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We carry out a canonical quantization of a Dirac spin particle in an external magnetic field in a 
gauge that makes it possible to describe both massive and massless particles in four-dimensional 
(D = 4) space. We derive the coordinates and momenta of the Newton-Wigner type for a particle 
in an external magnetic field and discuss the relation between this quantization scheme and the 
Blount picture. 

1. This paper uses the classical pseudomechanical ac- 
tion (particle spin is described by elements of a Grassmann 
algebra) to quantize a relativistic spin particle in an external 
magnetic field. As in Ref. 1, where we considered the canoni- 
cal quantization of a free relativistic spin particle, we employ 
a scheme of quantization in which all additional conditions 
fixing the gauge are added to the theory at the classical level. 
This leads to a theory with constraints of only the second 
kind, to which the Dirac quantization scheme is applied.' 
Here, as in Ref. 1, one of the additional constraints fixing the 
gauge is chosen in the form x, - r x  = 0, which guarantees 
that particles and antiparticles can be described simulta- 
neously even in classical t h e ~ r y . ~  Because of the complexity 
of the Dirac brackets for independent dynamical variables, 
the operator realization of the theory directly in terms of 
initial variables appears impossible. Therefore, even to a 
greater extent than in the case of a free particle,' here there 
emerges the need to go over to new variables, in whose terms 
the commutation relations would acquire canonical form. 
Such variables can be found. 

Next, by analogy with Ref. 1, we introduce the "classi- 
cal" spin tensor and the Pauli-Lyubanskii vector in the pres- 
ence of an external magnetic field-two quantities that are 
gauge-invariant generalizations of the corresponding quan- 
tities for a free particle and whose expressions are found in 
terms of canonical variables. (In contrast to the case where 
the particle is free, here the spin tensor and the Pauli-Lyu- 
banskii vector are not supergauge-invariant and are not con- 

2. We consider the action in the theory describing the 
behavior of a relativistic spin particle in an external electro- 
magnetic field:"' 

wherep = 0,1,2,3, the xp are the coordinates of the particle, 
g p  the Grassmann variables describing the spin degrees of 
freedom, c,, X, and e are additional fields (e is the even ele- 
ment of the Grassmann algebra, and g5 and x are the odd 
elements), g is the particle charge, A the vector potential of 
the electromagnetic field, Fpv = dpA, - dVAp,  the dot 
stands for differentiation with respect to r along the parti- 
cle's trajectory, and the derivatives with respect to Grass- 
mann variables are left-hand. 

Action ( 1 ) is invariant under reparametrization trans- 
formations with parameter u, 

and supergauge transformations with parameter E ,  

served in time. ) where we have introduced the notation 
Quantization of the theory is conducted in terms of ca- 

nonical variables. In the very writing of the quantum analogs 
of the expressions that link the initial and new variables 
there arises the question of ordering operators of canonical 
variables. It appears that if the rules of symmetric (Weyl) 
quantization are followed, within a certain gauge (15 = 0)  
we arrive at the theory of a spin particle in an external mag- 
netic field in the Blount picture,4 as Dirac's theory is ob- 
tained in the Foldy-Wouthuysen representation in the case 
of a free par t i~ le .~  

In Sec. 2, following Dirac's prescription, we establish 
the complete set of constraints of the theory. In Sec. 3 we 
give the results of calculating the Dirac brackets for physical 
variables and perform a transition for the initial variables to 
the canonical. Section 4 deals with quantization of the theo- 
ry. Finally, Sec. 5 is devoted to the relation between the given 
quantization scheme and the Blount picture. 

We find the momenta canonically conjugate to the vari- 
ables xp, e, l , ,  and X: 

Equations (5),  except the first, serve as primary con- 
straints: 
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As in Ref. 1, the numbering of the constraints is chosen from 
considerations of compactness of the matrix 
C,,. = {@,,@,.) of the Poisson brackets of all the con- 
straints in the theory. The canonical Hamiltonian H of the 
theory has the form 

Following Dirac,' we set up the total Hamiltonian of the 
theory, 

(the ;l are Lagrange multipliers), and find the secondary 
constraints 

As in the quantization of a free relativistic spin particle,' 
here there are four constraints of the first kind: in addition to 
@,, @,, and @,,, there is one more constraint of the first 
kind, which is a linear combination of a,, @,, and @,. 
Hence, lifting the degeneracy in the theory requires four ad- 
ditional constraints, which we select in the form 

where 

a and b are parameters that do not vanish simultaneously 
(for more details concerning the restrictions on parameters 
a and b see Ref. 1 ), and x = + 1. Note that, in contrast to 
the case of a free particle, 9, is not a numerical quantity 
and, actually, x designates only the sign of the root in Eq. 
( 11 ) . Nevertheless, here too the value x = + 1 corresponds 
to the presence of a particle and x = - 1 of an antiparticle. 

