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The Anderson model on d-dimensional cubic lattice with the Gaussian site energy distribution is 
analyzed. It is shown that ford > 4 the mean density of states N(E) may be calculated for all 
energies. It is a smooth function and has no singularity near the Anderson transition. 

1. INTRODUCTION 

The behavior of physical quantities in the vicinity of an 
Anderson transition is the problem of central concern in the 
theory of localization. l4 The analogy with the contempo- 
rary theory of critical suggests that the An- 
derson transition might exhibit an (upper) critical space di- 
mension d,, above which the theory is considerably 
simplified and accordingly, and &-expansion for a space of 
dimension dc2 - E can be hoped for. 

We consider an Anderson model described by the dis- 
crete Schrodinger equation 

where m and n label the sites of a d-dimension cubic lattice 
with lattice constant a,; the Jn-, are the overlap integrals 
whose magnitude, of order J ,  falls off rapidly with Im-nl; 
and the V, are independent, random site energies obeying 
the Gaussian distribution 

We assume the disorder to be weak and we are interested in 
low energies lying in the range 

where E is measured from the bottom of the unperturbed 
band. 

There is considerable evidence to indicate the special 
role of the dimension d = 4 for the Gauss distribution model 
( 1 ) . The major items of evidence are as follows. 

1. The condition for the absence of localization is given 
by the familiar Ioffe-Regel principle2 

where E and k are the energy and the momentum of an elec- 
tron, and I and 7 its mean free path and lifetime, respective- 
ly. In the Born approximation the latter satisfies 
T-'(E) -aod W2No(E), where No(E) - (aodJ)- ' (E/J)  

(d - 2)/2 is the perfect-lattice density of states, and for 
d < 4 the condition (4)  reduces to 

whereas for d > 4 it holds for all values of E under the above 
assumptions. 

2. For large negative values of E, the optimum fluctu- 
ation  method'^^ may be used to estimate the density of states 
of a disordered system. By (2 ) ,  the probability of a fluctu- 
ation-induced potential well of depth V and radius R is of 
order 

exp (-const V2RdlWZadd). (6)  

If there is a level E = - IE I present in the well, Vand R are 
related by E = - V + UJ(U,/R)~ and (6)  reduces to 

For d < 4, the density of states N(E)  is determined by the 
saddle point of (7 ) ,  R, co (E I-'", leading to the familiar 
Lifshitz result 

N(E) a exp {-const. I El (4-d)/2) (d(4). (8)  

For d > 4 the extremum of Eq. (7)  is reached at the mini- 
mum R possible, i.e., R -ao giving 

Because the extremum is reached on the boundary of the 
domain of definition, the R derivative of the exponent of (7)  
does not vanish; in the field-theoretical formulation this cor- 
responds to the absence of classical (instanton) solutions in 
the continuum limit for d > 4. 

3. The large-momentum renormalizability of the theory 
may be analyzed by evaluating the power of momenta in the 
expression for an arbitrary diagram.' In an order-2n dia- 
gram for the average Green's function for the model ( l ), this 
power is 

and the theory is renormalizable for d < 4; for d > 4, large- 
momentum divergences are unavoidable and accordingly a 
cutoff must be introduced. 

4. In the field-theoretical formulation, the calculation 
of the average Green's function for the model ( 1 ) reduces to 
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the evaluation of a functional integral with a Ginzburg-Lan- 
dau Lagrangian-but with the 'wrong' sign of the quartic 

Wilson's renormalization group 
which are valid for any signs of the coefficients, imply the 
stability of the Gaussian fixed point for d > 4, which is indi- 
cative of the relative simplicity of the theory. 

