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The magnetic structures and the properties of states in frustrated Heisenberg antiferromagnets 
are investigated. It is shown that frustrations induced in the system by additional spins result in a 
greater variety of phases with commensurate and incommensurate periods as well as in the 
appearance of aperiodic phases. The energy spectrum of the states is studied. It is established that 
the modulated (0,Q) phase is unstable in a wide range of values of the parameters of the 
frustrations. The phase diagram of the states is constructed and the region where separate 
structures are locally degenerate is indicated. 

1. INTRODUCTION 

It is now well known that the effects of frustrations due 
to either competition of exchange interactions1 or the lattice 
geometry (see, for example, Ref. 2 and the references cited 
there) play a very important role in different magnetic sys- 
tems. Experimental and theoretical investigations have 
shown that in many respects their properties are fundamen- 
tally different from the corresponding unfrustrated systems. 
This difference is reflected primarily in the rich diversity of 
phases and phase transitions; it is due to the strong degener- 
acy and high sensitivity of the systems to different types of 
perturbing interactions. 

Quantum effects in frustrated systems can alter the 
ground state decisively, essentially because the effective spin 
length can vanish ~ompletely.~ For this reason, in low-di- 
mensional systems, where these effects are most pro- 
nounced, disordered states with zero site magnetization are 
possible in addition to the usual ordered states (NCel struc- 
tures, spiral phases, e t ~ . ~ . ~ ) .  Experimental evidence for the 
existence of such states is presented in numerous studies.'-'l 
Chandra and Doucot were the first to study this question 
theoreti~ally.'~ It has been established that in square frus- 
trated lattices (in contrast to the analogous problem for 
triangular latticesI3) quantum fluctuations can destroy 
long-range order at zero temperatures even for systems with 
classical spins. 

A great deal of attention has also been devoted in var- 
ious studies to the character of the magnetic structure in 
compounds in which additional 3d-elements are either em- 
bedded in the crystal lattice or replace some cations of the 
main elements.14-l6 In the present paper the structures and 
properties of the states of such systems are investigated. It is 
shown below that mixed phases of such materials induce an 
additional frustration channel. The result is that separate 
structures are strongly degenerate and unstable with respect 
to zero vibrations in a wide range of values of the parameters 
of two-dimensional magnetic systems. The problem consid- 
ered here is described by the following Hamiltonian: 

where J ( > 0) is the antiferromagnetic interaction between 
the main magnetic ions along the edge of a square and J' and 
J, are interactions of either sign along the diagonal of the 
square. The first constant corresponds to interaction of the 
main spins and the second one corresponds to the interaction 
between the main and additional ions, located at the center 
of the square (nearest-spin interaction). 

For J, = 0 the additional spins are free, and the main 
spins form a simple square lattice in which frustrations are 
induced by the antiferromagnetic interaction J ' .  Fo r j  < 0.5, 
where we have written j = J1/J ,  the ground state for large S 
is the standard NCel ordered state with two antiparallel sub- 
lattices. Conversely, for j >  0.5 each of the preceding sublat- 
tices decomposes into two antiparallel sublattices, forming a 
N6el state with four magnetic sublattices. For j = 0.5 the 
ground state is strongly degenerate: Quantum fluctuations 
destroy long-range order, and as a result the NCel structures 
can be separated from one another by an intermediate disor- 
dered phase. l2  

For J ,#O additional frustrations arise in the system, 
irrespective of the sign of the exchange constant. For this 
reason it should be expected that such a system will have a 
richer phase diagram. The possible magnetic structures in 
the ground state are examined in Sec. 2. The spectrum of 
excitations of the structures found is investigated in Sec. 3. 
In the last section the phase diagram in the S - "-j, plane is 
constructed for the special case j >  0.5. 

