Canonical quantization of a Dirac spin particle in an external magnetic field
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We carry out a canonical quantization of a Dirac spin particle in an external magnetic field in a
gauge that makes it possible to describe both massive and massless particles in four-dimensional
(D = 4) space. We derive the coordinates and momenta of the Newton—-Wigner type for a particle
in an external magnetic field and discuss the relation between this quantization scheme and the

Blount picture.

1. This paper uses the classical pseudomechanical ac-
tion (particle spin is described by elements of a Grassmann
algebra) to quantize a relativistic spin particle in an external
magnetic field. Asin Ref. 1, where we considered the canoni-
cal quantization of a free relativistic spin particle, we employ
a scheme of quantization in which all additional conditions
fixing the gauge are added to the theory at the classical level.
This leads to a theory with constraints of only the second
kind, to which the Dirac quantization scheme is applied.?
Here, as in Ref. 1, one of the additional constraints fixing the
gauge is chosen in the form x, — 7 = 0, which guarantees
that particles and antiparticles can be described simulta-
neously even in classical theory.? Because of the complexity
of the Dirac brackets for independent dynamical variables,
the operator realization of the theory directly in terms of
initial variables appears impossible. Therefore, even to a
greater extent than in the case of a free particle,' here there
emerges the need to go over to new variables, in whose terms
the commutation relations would acquire canonical form.
Such variables can be found.

Next, by analogy with Ref. 1, we introduce the “classi-
cal” spin tensor and the Pauli-Lyubanskii vector in the pres-
ence of an external magnetic field—-two quantities that are
gauge-invariant generalizations of the corresponding quan-
tities for a free particle and whose expressions are found in
terms of canonical variables. (In contrast to the case where
the particle is free, here the spin tensor and the Pauli-Lyu-
banskii vector are not supergauge-invariant and are not con-
served in time.)

Quantization of the theory is conducted in terms of ca-
nonical variables. In the very writing of the quantum analogs
of the expressions that link the initial and new variables
there arises the question of ordering operators of canonical
variables. It appears that if the rules of symmetric (Weyl)
quantization are followed, within a certain gauge (§5 = 0)
we arrive at the theory of a spin particle in an external mag-
netic field in the Blount picture,* as Dirac’s theory is ob-
tained in the Foldy—Wouthuysen representation in the case
of a free particle.”

In Sec. 2, following Dirac’s prescription, we establish
the complete set of constraints of the theory. In Sec. 3 we
give the results of calculating the Dirac brackets for physical
variables and perform a transition for the initial variables to
the canonical. Section 4 deals with quantization of the theo-
ry. Finally, Sec. 5 is devoted to the relation between the given
quantization scheme and the Blount picture.
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2. We consider the action in the theory describing the
behavior of a relativistic spin particle in an external electro-
magnetic field:**

s_—jd[

~+ emt—i g5k~ (B - ms,)

+2ga':"A,.+igeF,.v§"§”] , (1)

where u = 0,1,2,3, the x* are the coordinates of the particle,
£ * the Grassmann variables describing the spin degrees of
freedom, &5, y, and e are additional fields (e is the even ele-
ment of the Grassmann algebra, and £ and y are the odd
elements), g is the particle charge, 4 # the vector potential of
the electromagnetic field, F,, =d,4, —d,4,, the dot
stands for differentiation with respect to 7 along the parti-
cle’s trajectory, and the derivatives with respect to Grass-
mann variables are left-hand.

Action (1) is invariant under reparametrization trans-
formations with parameter u,

Sar==2uP*, dt*=2guFf*§,, 6&;=0,

(2)
8A4,=2uP.0'A,, de=2u, 8x=0,
and supergauge transformations with parameter ¢,
=igk*, SE=eP*, OEs=em,
(3)
6A,=iek.0"A,, Se=iey, Ox=2¢,
where we have introduced the notation
_E 4)
P e 2 B

We find the momenta canonically conjugate to the vari-
ables x*, ¢, £, and y:

oL iy i
Py, Iy =-el 7§u+gAuEg°u+gAw
oL oL i
e — —ae - 0, ﬂu 3 _—agl" = T gl‘-’
oL i oL
- == TS — e =1 - 5
T aés 2 §5 Ty, ax 0 ( )

Equations (5), except the first, serve as primary con-
straints:
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Oy=5,~0, D,,=n,~0, (6)

i
O=mn,— — E.=0, E:s=0,

= 2, 3y
5 n=0, 1,

Asin Ref. 1, the numbering of the constraints is chosen from
considerations of compactness of the matrix
C, ={®,,®,} of the Poisson brackets of all the con-
straints in the theory. The canonical Hamiltonian H of the
theory has the form