The facts above naturally lead to the hypothesis (cf. 
Refs. 11 and 12, for example) that d = 4 is the upper critical 
dimension in the problem. This hypothesis has been criti- 
cized in the work of Thouless.I3 Thouless argues that the 
special role of the dimension d = 4 relates to the fact that in 
the Gaussian white noise limit (i.e., when the potential cor- 
relation length tends to zero), no localized states exist for 
d > 4. Since states of this type appear whenever there is a 
minimum length scale in the analysis-in the Anderson 
model, for example-it follows that the condition d > 4 gen- 
erally does not allow any simplifications. Indirectly, Thou- 
less' arguments are corroborated by the results from the 
Lloyd model,14 in which the density of states is calculated 
exactly and the dimension d = 4 plays no special role; on the 
other hand, the obvious weakness of Thouless' arguments is 
that the features we have listed above are already observable 
before the white-noise limit is taken. Since the work of Thou- 
less,13 arguments have been advanced that dc2 = 615 or 
dc2 = 816, that the values of dc2 are different in the strong 
and weak disorder  limit^,".'^ or that there may be no special 
dimension at all in the range 2 < d < (Ref. 19). 

The discussion above shows that as yet the problem of 
the upper critical dimension for the Anderson transition re- 
mains unanswered. On the one hand, there is no general 
agreement as to the value of dc2 ; on the other, we are aware 
of no publications showing what (if any) simplifications the 
condition d > dc2 may produce." In the present paper, we 
show that for d > 4, the density of states N(E)  of a disor- 
dered system can be calculated for the entire energy range 
including the vicinity of the Anderson transition. 

2. THE IDEA OF THE METHOD 

To obtain the density of states N(E) requires the calcu- 
lation of the average Green's function Gk (E) for the model 
( 1 ). The Green's function is determined by the diagram se- 
ries shown in Fig. 1a,24,25 where the vertices correspond to 
the scattering from individual lattice sites and the dashed 
lines link identical sites together; diagrams with more than 
two identical sites are absent in the Gaussian model (with- 
out a Born scattering assumption for an individual site) .6 By 
the standard argument it is found that 

and our next step is then to calculate the self-energy a, (E) ,  
containing irreducible diagrams only (Fig. lb )  . For d > 4, 
the k and E dependence of u, (E)  appears through the pa- 
rameters ka, and E /4 for EzO,  the real part of a may be 
incorporated into the renormalized spectrum without affect- 
ing its quadratic nature at small k (see Sec. 8) .  If the k inte- 
gration is cut off at A-a,-', the renormalized spectrum 
~ ( k )  may be taken to be quadratic and r = - Im a may be 
considered k-independent. Taking the edge of the renormal- 
ized spectrum as the zero of energy and considering the re- 
tarded Green's function as an example, we find 

Gk (E) = - 1 
k<A. 

E-k2/2m+ir (E) ' 

In view of the above 

where a,, denotes the order-2n perturbation theory self-en- 
ergy contribution; since a,, is a functional of G ,  (E) ,  the 
dependence r ( E )  is given by 

r=f ( E ,  r ) .  (14) 

To lowest (i.e., second) order in perturbation theory, ( 14) 
takes the form 

J 

r = p ) ( E ,  r) =W2a.l j No (e)ds 
r A~ 

I=-.  
(E-&)Vr2  ' 

0 2m 

I t  is readily seen that 

lim j ( O )  (E, I') =n W2a;'N0 (E) , lim df(O) (E, r) -- W Z  
r+o r+o ar l2 ' 

showing that for E < 0 there is only a trivial solution r = 0 
(see Fig. 2), and since 

J 

where N is the total number of lattice sites, we see that the 
density of states vanishes for E < 0; consequently, it exhibits 
no fluctuation-induced tail in this approximation. 

The same situation exists in any finite order of perturba- 
tion theory. To see this, note that for E < 0, the real part of 

FIG. 1.  Diagrams for the average Green's func- 
tion (a)  and for the self-energy (b) to the fourth 
order of perturbation theory. 

b 
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the denominator of the G function ( 12) is nonzero, so that 
Im Gk (E) c holds as r -0 ;  consequently, both any indi- 
vidual diagram of Fig. l b  and a sum of any finite number of 
these diagrams have an infinitesimal imaginary part as 
T -0. As a result, f(E,T) + O  as T +0, and Eq. ( 14) has a 
root r = 0-indeed the (only) root because the estimate 
( 16) for df / d r  is true in the general case as well. A similar 
conclusion can be drawn from the estimate (9): since in the 
fluctuation region the density of states is exponentially small 
in l/WZ, the only way to obtain it is by summing the power 
series in W2 to its very end, the term 'sum' departing from its 
conventional meaning in this context. 