2. MAGNETIC STRUCTURES IN THE GROUND STATE 

In the ground state the energy of the spatially nonuni- 
form structures with high spin S is 

where 

k, k ,  
J ( k )  =.r(coe k,+coa k,) +21' cos k ,  cos k,+4J0 cos - 2 cos - 2 

and the lattice constant satisfies a = 1. Analysis shows that 

%=J s ~ s ~ + ~ - ~ ~  ~ s ~ s , - ~ , ~ ,  ( 1 ) in the general case a frustrated Heisenberg system has five 
',a p,d ,,dl2 different phases, whose wave vectors Q satisfy the condition 
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V, J ( Q )  = 0. The energy and the region of existence of 
these phases are given as follows Ci, = J,/J): 

a )  ferromagnetic phase (Q = 0)  : 

b) antiferromagnetic phase (Q, = 0, Qy = 2a):  

E2=2J(1+j-2jo)S2N. 
(3b) 

jo>/l ,  jG0; jo>2j+l, j 20 ,  

C )  antiferromagnetic phase (Q, = Qy = a) : 

d) incommensurate phase IC, [Q, =0 ,  cos Q,/ 
2 =  -jo/(l  +2j ) l ,  

e) 2Q-incommensurate phase IC, [Q, = Q,, = Q, 
cosQ= - (1 +jo)/2j)l .  

The phase diagram of different states is displayed in 
Fig. 1. We note that the antiferromagnetic (T, a) phase is 
not unique in its region of existence. Since the field acting on 
an additional spin at the center of a square is zero, the system 
is locally degenerate and has a set of aperiodic states. Simi- 
larly, the incommensurate phase IC, also is noi. unique in its 
region of existence. As an example, Fig. 2 shows two states 
with the same energy: the standard spiral state and the non- 
collinear ferromagnetic state. In addition, it turns out that 

I l l  414 \-I 
FIG. 2. State with the same energy in the classical case (i, = 1, j = 0.5): 
a-120-degree structure; b--noncollinear ferromagnetic structure. 

aperiodic structures with the same energy are also possible in 
the region where this phase exists. The basic features of the 
system which are associated with this degeneracy will be 
examined below. 

3. SPECTRUM OF EXCITATIONS OF STRUCTURES 

We now investigate the energy spectrum of the states 
found. Let the magnetic structures of the ground state lie in 
the xz plane. We choose the axis of quantization of the local 
coordinate system along the direction of the spin in the cor- 
responding structure, characterized by the wave vector Q. 
Then the pair interaction Si .S, is represented in a spiral 
coordinate system (the primed spins) as follows: 

cos eij-1 
S~S,=COS e,~,~~s,'- (sif+sjr++s;-sjl-) 

4 
cos 0,+l 

+ 4 
(Si'-Sjf++Si'+Sj'-) 

sin 0 . .  + [ (S~'++S;'-)S,'~-S~~ (Sjf"+Sj'-) I 1  (4 )  
2 

where OU = Q(Ri - R, ) is the angle of rotation of the axis of 
the spiral between the sites i and j. 

In the quadratic approximation in the Bose operators 

the starting Hamiltonian has the form 

where N, is the number of particles with spin S in  the mag- 
netic subsystem; the indices a and f l  characterize the num- 
ber of magnetic subsystems; and 

FIG. 1. Phase diagram of the ground state in the limit of large S: IC,- 
incommensurate (0, Q) phase, IC,-incommensurate (Q, Q) phase. 
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In the expression (5)  it is assumed that different ions have 
the same spin. 
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3.1. Phases with commensurate period 

It is well known that in a uniform ferromagnetic phase 
there are not zero-point vibrations and the quantum ground 
state is identical to the classical state. The simplest nonuni- 
form collinear structure to investigate is the spectrum of ex- 
citations of the (0, 27~) phase. In this phase the magnetic 
sublattices of the main spins (a, P = 1 ) and the secondary 
spins ( a ,  0 = 2) have an antiparallel orientation, so that the 
Fourier components of the exchange interactions have the 
form 

