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We study the two-dimensional hopping electrical conductivity caused by electron transitions 
between impurity states (with allowance for the presence of magnons) in lightly doped quasi- 
two-dimensional antiferromagnets of the La2Cu0, type. The probabilities of the respective 
elemental transitions are calculated and the temperature dependence of the hopping conductivity 
in various regions is established. We show that at temperatures determined by the widths of gaps 
in the magnon spectrum there must be a jump in the otherwise smooth variation in conductivity. 

1. In connection with the problem of high-T, supercon- 
ductivity, quasi-two-dimensional systems (in the sense of 
their electronic and magnetic properties) have lately been 
widely studied. An important and interesting class of such 
systems consists of compounds of the La2Cu04 type, where 
the transition to the superconducting phase takes place ei- 
ther owing to doping by ions ofbivalent elements (e.g., Ba2+ 
and Sn2+) or owing to an excess of oxygen. Under light 
doping, so long as these compounds do not acquire super- 
conducting properties, they are semiconducting and, being 
quasi-two-dimensional, conduct in the basal CuO, planes 
(see Refs. 1-3). 

It is usually assumed that at low temperatures the con- 
ductivity of doped semiconductors is of a hopping nature 
and is related to transitions between impurity electronic 
states accompanied by emission or absorption of phonons. A 
distinctive feature of lightly doped La,Cu04 compounds is 
that at low temperatures they are quasi-two-dimensional an- 
tiferromagnets with a fairly large coupling constant .F of the 
exchange interaction (on the order of lo3 cm-') inside the 
plane.'-3 Since F exceeds the characteristic (Debye) ener- 
gy, one should expect that the main role in the hopping con- 
ductivity for such compounds is played by transitions ac- 
companied by absorption and emission of magnons rather 
than of phonons. The present paper examines the two-di- 
mensional hopping electrical conductivity caused by elec- 
tron transitions between impurity states with the participa- 
tion of magnons. We calculate the probabilities of the 
respective elementary transitions and determine the tem- 
perature dependence of the hopping conductivity in various 
regions. For one thing, we show that there must be jump-like 
variations of conductivity at temperatures determined by 
the widths of gaps in the magnon spectrum. 

2. Current thinking conductivity in doped 
La,Cu04 compounds as being of a quasi-two-dimensional 
hole nature and taking place via oxygen ions in the basal 
plane (with small overlap integrals of the planes). Under 
light doping the holes are localized mainly at the oxygen ions 
in the neighborhood of impurity centers. A pure La2Cu04 
crystal constitutes an antiferromagnet with a NCel tempera- 
ture TN of order 3 / l n ( J / A ) ,  where A ( 3  is a quantity 
linked to the magnetic anisotropy in the basal plane result- 
ing, as Bar'yakhtar, Loktev, and Yablonskii have shown,3 
from a slight turning of the oxygen octahedrons near an ion. 
Under doping the Ntel temperature lowers (A decreases) 

and at a certain impurity concentration the long-range mag- 
netic order disappears in the entire temperature range. Be- 
low we consider such impurity concentrations at which the 
long-range magnetic order is retained in the system at T = 0. 

The Hamiltonian describing the electron and magnon 
subsystems and their interaction can be written as 

where the Hamiltonian cVo describes the behavior of an un- 
perturbed conductivity carrier (hole) in the band, where E, 

is the energy of this carrier with a wave vector k, a& and a,, 
are the creation and annihilation operators, a is the spin 
index, and Rim, and Zma, are the Hamiltonians of the 
impurity and magnetic subsystems, respectively. The last 
term in ( 1 ) , Hint, describes the electron-magnon interac- 
tion, which we select in the form of the Shubin-Vonsovskii 
p-d exchange electron-magnon intera~tion:~ 

where the vectors 1 indicate the sites where a hole can be 
localized, I, is the hole spin operator, S, + A the copper spin 
operator, 1 + A the sites in the copper sublattice closest to 
the oxygen site 1 (A = 1,2), and J the coupling constant of 
the exchange interaction of an impurity with the matrix. The 
positions of copper and oxygen atoms in the CuO, plane and 
the direction of magnetization are shown in Fig. 1 (in what 
follows we assume that la1 = 1 bl and alb hold with a fairly 
high accuracy). 