It is at this point that we are coming to the essence of the 
problem. It is easily shown that for EzO, order-2n self-ener- 
gy diagrams are all of the same order of magnitude; because 
it is impossible to restrict oneself to any finite order of per- 
turbation theory, it follows then that no selection of dia- 
grams will suffice and so the series in its full should be 
summed up. There is, however, an important distinction of 
principle between the cases d < 4 and d > 4. For d < 4, not 
only different diagrams of the same order but also diagrams 
of different orders are of the same order of magnitude; for 
d > 4, an order-(2n + 2) diagram contains an extra small 
parameter W2/J2 as compared to its order-2n counterpart.'' 
This latter feature is of crucial importance because it enables 
the right-hand side of ( 13) to be approximated by the first 
term a, plus a sum of higher terms of the series; although 
small in magnitude, this sum is qualitatively important be- 
cause it remains nonzero in the limit as r -0. Instead of 
(15) we have 

with the exponentially small quantity r, 

J" 
= ( -  erp ( - P / ~ v ~ ) ,  

W 

and we thus obtain a shift of the f ( E , r )  curves in Fig. 2 
(dashed line) and a fluctuation-induced tail for E < 0. Equa- 
tion ( 18) describes a smooth transition between the asymp- 
totic forms 

FIG. 2. Graphical solution of equation ( 14). 

The decay of N(E) at large negative values of E is controlled 
by the slow variation of a, 

[cf. (9) ] ,  the scale for the decay being given by W'/J. In 
fact, equation (20a) is accurate to within 

uniformly in E, the exact result differing only in the smooth- 
ing (on a scale of r,) of the singularity in N,(E) at E = 0. 
For I E I 5 r,, the second term in (20a) is small in the param- 
eter (23) and N(E) is given by (17) with r = To. It thus 
follows (Fig. 3 )  that the density of states of a d > 4 disor- 
dered system crosses, over an exponentially small energy in- 
terval, from the perfect-crystal N,(E) behavior to exponen- 
tial decay on a scale of W2/J, without showing any 
singularities in the vicinity E-To around the Anderson 
tran~ition.~'  

At this point, the origin of the last term in ( 18) should 
be explained in some detail. Consider the chain of equalities ' 

describing the summation, in the Bore1 sense, of a divergent 
factorial series." Setting z = g + iO(g> 0) and taking the 
imaginary part yields 

and correspondingly for the density of states, 

3 

E B  r o ,  
.v ( E )  = 

const 
- (c)' exp(-PlaW), -EBr'o. 
Jaod W z  

FIG. 3. Density of states near the edge of the unperturbed band in d > 4 
(2 1 b) dimensions. 
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showing how the infinitesimal increment + iO transforms, 
when the divergent series is summed, into an exponentially 
small (for g <  1 ) but still finite quantity. 

Intuitively, the applicability of the above arguments to 
a perturbation theory series follows from the fact that 2n- 
order self-energy diagrams increase in number factorially 
with n while being all of the same order of magnitude; for 
g- W2/J2 [which is the expansion parameter in ( 13)],  a 
result of the type ( 19) is ~btained.~ '  To show that the imagi- 
nary addition + iO appears in exactly the necessary combi- 
nation in each term calls for a more detailed treatment which 
can be carried out by the statistical analysis of the remote 
terms of the perturbation expansion; that the remote terms 
alone may be taken follows from the fact that (25) is also 
true when the summation starts from an arbitrary finite no 
instead of n = 0. The quantities a ,  6, and c appear as phe- 
nomenological parameters in the statistical analysis, how- 
ever, they can be determined by recognizing that the domian 
of validity of our approach overlaps with those of the opti- 
mum fluctuation and (more sophisticated) instanton meth- 
o d ~ . ~ ~ - ~ ~  TO see this, recall that in view of (9)  the value of the 
exponent in the cased > 4 remains large down to E  = 0, and 
the applicability of the above two methods is not controlled 
by the saddle-point method but only depends on whether it is 
possible to neglect the interaction of deep fluctuations via 
the wave function tails exp( - xr) ( x  = Jq) which ex- 
tend to infinity as J E  ) -0. Because the concentration of deep 
fluctuations is exponentially small, their interaction at E  < 0 
is weak outside the exponentially narrow vicinity of the 
point E  = 0. Since the quantity To may be considered ener- 
gy-independent for A 5 W2/J, the parameters a, 6, and c can 
be determined by matching to the results of the instanton 
method. 