The quantum reduction of the spin AS, = (a: a, ) for 
the main and additional ions in the given ( 0 , 2 ~ )  phase is the 
same and is given in the form 

As jo- 2j + 1 u>0)  the quantum fluctuations grow and di- 
verge logarithmically in the asymptotic limit: 

AS-ln(j,,-2j-1). (11) 

J~t(k-l-Q)= J l l ( k ) ,  

1 1 2  (k*Q) =-J,, (k) ,  

We now consider the antiferromagnetic (n-,n-) phase. In 
this case 

where 

k* k, 
Ii, (k*Q) =4J0 sin -sin - 

2 2' 
Ill (k) =2J(cos kx+cos k,+2j cos k, cos k,,) , 

kx k" 
j12 (k) COS - COS - 

2 2 ' Substituting the expressions ( 12) into Eq. ( 5 )  we obtain 

Substituting these expressions into Eq. (5) and taking into 
account the fact that there is no interaction between the ad- 
ditional spins, J2, (k)  r 0, we obtain where now Ec, is also E, in Eq. (3c); a,+ = (a;, ,ak2,  

a-kl,a-k2), 

where E,, is the same as E2 from Eq. (3b), 
a 2  = (a,+,,a_,,) and 

Here 

Ah= l - j + j  cos k,  cos kg, 

Bk=-'l2 (COS kX+cos ku) , 

Here 

A,= [lo-I-J'+lll (k)/4] 11,. 

Bh=-J,z (k) l(4Ja). 

After diagonalizing the quadratic Hamiltonian ( 7 )  we ob- 
tain 

Diagonalizing the Hamiltonian ( 13) we obtain 

where c& is a new set of Bose operators and 

The energy spectrum E, in Eq. ( 15) is given in the form 

The spectrum of excitations E,, is linear near the points 
k = (0,O) and k = (27~,2n-): 

The spin-wave spectrum for the (r,n-) structure is pre- 
sented in Figs. 3b and c. The curves E,, are presented as a 
function of k, for three values of k, : ~ / 4 ,  n-/ 16, and 0. The 
lower branch E, , characterizes the oscillation spectrum of 
the additional spins. For jo = 0 this branch vanishes, as it 
should. Forj,,#O, however, the entire branch can vanish, if 
k,, or k, is zero (curve 3, Fig. 3b). It is obvious that this fact 
reflects the local degeneracy of the classical ground state 
with respect to continuous rotations of the additional spins. 
The upper branch E, , , however, characterizes the oscillation 

As the interface between the initial phase and the modulated 
phase IC, is approached, additional softening of the spec- 
trum occurs: the spin wave velocity 

decreases and vanishes on the critical line j, = 2j - 1, on 
which, as a result, the spectrum near small k becomes quad- 
ratic. 
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spectrum of the main spins and vanishes only at symmetric 
points of the Brillouin zone k = 0, k = (T,T). Nevertheless, 
due to frustrations additional softening of the spectrum at 
the points k = (n-,0) (dashed line in Fig. 3c) and k = ( 0 , ~ )  
is possible as j increases. If, however, jo#O holds due to a 
first-order phase transition into the neighboring phase the 
spectrum E , ~  does not vanish. 

In accordance with this behavior of the dispersion 
curves, the spin deviations of the main and additional ions at 
the lattice sites are significantly different. Calculations show 
that, as expected, the magnetic subsystem of the additional 
spins is completely diordered as a result of local degeneracy. 
At the same time, the magnetic subsystem consisting of the 
main spins is ordered everywhere except at the point 
( jo, j )  = (0,1/2) in the phase diagram in Fig. 1, where, like 
the NCel (n-,n-) state,'' quantum fluctuations have a loga- 
rithmic divergence. 

The quantum corrections to spin waves in the series 
expansion of 2Y up to 0( 1/S 3 ,  make E~ I nonzero for all 
orientations of the wave vector k, including along the x and y 
axes. For this reason, the average spin for the additional ions 
will now also be different from zero, but its relative spin is 
small compared to S. 