FIG. 1 .  Positions of copper and oxygen atoms in the basal CuO, plane 
(the stands for copper atoms, with the arrow denoting the direction of 
spin, and the 0 for oxygen atoms). 
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We write the Hamiltonian describing the unperturbed 
magnetic system as 

where 
with J >  0, J% AJ,, and J% AJ,. Herem denote the sites ofthe 
copper sublattice, with m = nj, where n is the number of a 
magnetic cell and j the number of the sublattice; S = 1, ..., z, 
with z the number of nearest neighbors in the plane; and AJl 
and AJ, represent the anisotropic part of the exchange inter- 
action, with AJ, > 0 corresponding to easy-plane anisotropy 
(with respect to the c, axis) and AJ, > 0 determining anisot- 
ropy in the basal plane. Although anisotropy in the plane is 
caused by the Dzyaloshinski'i antisymmetric exchange inter- 
action, which is related to the slight turning of the oxygen 
 octahedron^,^ the observed spectrum of the antiferromagnet 
considered here can be obtained if one allows for the anisot- 
ropy of only the symmetric interaction, described by AJ, and 
AJ,. The real La2Cu0, system is a four-sublattice antiferro- 
magnet, but, since in what follows we do not take into ac- 
count weak interplanar interactions and we consider the 
conductivity inside a plane, it is sufficient to allow for only 
two magnetic sublattices in each plane, that is, j = 1,2. 

We move on to magnon operators in Eq. (3)  via the 
Holstein-Primakoff transformation 

Since D, is negative, ws is the lowest branch. 
3. In studying the electron subsystem, we note that al- 

though in compounds of the La2Cu0, type one impurity 
atom perturbs several oxygen sites, below for the sake of 
simplicity, we employ a model in which an impurity perturbs 
only one site. Then the Hamiltonian R0 + Rimp = Zel as- 
sumes the form 

where 

pis the oxygen site closest to the impurity, and V, the pertur- 
bation at site p. 

Besides expanding the carrier operator in the site repre- 
sentation, b,, , in the electron operators of the unperturbed 
crystal, as was done in Eq. (a), we can also expand such 
operators in impurity states and the states of the continuous 
spectrum k perturbed by the presence of an impurity. In the 
simplest case, where the impurity concentration is low and 
the impurities affect each other very little, such an expansion 
can be written as 

where the operator a, refers to the spin in sublattice I and b, 
to the spin in sublattice 2, and S is the atomic spin. 

Next we introduce the spin-wave operators for the first 
and second sublattices: 

where q is the magnon wave vector, and N the number of 
magnetic cells in the crystal. 

The Hamiltonian Xm,, is diagonalized by the opera- 
tors a, and p, : where p defines the impurity state related to the perturbation 

at the impurity site p, and aB, is the operator of the respective 
state. In the single-impurity approximation the expression 
for c,, has the form9 

where a, and p, are related to the operators c, and d, 
through the well-known u-v transformations (see, e.g., Refs. 
7-9): 

where 

with E, < 0 being the impurity-center energy defined by the 
equation 

The transformation coefficients and the frequency spectrum 
are 
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The vector k in Eq. ( 11 ) is defined in the reciprocal space 
corresponding to the sites of the oxygen lattice in which the 
number of cells is 4N, with N the number of magnetic cells. 
In the reciprocal space we go over to the cell corresponding 
to vector q, that is, the magnetic cell. Then we can write Eq. 
(11) as 

where /Z = 1,2,3,4 numbers the four cells of the reciprocal 
magnetic space corresponding to a single reciprocal cell of 
the oxygen sublattice, and the QA are the vectors in the reci- 
procal space that determine the positions of these cells. 
Among these four cells the cell singled out is the one for 
which Q, = 0 and E,, = E, , with E,, -+ 0 as q -. 0. 

In what follows, when discussing conductivity we must 
allow for carrier hopping between a pair of impurity centers 
p and p, separated by a large distance (greater than the im- 
purity-state radius r,, with r o - x ) .  Only two terms in 
Eq. (9) need to be retained to describe such hopping: 

One must allow, however, for the effect of states p and p, on 
each other, which must lead to the renormalization of the 
constants c,, and c,,, . Within the framework of the Hamilto- 
nian (7),  the interaction of impurity states takes place 
through states of the continuous spectrum. As a result the 
coefficient c,*, for instance, assumes the form 

Here we have allowed only for pair interaction between 
centers p and p, and ignored the interaction through inter- 
mediate impurity centers. This is possible only if 

where c is the impurity center concentration, and a is the 
Bohr radius of a center. 