3. RELATION BETWEEN THE ORDER-2n AND ORDER-(2nM) 
DIAGRAMS 

An order-2n diagram involves n integrations over the 
momenta q,,q,, ...q, of the dashed (impurity) lines and 
(2n - 1 ) Green's functions whose momenta are determined 
by linear combinations of the q, and the external momentum 
k; the momentum q, only appears in the arguments of those 
G-functions covered by the ith dashed line. Replacing q, 
with q, A to nondimensionalize the integrals, we can write 
the contribution from an order-2n diagram in the form 

For d > 4, the function f is finite at the point E  = r = k 2/ 

2m = 0 and so are its first derivatives with respect to all its 
arguments; this follows from the nature of the small-mo- 
mentum convergence at E  = r = k 2/2m = 0. Suppose I 
dashed lines have a small momentum -9, and the remaining 
1 ' = n - 1 lines have a large momentum -A, which enters 
the arguments of no less than 21' Green's functions (at a 
minimum, I 'dashedlines cover 21 ' - 1 Green'sfunctions but 
in this particular case the corresponding part of the diagram 
turns out to be a self-energy insertion); the small momentum 
contribution is then given by the integral 

J qd'-' , q * + , d - k ) , ,  * 
0 Q~(~'-') 

l o .  9 

which is convergent for all I> 1 on its lower limit. Differenti- 
ation of the function f with respect to one of its arguments 
reduces the power of q by 2, but the lower-limit convergence 
survives. It follows from (27) that the main contribution 
into the diagram comes from the region q, -A. Since the 
above argument shows a""' to vary slowly with E, r, and k, 
we set E  = 0 and k = 0; we consider the parameter r/J to be 
finite because this is the only source for the imaginary part of 

An order-(2n + 2) diagram may be obtained from an 
order-2n diagram by "suspending" a dashed (impurity) line 
as shown in Fig. 4; the contributions from the diagrams of 
Figs. 4a and 4b are of the form 

or, in a more compact notation, 

FIG. 4. An order-(2n + 2 )  diagram (b) is obtained by "suspending" a 
dashed (impurity) line on a certain order-2n diagram. 
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h ( Q )  = h  (k', 91 .. .9m) 

Now one and the same order-(2n + 2) diagram may be ob- 
tained from different order-2n diagrams. To remove this am- 
biguity, let us require that the suspended dashed line be of 
the smallest length possible; then there is an overwhelming 
probability that the number of vertices it covers is - 1 (see 
Appendix 1 ). Taking k ', qi - A  and m - 1 in (3 1 ), we obtain 
the estimates 

where a single (double) prime denotes a real (imaginary) 
part. Taking the real and imaginary parts of (30) 

and making use of (32) to obtain dimensional estimates, the 
relation between the order-2n and order-(2n + 2) diagrams 
follows as 

By appropriate introduction of constants we now express 
(34) in the exact form 

where for the sake of brevity we have defined 
=.'(2n) - . / f (an)  

n n -  , ~ = W ' / J ~ .  p=r / l .  (36) 

We can divide the suspended dashed lines into certain 
"classes" each of which is characterized by a certain narrow 
interval of the values ofA, , B, , C, , and D, . If we successive- 
ly suspend dashed lines of only one particular class to the 
first diagram of Fig. lb, we note that in the limit n + m, the 
resulting diagrams constitute only an infinitesimal portion 
of the total number of self-energy diagrams. In a typical or- 
der-2n diagram, the class of a dashed line is chosen randomly 
at each step. This allows one to invoke statistical concepts 
and to treat A , ,  B, , C, , and D, as random quantities. 