3.2. Phases with incommensurate period 

The energy spectrum of incommensurate structures is 
more complicated and requires that the magnetic subsystem 
with the additional spins be divided into two systems (Fig. 
4a), and as a result the indices a and p in the Hamiltonian 
(5)  will run through the values 1, 2, and 3. We first investi- 

FIG. 3. Spectrum of spin-wave excitations: a-E, ( k )  for the ( 0 , 2 r )  phase 
with j,, = 1.5; k, = 0 .  The curve 1 corresponds to j = 0.15 and curve 2 
corresponds to j = 0.24; b,c-E, ( k )  and ~ , ( k )  for the (r, r )  phase with 
j,, = 0.5 and j = 0.2 (solid lines); the curves 1 correspond to ky = n/4,  the 
curves 2 correspond to ~ 1 1 6 ,  and the curves 3 correspond to 0; the dashed 
line corresponds to j,, = 0.5, j = 0.4, and ky = 0. 

FIG. 4. a-Lattice with three types of  sites: 1,2,3; b-lower branch of  the 
excitation spectrum of  the (0 ,  Q) phase forj,, = 1, j = 0.7. k ,  = n/2  ( I ) ,  
r / 6  (21,  and 0 ( 3 ) .  

gate the spectrum of the incommensurate phase IC, with 
wave vector Q = (O,Q), where Q = 2 cos- ' [ - jo/ 
( 1 + 2j )  1. Substituting into Eq. (5) the expression for 
J, , (k )  from Eq. (6b) and 

kx k ,  
(k) =210 COS - COS - 

2 2 '  
J 1 3  (k) =J i~ (k ) ,  

(17) 
( J L 2  (k) =JZ3 ( k )  = J X 3  ( k )  =0), 

as well as the expressions for JaB (k  + Q) obtained from 
here, we have 

Here a: = (a,+,,a,i,,a,+,,a- ,, ,a-  ,,,a_,, 1, and the ma- 
trix M, has the same form as in Eq. ( 14), but its elements Fk 
and G,  are expressed as follows: 

(19) 

where 

Ak=2 [Zj-tcos tk+62(1+2j  cos kX)cos  ky], 

kx k,  
Bh*=-jo(6*l)cos - 

2 cOs T 
C,=2(6'-1) (1+2j  cos k,)cos k,, 

D=2j06. 6 = i 0 / ( l + 2 j ) .  

The Hamiltonian ( 18 ) is diagonalized by Bogolyubov's 
paraunitary transformation:" 

ZM (k)  T,=X,T,. (21) 

He re I=d iag ( l , l , l , -  1,- 1 , -  1)isa"para"unitmatrix 
and T ,  = ( TI,, T,, , T,, , T,, , T,, , T,, ) are eigenvectors cor- 
responding to the column matrices of the transformation 
T,, from the operators a,+ to the new operators c: . 
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It is easy to see that Eq. (21 ) has the solutions A,  = D 
and A6 = - D, corresponding to the eigenvectors 
T 3 - - 2--'12 0 1 ,  - , O , O , O  and T 6 -  - 2-I" 
(0,0,0,0,1, - 1 ) . In accordance with the orthogonality con- 
dition the remaining four eigenvectors have the following 
form: 

Substituting Eq. (22) into Eq. (21), we obtain an equation 
determining the vectors T, : 

whereu = (u,,u2), v = (v , ,~ , ) ,  and thematricesf', and Q, 
are defined as follows: 

Solving Eq. (23), we find two eigenvalues A: 

Here 

&,=-4h2-Ci12-l-/1 [ (BAT)'- (Bk+)'] +D2, 

As a result, after diagonalization the Hamiltonian ( 18) as- 
sumes the form 

where E,, = (A1,A2,A3). 
Analysis of the dispersion relation E, , = A ,  shows that 

for k, = 0 the expression for 6, in Eq. (25b) is equal to qy 
and thus the energy of the spin waves is zero for all values of 
ky . Figure 4b shows the lower branch of sk as a function of 
ky for different values of k, . One can see that as k, decreases 
the gapless spectrum e, , is further softened near k, = 0. As 
k, decreases further, the region of mode softening becomes 
larger and in the limit k ,  = 0 it covers the entire range of k, . 

