in- 
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