4. ANALYSIS OF EQUATION (35) 

Equations of the type (35) are studied in the theory of 
one-dimensional disordered  system^^'^' and are in principle 
amenable to a thorough investigation. For our purposes, it is 
sufficient to analyze the evolution of the first and second 
moments of x, and y , ,  which is governed by 

-- 
Solutions to (37) are of the form x ,  , y,  - (gx) ", where 

x*=l/z [ (A+C) [ (A-C) Z--plBD]ih] .  (39) 

Within the phenomenological analysis framework, two pos- 
sibilities can arise, 

( a )  (A-C)2>pLBB n (6) (A-C)'<p2B4. (40) 

The following argument shows, however, that case (a )  is 
not, in fact, realizable. Suppose the energy E has an imagi- 
nary part Im E > 0 sufficiently large that IE ( $4 the quanti- 
ty h then does not depend on momenta and is given by 

which implies that x * = I h le 2ip ,  Im x * #O and hence 
case (b)  is realized. The assumption that case (a)  is obtained 
for Im E-. + 0 implies that at finite Im E, a transition from 
(b)  to (a)  takes place; as a result, the Green's function ex- 
hibits a jump-like (discontinuous) singularity, which is in- 
consistent with its analyticity in the upper half-plane. For 
case (b),  the genera1 solution of (37) is 

- a W  
x n = c l ( ,  f ) n ( ~ ) " c o s ( i i n + 9 . ) ,  

- (1 W2 
(42) 

C J  ) cos (pn+cpo+rpl). 

where 
a = ~ + ~ .  (y2Bb-  (A-C) 2)"'. 

(43) 

and C and q, are determined from the initial conditions; 
their exact calculation from a(*' is meaningless because the 
distribution of the quantities A ,  ,B, ,... is clearly time-depen- 
dent for small n. Noting that Re a(2n' +const., Im a'2n' - T, 
and Im d2"' <0 for T-0, we find that C -  1 and 
q, + q,  = ?r/2 + O(p ); neglecting the term O(p), 

- a  W 2  
yn=-CJ ( -- I' ) sin an (c>o). 

The solution to (38) is 
---  
xn2, Xnynr yn2= ( ~ l g ) ~ " .  

where 
- - -  

x12=max {A2. AC. C Z )  +O (p" ). 

It is readily seen that X ,  > (X * 1, that is, the variances of x, 
and y,  grow faster than their means; which implies that the 
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contribution from an individual order-2n diagram is a 
strongly fluctuating quantity. 

5. TOTAL ORDER-2n CONTRIBUTION 

The total order-2n perturbation theory contribution 
u2, is a sum of contributions aj2") from individual diagrams 
and is determined, within the statistical context, by the aver- 
age (...)," over a finite-size sample of M, elements, 

where N,, denotes the number of order-2n self-energy dia- 
grams; it is easy to show (see Appendix 2) that 

To determine a,, with an accuracy 6, requires that M, , the 
size of the sample, be of order 

'In 

where we have used (42) and (45) and assumed the uj2"' to 
be statistically independent. Let and be two ele- 
ments of the sample; introducing the notation S for the ma- 
trix in (35), we have 

A A 

Some of the matrices S, , S' ,  may be identical; the probabili- 
ty for this to happen is only noticeable fork 5 k,, where k, is 
given by the condition 

The correlation coefficient for the elements and is 
of order ( a / 2 ~ , ) ~ ( " - ~ " .  Owing to the factorial growth of 
N,, , the quantities M, can be selected so that we havel, -0 
and ko/n - 0 as n -+ co ; this ensures an arbitrarily high accu- 
racy of a,, as the correlation between the elements of the 
sample is unboundedly weakened. 

We note next that the lower and upper bounds for N,, 
[see Eq. (48) 1 obey the recursion relations 

and we assume that a similar recursion relation holds for N,, 
proper, 

Nzn+z= (2n,+2p) N,,, 1>2$>-1. (53) 

Then 

where y ( x )  is the gamma function, and by (44) and (47), 

Jm o,,=-const Jy (n+P) n - sin pn, const>O. ( 

6. EQUATION FOR r 
If we assume the statistical description to be sufficiently 

accurate for n > no, Eqs. ( 13) and (55) yield 

The finite-order contributions a,, a,, ... have vanishingly 
small imaginary parts as r -+ 0, 

and it suffices to keep only the first of these contributions. 
The sum over n in (56) is calculated similarly to (24) and 
has a finite imaginary part in the I?-0 limit. Noting that 
@-p( l  holds wearriveat (18) and (19) witha = A + z ,  
b = 0, although the second of these equalities is of only mi- 
nor importance, though (see Sec. 7). 