Forj,#O (see below) this means that the quantum fluc- 
tuations for the main spins 

diverge and the standard order breaks down everywhere the 
incommensurate (0,Q) phase exists. Physically this is due to 
the presence of strong degeneracy caused by frustrations, as 
a result of which both globally and locally degenerate classi- 
cal states are possible. Figure 5a shows as an example a set of 
states with j, = 1 and j = 0.5. One can see that the initial 
120-degree structure is locally degenerate along they axis, 
i.e., along the axis for which the dispersion branch ek , van- 
ishes for all values of ky . The spins in the layer between the 
dashed lines can be simultaneously turned continuously 

around axes parallel to these lines without a change in the 
energy. For this reason classical states which are aperiodic 
along they axis are possible together with periodic states. 

In order to follow clearly how the quantum fluctuations 
diverge in this phase, we introduce into the initial Hamilto- 
nian ( 1 ) the additional term 

where the trial field H is oriented along the local z' axis and 
acts only on the additional spins. The introduction of such a 
term means that the elements of the matrix Mk will contain 
additional terms, namely, in Fk the term D + h, where 
h = 2H /JS, will replace D. As a result, the local degeneracy 
is removed and the spectrum of oscillations as a function of 
ky is different from zero at k, = 0. The curves A S  = S for 
different values of h are displayed in Fig. 5b. As h decreases, 
with the exception ofj, = 0 the quantum fluctuations grow, 
the nonmagnetic region becomes larger, and in the limit 
h -0 an ordered state is possible only if jo = 0. (Nonlinear 
effects, of course, can transform the phase diagrams S -I-j,; 
this question will be studied in the next section for j >  0.5). 

At this point it is appropriate to note that ifj, = 0, the 
additional spins are free and disordered and the main spins 
form a simple square lattice with antiparallel structure 
[Q = ( 0 , ~ )  1, in which, naturally, there is no local degener- 
acy along the y axis because this axis is collinear. We also 
note that the value of S -' forj, = 0 (Fig. 5b) is identical to 
the analogous value given in Ref. 12. 

In the 2Q-incommensurate phase IC, [Q, = Qy = Q, 
cos Q = - ( 1 + jo)/2j] the Hamiltonian 2Y in the quadrat- 
ic approximation in a,+ is given in the form (26), where, 
however, 

FIG. 5. a-Local degeneracy ofthe (0, Q) phase along they axis: Q = 47r/ 
3; the arrows mark the direction of simultaneous rotation around the local 
axes; b-curves of S - '  versus j,, for dimerent values of the trial field h: 
10W3 ( I ) ,  lo-' ( 2 ) ,  and lo-' (3). The curves are given for j = 0.7. 
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and the energy spectrum E,, = (il,,il,,il,) in Eq. (25) is 
determined by the following expressions for A,  B' , C, and 
D: 

+2? cos (k*- k,) +2jAz cos(k,f k,), (29) 

k +k ks- k, 
B ~ - = - ~ ~ ( A - I ) G O S ~ +  2jocos- 

2  2 '  

Analysis of the behavior of the spectrum E~~ shows that 
fork, = 0 (for k, = 0) the lower branch exhibits weak dis- 
persion near the interface of the (Q,Q) and (n-,a) phases. 
This occurs because the transition between these two phases 
is continuous and the system, just as in the (n-,n-) phase, is 
close to local degeneracy as before. Far from the interface, 
however, it becomes rigid, the energy of the wave excitations 
increases, and for this reason the quantum fluctuations can- 
not destroy long-range order in the (Q,Q) phase. 