The collection of constraints (6),  (9),  and ( 10) repre- 
sents a complete set of constraints of the theory, all con- 
straints of the second kind. 

3. As already mentioned in item 1, further study will be 
done for a potential A, (x) = (O,A, (x)  ), which corresponds 
to a magnetic field that is constant in time. 

We perform the canonical transformation from vari- 
ables xp and P, to variables x', and P; via the relations 

(the corresponding generating function has the form 
W = xpP; - r x P  ,', ). In terms of the new variables the con- 
straint @, acquires the form x,', ~ 0 ;  the other constraints 
remain unspecified with this choice of the potential. Thus 
the system of constraints consisting of Eqs. (6) ,  (9),  and 
( 10) no longer depends explicitly on time. This enables us to 

make direct use of standard "Dirac" quantization with the 
second-order constraints. As a result of this canonical trans- 
formation the system Hamiltonian on the constraint surface 
takes the form 

Calculating the Dirac brackets over the complete system of 
constraints (6), (9),  and ( 10) for the independent variables 
of the theory, for which we have taken xi, Pi ,  and Si, we 
obtain 

w h e r e a = a 9 ' , + b m , p = a m + b 9 ' , , y = a 2 - b 2 , a n d  

Po=90=.-x (9t+mZ+ig-FikgiEk) "'=-x@. 

Comparison of these formulas with similar ones ob- 
tained for a free particle' shows that in this case the expres- 
sion for the Dirac brackets of independent variables is much 
more complicated. Hence, there is still more reason to go 
over from the variables xi, Pi, and Si to a new set variables qi, 
H i ,  and Il,' for which the Dirac brackets are canonical: 

Such variables can be found, and their relation to the old 
variables is specified by the following equations: 

qix2i-iE' (a+ bx )  (9"')  
$ ( m + a )  ' 

(a+ bx)  (Y'E')  
rIt=Pt+ig(aiA,,,)Em 

fi(m+a) ' 
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wherep = b y ,  + am. 
Note that if the formulas for q' and $' are gauge-invar- 

iant generalizations of the respective formulas for a free par- 
ticle, in the expression for the canonical momentum there 
appears a new term proportional tog, a term that reflects the 
fact that the Dirac bracket {Pi,P,), is nonzero in an external 
field. 

Equations ( 16) yield the inverse formulas that link the 
variables xi, 9' = Pi - gAi (x),  and 6 ' with the new vari- 
ables qi, pi = IIi - gAi ( q , ~ ) ,  and $': 

where 

In terms of the new variables the Hamiltonian of the theory 
assumes the form 

When the spin variables for the case of a free particle 
were described in Ref. 1, we introduced the quantity 
EP = g t  , (PP/m){, in terms of which the spin tensor 
SPv = igpg was expressed. Being a supergauge invariant, 
this quantity is also conserved in'time (on the equations of 
motion). As a consequence, Spv is also conserved in time. 
Note that the total angular momentum Jpv of a free particle 
possesses the same property. But in an external field, obvi- 
ously, neither the total angular momentum nor the spin of 
the particle is conserved in time. Nevertheless, in this case as 
well it proves expedient to introduce the quantity 

which is a gauge-invariant generalization of tensor SPv (the 
index "A " indicates that there is an external field). In terms 
of the variables q, n-, and $ the quantity $5, assumes the 
form 

Note that ';,, and, hence, S';,', are independent of the pa- 
rameters a and b in the fermion gauge of +, (although now 
they are not supergauge invariants). If by analogy with the 
case of a free particle we introduce the vectors 

(Sf' is the spin vector in terms of the variables $ that de- 
scribes the particle spin in the rest frame), we can find the 
formula that links them, 

which is a generalization of the corresponding formula for a 
free particle1 to the case involving an external field. Note 
that in deriving Eq. (23) we employed the fact that the vec- 
tor $i is three-dimensional (terms containing the product of 
four and more $ were set to zero). In terms of the variables 
s Eqs. ( 17) become 

where B, is the magnetic induction vector: Bi(q) 
= : ~ ~ ~ 4 ~  (9). 