H=.i"pu+.§uﬂu+.r§5nl—ll = _;_ (g’—m’—igFﬂ'E"E")
5
+2 (B -mb),

yu=Pu'—gAl" M

Following Dirac,? we set up the total Hamiltonian of the
theory,

H=H+i)l O, ik D AR Do +iky, Dy (8)

(the A are Lagrange multipliers), and find the secondary
constraints

Q=2 ' —mt,~0, O,=P*—m*—igF, E't" =0. 9)

As in the quantization of a free relativistic spin particle,’
here there are four constraints of the first kind: in addition to
d,, d,, and P,,, there is one more constraint of the first
kind, which is a linear combination of ®,, ®,, and D,
Hence, lifting the degeneracy in the theory requires four ad-
ditional constraints, which we select in the form

Dy=z,—%1~0, D=0k, +bE:~0,
(10)
(I)‘oEe'i'i/(l)zO, (DleXzO’

where

0= (P+m*+igFEE)", Pe=—n0, (11)

a and b are parameters that do not vanish simultaneously
(for more details concerning the restrictions on parameters
a and b see Ref. 1), and » = + 1. Note that, in contrast to
the case of a free particle, Z is not a numerical quantity
and, actually, » designates only the sign of the root in Eq.
(11). Nevertheless, here too the value x = + 1 corresponds
to the presence of a particle and x = — 1 of an antiparticle.

The collection of constraints (6), (9), and (10) repre-
sents a complete set of constraints of the theory, all con-
straints of the second kind.

3. As already mentioned in item 1, further study will be
done for a potential 4, (x) = (0,4, (x)), which corresponds
to a magnetic field that is constant in time.

We perform the canonical transformation from vari-
ables x* and P, to variables x"* and P, via the relations

(12)

z) =x—nr1, &=z, P,/=P,

(the corresponding generating function has the form
W =x"P, — 7xP ). In terms of the new variables the con-
straint @4 acquires the form x; =~0; the other constraints
remain unspecified with this choice of the potential. Thus
the system of constraints consisting of Egs. (6), (9), and
(10) no longer depends explicitly on time. This enables us to
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make direct use of standard “Dirac” quantization with the
second-order constraints. As a result of this canoriical trans-
formation the system Hamiltonian on the constraint surface

takes the form
Ho=(Pi+m*+igF k&) " =0. (13)

Calculating the Dirac brackets over the complete system of
constraints (6), (9), and (10) for the independent variables
of the theory, for which we have taken x, P, and &', we
obtain

i j i’Y ifJ b hy h igp i
.ot = v e Goge |
{«', P;} p=—0;— "51! g(09;4x)

e+ @ o).

i __1__ i _____b___ ngn 1 @i
(@' ¥ = az[w" TAARAS

y b ngn RERE @
+lg'§1;;(9p E")FRERE ] (14)
{P:, P} p=ig“—£z-(a‘A,,) (9;4,)
b
X[ Erkn T ﬁ@"g") (ExPn—EnPh) ],
i — g'y i b ngEn
(@.2ho = & 2 @) (- e 9)
ib lgm il n 1’ i in
+—BITO(-7"§")§§ (gF 9;4 +—2—9”6;F )],
o . PP
- 22
b'Yg t ngn il gpi il i
+ ﬁPoa’E (PrE™) (FIP+FI P,

wherea =aZ,+bm,f=am +bP,, y=a*>—b? and
o =Po=—%(PE+m*+igF st &) "=—%B.

Comparison of these formulas with similar ones ob-
tained for a free particle' shows that in this case the expres-
sion for the Dirac brackets of independent variables is much
more complicated. Hence, there is still more reason to go
over from the variables x', P;, and £, to a new set variables ¢’,
I1,, and ¢’ for which the Dirac brackets are canonical:

{¢', ¢}o=0, (¥, ¥}o=—i6" {q', II;}p=0,

{d', ¥}o={I1, IL}o={IL;, ¢} »=0. (15)

Such variables can be found, and their relation to the old
variables is specified by the following equations:

; (a+bx) (P'E')
p(mta)

_ . (a+bx) (P'E)

H‘—P«+lg(3iAm)§m—W+—G)),

- ,(at+bx) (P'E) )
V=t+F B(m+®)

g'=2'—i§

(16)
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where B=b%,+ am.

Note that if the formulas for ¢’ and ¢’ are gauge-invar-
iant generalizations of the respective formulas for a free par-
ticle, in the expression for the canonical momentum there
appears a new term proportional to g, a term that reflects the
fact that the Dirac bracket { P,,P, } ,, is nonzero in an external
field.