It  is interesting to note that in the classical ground state 
the (Q,Q) phase is globally degenerate: Separate magnetic 
sublattices can be turned continuously relative to other sub- 
lattices. As an example Fig. 6a displays such a structure for 

FIG. 6. a-Global continuous degeneracy in the phase (Q, Q) with 
Q = r/2; b--local degeneracy along the ( 1 ,  1 ) direction for the point 
Ci,= - l , j = O ) .  

the case Q = n-/2 ti, = - 1,O < j<0.5). Quantum fluctu- 
ations remove the continuous degeneracy, leaving only the 
state with either Q = ?r/2 or Q = 3r/2. At the corner point 
of the phase diagram in Fig. 1 ti,, = - 1, j = 0) states with 
any Q are possible. Such states are locally degenerate in the 
direction ( 1,1), as a result of which the quantum fluctu- 
ations diverge at this point. 

4. PHASE DIAGRAM 

We now construct the phase diagram S -' versus j, in 
the most interesting region j> 0.5. In order to construct this 
diagram for all values of S we employ the method of 
Schwinger bosons (mean-field approximation) . I 8  The spin 
operators in the Schwinger representation are replaced by 
two bosons 

where a are the Pauli matrices, so that the pair interaction 
Si S, is biquadratic in b, . In transforming to a spiral coordi- 
nate system it is convenient to represent Si S, in the vector 
form 

where k is a unit vector along the axis of the spiral (they 
axis), instead of in the form (4) .  Then the initial Hamilto- 
nian, written in terms of Schwinger bosons in a local coordi- 
nate system, is equivalent at the mean-field level to the Ham- 
iltonian with BCS pairing:19 

Here 

where the index s denotes symmetrization with respect to k 
and k', and the indices a and 0 for the different subsystems 
are dropped. The first and second terms in Eq. (32) are pure- 
ly ferromagnetic and antiferromagnetic pairing potentials, 
respectively, and 

Bk+=bko+ b--+k-o, and DLf= bk,+bk, 

are the triplet Cooper and singlet particle-hole pairing fields 
for Schwinger bosons. 

We now examine in greater detail S - '  as a function ofj, 
at the transition from the disordered phase into the antifer- 
romagnetic (O,27~) phase. In terms of Schwinger bosons the 
Hamiltonian ( 1 ) is 
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Performing the mean-field decoupling in Eq. (33) 

and replacing the local coupling b  ,: b ,  = 2 s  by the global 
coupling Bb 2 b ,  = 2NS, we obtain 

-x ? ~ ( b k 2 t + b h ~ + + b - k z + b ~ ~ + )  -z ~ ~ ( b ~ ~ + + b ~ ~ ~ + + b ~ ~ + b - ~ ~ + ) .  
k 

(34) 

Here 

and A is a Lagrange multiplier. The quantities h,  and A, are 
determined as follows: 

hk=4Ja(cos  k,+cos kV)+8l'ficos k,cos k,, 

k, k 
Ak=8Joy cos  - C O S ~ ,  2 2 

(35) 

where a andp are equal to a,,,, for the nearest and second- 
nearest (to the main) spins, respectively, and y  = y,,,, for 
the nearest of the main and additional spins. 

After the Hamiltonian (34) is diagonalized, the total 
ground-state energy has the form 

Minimizing E, with respect to a, P, y, and A, we obtain the 
following self-consistent equations for these quantities: 