Finally, let us introduce the analog of the "classical" 
Pauli-Lyubanskii vector in the presence of an external field: 

The independence of 5 'A' from the fermion-gauge param- 
eters implies the independence of vector W r )  from the same 
parameters. Using Eqs. (2 1 ), we can easily find the expres- 
sion for W(A) in terms of the variables q, n-, and $: 

P 

which is also a gauge-invariant generalization of the respec- 
tive expressions for a free particle.' 

4. Obviously, quantization of the theory is most conve- 
niently done in terms of the canonical variables q, n, and $, 
whose Dirac brackets are spzcified in ( 15). Introducing the 
corresponding operators 6, 11, and $, we can write the com- 
mutation relations for them by following the rule that 
[ ...,... ] = ifi{ ...,... 1, : 

where the last formula specifies a Clifford algebra in three- 
dimensional space. The unique finite-dimensional irreduci- 
ble representation of the operators q', as is known, is given 
by the Pauli matrices a': 

h 

The transition to the operators 2, P, and 8, which correspond 
to the initial variablesx, P, and { of the theory, with employ- 
ment of Eqs. (17) is complicated, in contrast to the case oLa 
free particle, by the problem of ordering the operators 8, II, 
and $in the respective quantum expressions. Here we follow 
the rules of symmetric, or Weyl, quantization. Symmetric 
quantization for the elements $ of a Grassmann algebra is 
defined in the following a classical function f($) 
is expanded in a power series in $ thus: 
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(in view of the Grassmann nature of $, the series contains a 
finite number of terms; in the case at hand n = 3). The tran- 
sition to the quantum analog in (29) is performed by supply- 
ing the variables $ with operator carets only after the expan- 
sion coefficients in (29) have been antisymmetrized over all 
the indices. 

Allowing for the fact that kt = ( W 2 )  a,, we arrive2t 
!he followizg expressions for the quantum operators 3, 9, 
S 6 c A )  and H, 

where the symbol e designates the correspondence between 
an operator and its Weyl transf~rmation,'~ and 
6 = (3 + m2) ' I2. The presence of 6 in (30) instead of R 
(cf. Eqs. (23) and (24) ) is due to the fact that terms with the 
fourth and higher powers of $ have been discarded. 

5. To compare our results with those from the literature 
obtained by other quantization schemes we write the expres- 

h 

sions for Ai and 9 , in the ( 5  ZO gauge (a  = 0) : 

We specify, in addition, the velocity operator D, = d3,/dxO. 
Using the relations 

and the expression for 9 , in the l5 z 0 gauge, we arrive at 
the following formula for the operator ir,: 

Equations (3 1) and (32) and the expressions for k P'A' in 
(30) taken in the first approximation in the coupling con- 
stant g coincide fully with analogous formulas in Ref. 10 (in 
the absence of an electric field and of an anomalous magnetic 
moment on the particle) if we replace pi with - pi in view 
of the difference in the signs in the definition of the canoni- 
cally conjugate momentum Pi. These equations express the 
operators of position, momentum, velocity, and spin in the 
Blount It is important to note, however, that our 

formulas are valid in all orders in g and have been obtained 
without any restrictions imposed on the potentials. 

It is also easy to find the equation for the spin in this 
picture: 

(cf. the respective equation in Ref. 10). Finally, we write the 
quantum analogs of relations (26) for the Pauli-Lyubanskii 
vector: 

Note the following. In the case of a free particle' it was found 
that to the two classical objects mgp and W,, there corre- 
sponds, to within a constant factor, a single quantum opera- 
tor. To clarify the situation in the present case, we also write 
the quantum analogs of Eqs. (21 ) : 

The presence of the last term in g ;,, is due to the term pro- 
portional to $3 in the expansion of the denominator in (21 ) 
in powers of $. Comparing (36) with (35) shows that in an 
external field the operators mf ';,, and Wl;,, are distinct 
(the additional term in (36) is proportional to the coupling 
constant and has the form of a quantum correction). 

In conclusion we add that, as Eqs. (16) imply, in an 
external magnetic field there exists a gauge a + bx in which 
the canonical variables coincide with the initial variables of 
the theory and the Dirac quantization of the theory in terms 
of these variables coincides with ordinary canonical quanti- 
zation. 

Thus, the above discussion within the framework of the 
pseudomechanics of the canonical quantization of a relativ- 
istic spin particle in an external time-constant magnetic field 
(in the c5 = 0 gauge) brings us to the so-called Blount pic- 
t ~ r e , ~ ~ ' ~  just as quantization of a free particle leads to the 
Dirac picture in the Foldy-Wouthuysen representation. 

We would like to express our gratitude to I. V. Tyutin 
for useful discussions. 
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