7. EFFECTS OF DISTRIBUTION 

In the above discussion, a number of assumptions con- 
cerning the statistical properties of the coefficients A , ,  B,, 
C, , and D, have been used (such as the existence of means; 
steadiness of the distribution over n, etc. ) which are difficult 
to justify mathematically. This justification problem may be 
circumvented, however, by recognizing that the domain of 
validity of the present approach overlaps with that of the 
instanton method (see Sec. 2). 

Remaining within the phenomenological analysis 
framework, we can modify the statistical hypotheses under- 
lying the above calculations; the consequences may be as 
follows: 

a )  the functional structure of r,, Eq. ( 19), remains un- 
changed, although the meaning of the parameters a, b, and c 
is generally altered; this modification is of no importance for 
our further discussion; 

b) the functional structure of ro does change; this modi- 
fication should be rejected as inconsistent with the results of 
the instanton method (see Sec. 9). 

As an illustration, the (possible) nonstationarity in the 
distribution of the matrix coefficients in (35) will be ana- 
lyzed. Let 2, , 3, ,... depend on n; if we assume this depend- 
ence to be weak and use a quasiclassical-type approximation, 
( 55 ) becomes 

n - L  n - I  

where the A, and 7, are expressed through the means A,, - 
B ,,... . IfA, -A,, 7, -7, as n- a, 

It turns out that the above sums cannot in fact grow faster 
than linearly: the proof goes through exactly as that for the 
falsehood of the inequality (2 - B)2 >p2B 3 (Sec. 4). 
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Generally speaking, the rate of convergence of the A, 
and vn to their stationary values is of considerable impor- 
tance. For example, let 

(which corresponds to a regular l/n expansion); then, by 
(58) and Stirling's formula, 

which, on performing the sum in ( 56), leads to ( 19) with the 
exponent 

Thus the exponent b cannot generally be identified with the 
combinatorial constant 0. 

If the A, and 7, converge to A, and v m  faster than 1/ 
n, the distribution time dependence only figures in redefin- 
ing the constant c in ( 19). For convergence rates lower than 
l/n, no finite power of J2/ W2 is capable of representing the 
preexponential factor in ( 19); the implication is that this 
latter undergoes a radical change in its functional form-in 
contradiction to the results of the instanton method. 

8. THE k AND E DEPENDENCE OF u 

Comparing (26) with (55) or (61 ) and noting that the 
quantity To in (18) is determined by passing to the limit 
r - 0, we find that 

where all the functions are finite and singly differentiable at 
the point E = k '/2m = 0. According to the results of the 
instanton method (Sec. 9 ) ,  which are valid for - E& r, the 
parameters a and b are both independent of k, and b is inde- 
pendent of E: 

a=a ( E l l ) ,  b=const, c=c (EJJ, kZ/2mJ). (64) 

Because of the differentiability with respect to E, these prop- 
erties also hold for I E I 4 J. Thus the k dependence of To only 
appears through the coefficient c and is weak. For a specific 
choice of the overlap integrals J, _ ,, in ( 1 ), this dependence 
can be determined by the instanton method (using the Four- 
ier transform of Eq. (77) of Sec. 9) ;  for the cutoff model 
( 12), the introduction of the c (k)  dependence implies going 
beyond the accuracy of the calculation. The energy depend- 
ence of To mainly comes through the parameter a, whose 
energy dependence is given by (22) because of the differen- 
tiability property. 

The real part of a, associated with remote perturbation 
theory terms, is analytic in a, b, and c [cf. (24) ]-hence its 
slow variation with energy and its differentiability with re- 
spect to k ' (Sec. 2). 

With the approximations adopted, the density of states 
N(E) is given by expressions ( 17 ) through ( 19) and turns 
out to be a smooth function of E. The following argument 
shows that this result also holds for the exact N(E):  For 
finite values of r, the contributions from an individual dia- 

gram (26) is analytic as a function of E and T. Comparison 
with (55) and (61) shows that the parameters a, b, c, andp  
are analytic as functions of E and T, and therefore, so is the 
sum of the remote perturbation theory terms, which is an 
analtyical function of these parameters [cf. (24) 1. As a re- 
sult, the function f(E,T) in (14) is analytic for finite T. 
Since the root of equation ( 14) is nonzero for all values of E, 
it follows that N(E)  is a smooth function of E. 