1 Z k  fi = -I - cos  kz cos k, dzk, 
8nz Rk 
1 Ah kx k 

y = -I - cos  - cos  - J -B~ ,  
2n2 Rk 2 2 

In the disordered state, when Sis small, the energy spec- 
trum contains a gap (the spin waves are "massive"). In the 
presence of such a gap the system will not have long-range 
order for all S. However, if the gap vanishes for some S, Bose 
condensation occurs and long-range order is realized in the 
system. The latter will occur for fixed /Z in the expression 
(36) for the energy spectrum E, . Solving next the first three 
self-consistent equations in Eq. (37), we find a, p, and y  and 
substitute the obtained values into the last equation for S. 
The critical curve of S -' versus j, for j = 0.7 is presented in 
Fig. 7a. In this figure the dashed line depicts the curve ofS  -' 
versus j, obtained in the linear spin-wave approximation 
[the formula ( 10) 1. Comparing these two curves shows that 

FIG. 7. Phase diagram in the S - I-j, plane for j = 0.7: a-boundary of the 
(0, 2 ~ )  phase; the solid line was obtained in the self-consistent approxi- 
mation with Schwinger bosons and the dashed line was obtained in the 
spin-wave approximation; b--phase diagram constructed by the method 
of Schwinger bosons (self-consistent approximation); AF-antiferro- 
magnetic (O,27r) phase. 

for large S the solid and dashed lines are indistinguishable. 
The difference in their behavior becomes appreciable for 
S < 1 : The curve constructed in the linear spin-wave approxi- 
mation lies everywhere below the curve obtained in the self- 
consistent approximation with Schwinger bosons; i.e., non- 
linear quantum effects enlarge the range of existence of the 
antiferromagnetic (0, 277) phase. 

Similar calculations of S -' versus j, were also per- 
formed by the Schwinger boson method for the case of the 
incommensurate (0, Q )  phase. The mean-field parameters 
were determined self-consistently from the following equa- 
tions (the indices a andp  for the subsystems are dropped) : 

where 7&, are given by Eq. (32a) and E, is the energy 
spectrum determined by diagonalizing the mean-field Ham- 
iltonian (for example, for the case a = P =  1 it has the sim- 
pleform E, = [ ( h ,  -A12 - A i ] 1 ' 2 ) .  

Numerical analysis shows that in constrast to the linear 
spin-wave theory the phase diagram S - '-j, contains a finite 
region of the (0, Q) phase (Fig. 7b). The curve itself is remi- 
niscent of the curve of S -' versus j (j, = 0) constructed in 
Ref. 20 (see also Ref. 21) for the NCel (0, T) phase. In the 
present case, however, the ordered phases are separated 
from one another by an intermediate disordered state for all 
S; this is obviously largely due to the local symmetry of the 
classical state because of the additional frustration channel 
when j, #O. It is also evident from the behavior of the curves 
in Fig. 7b that as S decreases, the nonlinear effects first en- 
large the range in which the incommensurate phase exists 
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and only later, at some critical value ofS  - I ,  when the spin is 
sufficiently small and quantum fluctuations are large, does 
this region shrink. 

5. CONCLUSIONS 

Thus possible states on two-dimensional lattices were 
investigated for a new frustrated system consisting of spins 
of two types. It was shown that the additional frustrations 
induced in such a system give rise to strong degeneracy of the 
ground state for large S. The energy spectrum of different 
phases was calculated. It was established that in the ( 0 , 2 ~ )  
phase with commensurate period the lower branch of the 
spectrum ck undergoes additional softening as the boundary 
with the incommensurate (0, Q) phase is approached. At the 
phase (0, Q) itself the energy of the spin waves along definite 
directions of k may turn into zero, regardless of the magni- 
tude of the wave vector. This happens because of the exis- 
tence of local degeneracy in the system. For this reason, the 
classical state (0, Q) for Q #n- admits both periodic and 
aperiodic structures. In the linear approximation the quan- 
tum fluctuations for the (0, Q) phase diverge in the entire 
region of its existence and such divergence is absent, as it 
should be, only in particular case of the collinear (0, n-) 
structure. Nonlinear effects significantly change the phase 
diagram: For values of Q close to a the incommensurate 
structure stabilizes at finite values of S. Nevertheless, in a 
wide region of the phase diagram S - '-jo an ordered state is 
impossible for any S. 