Equations (16) yield the inverse formulas that link the
variables x', Z, = P, — gA,(x), and £ with the new vari-
ables ¢, m; = I, — gA4,(q,7), and ¢ ":

(ax+b) (n*y*)
(m+Q) (bm—axQ)’

(ax+b) (ny*)
(m+Q) (bm—axQ) '

(ax+b) (n*p*)
(m+Q) (bm—axQ) ’

zisqi_i‘pi

9‘=ﬂi+igF“\p(

a7

Ei=¢i+ni

where

Q=[n +m*+igF;(g, T)bb;]". (18)
In terms of the new variables the Hamiltonian of the theory
assumes the form

H o-g.

When the spin variables for the case of a free particle
were described in Ref. 1, we introduced the quantity
Er=¢EF _ (P*/m)&s in terms of which the spin tensor
SH = it_?,’ “E"¥ was expressed. Being a supergauge invariant,
this quantity is also conserved in time (on the equations of
motion). As a consequence, S*" is also conserved in time.
Note that the total angular momentum J** of a free particle
possesses the same property. But in an external field, obvi-
ously, neither the total angular momentum nor the spin of
the particle is conserved in time. Nevertheless, in this case as
well it proves expedient to introduce the quantity

(19)

[ .4 =B >V
Siar=iEa)&ca),

K ad
En=t"~—t.. (20)
m
which is a gauge-invariant generalization of tensor S** (the
index “A4 ” indicates that there is an externgl field). In terms
of the variables g, 7, and ¥ the quantity £/,, assumes the
form
- ®, .. 1 . n (ni‘l’i)
=—— = +—. 21
g(A) m(“’t’)v §(4) ¢ m(m+g) ( )
Note that & 4, and, hence, S/}, are independent of the pa-
rameters g and b in the fermion gauge of ¥, (although now
they are not supergauge invariants). If by analogy with the
case of a free particle we introduce the vectors

i e .
S — - nEVED, Sy —=— T’ ei7x0, 0k

(22)
(S is the spin vector in terms of the variables ¢ that de-
scribes the particle spin in the rest frame), we can find the
formula that links them,

Q n; (n ij‘P)

BA) —_— g (23)
St m S m(m + Q)
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which is a generalization of the corresponding formula for a
free particle’ to the case involving an external field. Note
that in deriving Eq. (23) we employed the fact that the vec-
tor ¢, is three-dimensional (terms containing the product of
four and more 9 were set to zero). In terms of the variables
S Y Eqgs. (17) become

(ax+b)enS;*n,
(m+Q) (bm—axQ)’
(ax+b) [S:* (Bymi) —5,(S,*By) |

(m+Q) (brm—axQ) '
Q=(n+m*—2gS,*B,)",

(24)

Pi=n,—g

where B, is the magnetic induction vector: B;(q)
=35 Fu (@) '

Finally, let us introduce the analog of the “classical”

Pauli-Lyubanskii vector in the presence of an external field:

i S Asa i °
W= — 2 S,mw?'&(:)g(m = —‘ge,mqmg(’;,g,,.,.
(25)

The independence of & “’ from the fermion-gauge param-
eters implies the independence of vector W {*’ from the same
parameters. Using Eqgs. (21), we can easily find the expres-
sion for p/ ’(‘A) in terms of the variables g, 7, and ¥:

n (i)
(m+Q) 1
(26)

Wom‘=ﬂis{'~ W, “de —K[ mS.* +

which is also a gauge-invariant generalization of the respec-
tive expressions for a free particle.’

4. Obviously, quantization of the theory is most conve-
niently done in terms of the canonical variables g, I1, and ¢,
whose Dirac brackets are specified in (15). Introducing the
corresponding operators g, II, and ¥, we can write the com-
mutation relations for them by following the rule that

(¢ ¢ =, ) =[¢", ¥ = [, $). =0,

~ A o~ A (27)

(¢', L) -=it8;, [V, ¥'].=nd"
where the last formula specifies a Clifford algebra in three-
dimensional space. The unique finite-dimensional irreduci-
ble representation of the operators ', as is known, is given
by the Pauli matrices o *:

q,,._‘t(_{lz_)"’ oagx( _"5_)" o, i=1,2,3. (28)