9. CALCULATION OF N(E) FOR E<O BY THE INSTANTON 
METHOD 

Because the instanton method is usually applied to the 
case d < 4 (Refs. 28-30)-and noting that Harris and Lu- 
bensky'sl' result is clearly incorrect-we consider the case 
d > 4 in this section; we follow the review article by Sadovs- 
kii30 and focus on the specifics of the case d > 4 while omit- 
ting unnecessary details. 

Application of the replica trick to the discrete Gaussian 
model of ( 1 ) yields 

G.,,= lim j~e~m::) mi:' exp {-S[@ I ) ,  
"-to 

(65) 

S [ 8 ]  ='I2 7, (J..~-E6..~)@,a@,~a 
a=l nn' 

The classical (or instanton) solution is of the form 

where ua denotes a component of the unit vector in the re- 
plica space and @: solves the equation 

For d > 4, an optimum-fluctuation estimate (see Sec. 1 ) im- 
plies that the instanton is localized on the interatomic scale, 
151- 1; the term E@ in (68) is then negligible in comparison 
with the first term - J@. For / 2 I & 1, the function @','is small 
in magnitude and slow, which enables one to neglect the 
term -Q3 and to expand the first term in gradients (note 
that 2,  J, - , -0). We obtain 

where Kv (x) is the modified Bessel function of the second 
kind and the constant C is determined by matching to the 
region 12 I - 1 and is of order xv J 'I2/ W. It is easily checked 
that the region In'(& 1 contributes negligibly to the action: 
the opposite conclusion was reached in Ref. 18 from using in 
this limit a solution parametrization technique analogous to 
that for d < 4; this led to C-  x-' and an overpredicted in- 
stanton tail contribution. Neglecting the energy dependence 
we set E = 0 and nondimensionalize by writing 

where I,, - , - 1 and X, satisfies the equation 
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The classic action then takes the form 

For a slightly nonclassical solution such that 

cP.a=@nc'ua+rp.a 

the action is written in the form 

where 

Because of the atomic-scale character of instanton localiza- 
tion the discrete nature of the model is of principal impor- 
tance for d > 4 (there are no instantons in the continuum 
limit) and leads to the absence of translational zero modes. 
Separating out rotational zero mgdes, no~dimensionalizing 
the eigenvalues of the operators ML and M,, 

h,L=JF,L. ?bT=IpsT (76) 

and passing to the limit n -0, we obtain 

which yields the density of states of the form (2lb) with the 
exponent 

The energy dependence of the parameter a is obtained from 
(68) by iterating on E /J  in the instanton "core" region: 

which determines the quantity a'(0) in (22). 
I am grateful to Professor A. F. Andreev for discussions 

on the results of this work. 

APPENDIX 1. ESTIMATE OF THE LENGTH OF A SUSPENDED 
DASHED LINE 

We define the length of a dashed line as the number of 
the sites it covers. 

1. We want to prove that the shortest dashed line has a 
length - 1 however large n is. 

Let us evaluate the probability for finding a diagram 
with no dashed lines shorter than x. Suppose a diagram is 

constructed by successively connecting by dashed lines arbi- 
trarily chosen pairs of sites. Neglecting boundary effects, the 
probability that the first dashed line does not terminate at a 
distance x from its beginning is 

2s 
I - -  

2n-1' 

Since the earlier occupied sites are distributed randomly, the 
same estimate holds for all later dashed lines as well. The 
probability that none of the lines is shorter than x is given by 

indicating that there is an overwhelming probability that a 
dashed line of length - 1 does exist. 

2. Consider the shortest possible dashed line in an irre- 
ducible order-(2n + 2) diagram (as discussed in part 1, its 
length is - 1 ). Let us demonstrate that for large n, the re- 
moval of this line with an overwhelming probability leaves 
the diagram irreducible. 