In the antiferromagnetic (n-, n-) phase the spin-wave 
energy also vanishes for arbitrary k if k, or k, is zero. This 
branch of the frequency spectrum corresponds to the addi- 
tional (dopant) ions. The magnetic structure formed by 
them is locally degenerate for large S and, as a result of this, 
the zero-point vibrations diverge. However, quantum cor- 
rections to the spin-wave spectrum remove this divergence. 

The 2Q-incommensurate phase does not have local de- 
generacy in the classical case, if j> 0 holds. Instead, global 
degeneracy, associated with continuous rotation of the mag- 

netic sublattices relative to one another, is present. At the 
boundary of the phase, however, the classical ground state is 
locally degenerate at the corner point tio = - 1, j = 0).  

In conclusion, I thank V. A. Ignatchenko, V. V. Val- 
'kov, A. F. Sadreev, and N. V. Fedoseeva for helpful discus- 
sions and V. V. Grishin for assistance in the numerical calcu- 
lations. 

'Yu. A. Izyumov, Usp. Fiz. Nauk 144, 439 (1984) [Sov. Phys. Usp. 
27(11), 845 (1984)l. 

'R. S. Gekht and V. I. Ponomarev, Phase Transitions A 20,27 ( 1990); R. 
S. Gekht, Usp. Fiz. Nauk 159,261 ( 1989) [Sov. Phys. Usp. 32 (lo), 871 
(198911. 

'P. Fazekas and P. W. Anderson, Phil. Mag. 30,423 ( 1974). 
4 Y ~ .  A. Izyumov and V. M. Laptev, Zh. Eksp. Teor. Fiz. 88, 165 ( 1985) 
[Sov. Phys. JETP 61,95 (1985)l. 

5R. S. Gekht, Zh. Eksp. Teor. Fiz. 93,255 ( 1987) [Sov. Phys. JETP 66 
( I ) ,  147 (1987)l. 

%. S. Aplesin and R. S. Gekht, Zh. Eksp. Teor. Fiz. 95, 2163 (1989) 
[Sov. Phys. JETP 68 ( 6 ) ,  1250 (1989)l. 

'5. D. Reger and A. P. Young, Phys. Rev. B 37, 549, 5978 (1988). 
'D. A. Huseand V. Elser, Phys. Rev. Lett. 60,2531 (1988). 
9S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 
1057 (1988). 

'OM. Gross, E. Sanchez-Velasco, and E. Siggia, Phys. Rev. B 39, 2484 
(1989). 

"J. D. Reger, J. A. Riera, and A. P. Young, J. Phys. C 1, 1955 (1989). 
'*P. Chandra and B. Doucot, Phys. Rev. B 38,9335 (1988). 
''1. Ritchy, P. Chandra, and P. Coleman, Phys. Rev. Lett. 64, 2583 
(1990). 

I4J. M. Tarascon, P. Bardoux, P. F. Miceli et al., Phys. Rev. B 37, 7458 
(1988). 

15P. F. Miceli, J. M. Tarascon, L. H. Greene et a/., Phys. Rev. B 37, 5932 
(1988). 

IhT. Kajitani, K. Kusaba, M. Kikuchi, Y. Syono, and M. Hirabayashi, 
Tech. Report of ISSP, Roppongo, Minato-ku (1992), No. 2163. 

I7J. H. P. Colpa, Physica A 93, 327 (1978). 
' 9 .  P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988). 
I9P. Chandra, P. Coleman, and A. I. Larkin, J. Phys. Condens. Matter 2, 
7933 (1990). 

'OF. Mila, D. Poilblanc, and C. Bruder, Phys. Rev. B 43 ( 1991). 
"H. Nishimori and Y. Saika, J. Phys. Soc. Japan 59,4454 ( 1990). 

Translated by M. E. Alferieff 

1065 Sov. Phys. JETP 75 (6), December 1992 R. S. Gekht 1065 