The transition to the operators X, ﬁ, and § , which correspond
to the initial variables x, P, and £ of the theory, with employ-
ment of Egs. (17) is complicated, in contrast to the case of\ a
free particle, by the problem of ordering the operators g, II,
and ¢ in the respective quantum expressions. Here we follow
the rules of symmetric, or Weyl, quantization. Symmetric
quantization for the elements ¢ of a Grassmann algebra is
defined in the following manner:*° a classical function /(1)
is expanded in a power series in ¢ thus:
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(29)

1($)= Z ZI fﬁmivvi' T

v=0 (i)

(in view of the Grassmann nature of ¢, the series contains a
finite number of terms; in the case at hand n = 3). The tran-
sition to the quantum analog in (29) is performed by supply-
ing the variables i with operator carets only after the expan-
sion coefficients in (29) have been antisymmetrized over all
the indices. )

Allowing for the fact that S'¥ = (#/2)0;, we arrive at
the following expressions for the quantum operators X, 2,
S and H,

h (axtb)epuom,

T S om—an®) (mt Q)
éa _ k (a"+b)[04(ﬂu3u)—ﬂi(0u8n)]
RS TT (bm—ax®) (m+8) :
(30)
-~ 2] b ni(mo)
M= — - ———,
2 m(m+9)
h (B\e)
Ro=G-g——2,

where the symbol = designates the correspondence between
an operator and its Weyl transformation,'® and
Q = (77 + m*)'”2. The presence of { in (30) instead of 0
(cf. Egs. (23) and (24) ) is due to the fact that terms with the
fourth and higher powers of 3 have been discarded.

5. To compare our results with those from the literature
obtained by other quantization schemes we write the expres-

sions for X; and &’i in the £5~0 gauge (a =0):
Jow= g — ﬁ_ €4jn 0570

= 2 m(m+Q) °

k(o (mBy)—.(0:8y) |

— 31
2 m(m+Q) S

.‘i’;.~=n.~—g

We specify, in addition, the velocity operator b, = dX;/dx,.
Using the relations

(32)

; P
v sﬁo - u%—- ‘K{z‘, Ho}n-—ﬂ-s?‘-.

and the expression for Z; in the £,~0 gauge, we arrive at
the following formula for the operator ;:

o m (BSY) (mm@+QY)
- da, "3 m(m+Q)a°
8:*(muBy)
——, (33)
gan(m+Q)

Equations (31) and (32) and the expressions for SEW jp
(30) taken in the first approximation in the coupling con-
stant g coincide fully with analogous formulas in Ref. 10 (in
the absence of an electric field and of an anomalous magnetic
moment on the particle) if we replace 7; with — 7; in view
of the difference in the signs in the definition of the canoni-
cally conjugate momentum P;. These equations express the
operators of position, momentum, velocity, and spin in the
Blount picture.*'® It is important to note, however, that our
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formulas are valid in all orders in g and have been obtained
without any restrictions imposed on the potentials.
It is also easy to find the equation for the spin in this
picture:
dS%W

dz,

(34)

gA
2% 6 Eijns§( )By

(cf. the respective equation in Ref. 10). Finally, we write the
quantum analogs of relations (26) for the Pauli-Lyubanskif
vector:

h
Wo(“z ‘2— (renan),

7 (7,0,)

LATRR 35
m+8 1 3%)

W= - %u[ ma; +
Note the following. In the case of a free particle' it was found
that to the two classical objects m&, . and W, there corre-
sponds, to within a constant factor, a single quantum opera-
tor. To clarify the situation in the present case, we also write
the quantum analogs of Egs. (21):

E‘(’A) 2— % (—g—) * (w/),
- i ﬁ h i k113 (ﬂhOA) h FLT (uhBh)
Seay = x (_2 ) [" ot d) 62 mmra)a ]
(36)

The presence of the last term in & 4, is due to the term pro-
portional to ¢ in the expansion of the denominator in (21)
in powers of ¢. Comparing (36) with (35) shows that in an
external field the operators mé%,, and W%, are distinct
(the additional term in (36) is proportional to the coupling
constant and has the form of a quantum correction).

In conclusion we add that, as Egs. (16) imply, in an
external magnetic field there exists a gauge a + bx in which
the canonical variables coincide with the initial variables of
the theory and the Dirac quantization of the theory in terms
of these variables coincides with ordinary canonical quanti-
zation.

Thus, the above discussion within the framework of the
pseudomechanics of the canonical quantization of a relativ-
istic spin particle in an external time-constant magnetic field
(in the & = 0 gauge) brings us to the so-called Blount pic-
ture,*!° just as quantization of a free particle leads to the
Dirac picture in the Foldy-Wouthuysen representation.

We would like to express our gratitude to I. V. Tyutin
for useful discussions.
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