Suppose the removal of this line makes the diagram re- 
ducible, that is, breaks it up into two disconnected blocks 
with 2n' and 2n" vertices such that n' + n" = n (one of the 
blocks may be a self-energy insertion within the other). By 
(54), the probability for the separation into two blocks with 
fixed boundaries is 

and is of order l/n" for small n". Separation of a (minimum- 
size) 2-site block has the highest probability, equal to l/n; 
since -n locations are available for such a block, the separa- 
tion probability becomes - 1, ensuring that the number of 
irreducible diagrams differs considerably from the total 
number of diagrams. We may also consider blocks having a 
boundary at the position of the eliminated line, but the prob- 
ability of separation into such blocks is of order l/n an is 
negligibly small in the n + co limit. 

It thus follows from parts 1 and 2 that an order- 
(2n + 2) diagram may be obtained from a certain order-2n 
diagram by suspending a dashed (impurity) line of length - 1. 

APPENDIX 2. ESTIMATE OFTHE NUMBER OF SELF-ENERGY 
DIAGRAMS 

The upper bound for N, ,  is given by the total number of 
order-2n diagrams for the G function; this number is 
(2n - 1 I!!: a dashed line connects the first vertex with any 
one of the remaining (2n - 1) vertices, then the next free 
vertex is connected to one of the remaining (2n - 3), and so 
forth. 

The lower bound is obtained as follows: the first vertex 
is connected with any other except for the second and the last 
[ (2n - 3) possibilities], then the first free vertex is connect- 
ed with any one of the free vertices, except for the second and 
the last [ (2n - 5) possibilities], and so forth; the two last 
vertices are connected with each other. Let us prove that the 
resulting (2n - 3 )!! diagrams are all of the self-energy type. 

(a )  All the above diagrams are compact in the sense 
that they cannot be dissected by a vertical without simulta- 
neously crossing dashed (impurity) lines. Suppose a dashed 
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line terminates in the vertex k at a given step in the above 
construction; since, by construction, each dashed line passes 
above one free vertex at least, there are free vertices between 
the first and k th vertices. For the same reason, these free 
vertices cannot join together: the last of them will necessarily 
give rise to a dashed line passing above the k th vertex, so that 
the compactness of the diagram cannot break down at the 
k th  vertex. Repeating the above argument for the next 
dashed line etc., we are led to the conclusion that the com- 
pactness should not be broken at all. 

(b)  The diagrams we have constructed contain no self- 
energy insertions. The first dashed line does not terminate at 
the last vertex and the remainder of the diagram does not 
represent its self-energy insertion. Suppose that immediately 
below the line there is an insertion containing some portion 
of the remaining sites. Then the removal of the dashed line 
would render the diagram noncompact-but this is impossi- 
ble in view of (a )  because 2n - 2 vertices that remained 
when the first dashed line was removed were filled by the 
same algorithm used for the original 2n vertices. Similar ar- 
guments show the absence of self-energy insertions under 
the second and further dashed lines. 

"An attempt of this kind has been reported by Harris and Lubensky," 
whose analysis is clearly unphysical in predicting the density of states in 
d > 4 to go to zero at a certain point: a consequence, in fact, of the use of 
incorrectly constructed lattice instanton, see Sec. 9. The self-consistent 
localization t h e ~ r y , ~ ~ , ~ '  while yielding kinks in critical exponents at 
d = 4, employs uncontrollable avproximations unlikely to be valid for 
any space dimension; in the theory breaks down completely if 
a soatiallv disoersive diffusion coefficient is considered. A disagreement 

7 .  " 
between the value of the critical exponent of conductivity and its d = m 
c o ~ n t e r p a r t ~ ~ . ~ ~  should also be noted. 

"For d < 4, the relevant integrals are dominated by the small values of 
momenta, and the Green's function G, ( E )  should be considered of or- 
der r- '. Ford > 4, the main contribution comes from momenta of order 
A, giving G, ( E )  - J '. 

)'One usually employs exact Lloyd model solutions to justify the latter 
result. Results from hierarchical models show, h~wever , '~  that poten- 
tials with infinite dispersion belong to a different universality class and 
Lloyd model results cannot generally be applied to the Gaussian model 
(1 1. 

4'In a somewhat different context, Brezin and P a r i ~ i ~ ~  analyzed the rela- 
tion between the fluctuation-induced tail and the factorial divergence of 
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