We have also allowed for the fact that the spread of 
impurity centers in a crystal due to various imperfections of 
the crystal is fairly broad and exceeds the spread due to the 
resonant interaction between impurity states, that is, 

for the majority of centers. As a result, the second term on 
the right-hand side of ( 13) proves to be smaller than the first 
(in what follows, however, the second term plays an impor- 
tant role). 

Now we consider the interaction operator Fin, speci- 
fied by Eq. (2).  We assume that carriers have a small effect 
on the magnetic subsystem, so that the latter can be de- 
scribed in the neighborhood of an impurity atom by an ex- 
pansion in the magnon operators of the unperturbed crystal. 
Here, since the carriers are between two copper atoms be- 
longing to two different magnetic sublattices, the zeroth- 
order terms in the magnon operators vanish (if we ignore the 
slight turn of the magnetic sublattice resulting from the 
Dzyaloshinskii interaction). In what follows we retain only 
the terms that are linear in magnetic operators, in terms of 
which the operators s,; and s$ are expressed. Then 

where t, is the radius vector of the vth oxygen atom in a 
magnetic cell ( t ,  = 0, t, =; a, t, = a + b, and t, = b). 

Next, allowing for the fact that the carrier spin satisfies 
a = 1/2, we can write the spin operator I,t in the form 

Finally, substituting (8)  and ( 14) into Eq. ( 171, we 
obtain the electron-magnon interaction operator in which 
the small term that is the product of the second terms in ( 14) 
is discarded: 

x y, >l1 [(u,, - eiqtvv,) $"+ 
4 v 

where 

Y(V, p,, p. q )=  ~ e ' q n 8 . . p , ~ n w .  

Substituting Eq. ( 11) into Eq. ( 19) yields 

Terms with il $0 and A, # 0, which are small compared to 
the other terms, have been discarded. Combining (20) with 
( 18 ) , we finally get 
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4. The probability of carrier hopping accompanied by 
the creation of a magnon is 

+ 2 X Y  cosL (P-P,, q)  I ) ~ ~ o ( ~ ~ ~ P + ~ ) ~ ( E P P , - F ~ B )  
+9qa(lhq5+l)6 ( E P P , - E ~ c ~ ) ,  (22) 

where 

epp,=ep- E,,. 

When calculating the quantities in (22) and (23), we 
make certain simplifying assumptions. The magnon wave 
vector is assumed to be small in comparison with the charac- 
teristic wave vector of a carrier, or lql( (k, ( (here k, = l/r,, 
with r, = d /a the radius of the electronic state), and the 
carrier dispersion law is assumed to be parabolic, or 
~ ( k )  = ~ ~ ( d k ) ' ,  where it is convenient to select d ' as the 
area of a magnetic cell. 

Since in the formula for x in Eq. (20) the principal 
contribution is provided by the small-k region, summation 
over reciprocal magnetic cells can be replaced by integration 
over the entire k-space. We then get 

with a = JE,, and K, (x)  a cylinder function, and 

In the two-dimensional case considered here, fpp, in Eq. 
( 14) has the form 

nhere K,(x) a modified Bessel function. An estimate of Y, 
yields 

where(zln(k,/k,)) 1, where k,/k,) 1 and k, isaquan- 
tity of the order of the maximum wave vector in the Brillouin 
zone. 

When calculating the sum over v (over oxygen sites) in 
(23), we assume q small and retain only the principal terms 
in the expansion. This yields, for instance, the following 
expression for L,, : 

Assuming that B,, ID, I <AOJq, we have the following ex- 
pressions for u ,, and v, ,  : 

where mop arid a,, are the cutoff frequencies in the spin 
excitation spectrum of the antiferromagnet. 

Thus, 

Combining Eqs. (24)-(29), we can transform (22) into 

W ( ~ l - ~ , t l -  3- -4s - 
A3AO2 E P ~ ~ [ ~ ( P O B ) + ~ ] X Z - ~ .  

where r = p - p,, po is the angle between vectors r and 
a + b, J,(x) and J, ( x )  are the Bessel functions of the respec- 
tive orders, 9 ( x )  is the unit-step function (equal to 1 if x > 0 
andOifx<O), and 

For simplicity, only the expressions for the probability of 
carrier hopping with the participation of the lower branch of 
the magnon spectrum are given in (30) and (3 1 ). 

Simpler results follow from Eq. (30) for rqoi ) 1 and 
rq,, ( 1, where i = a,& it is assumed that in these two limit- 
ing cases we have r/r,) 1. 

Aside from this, at low temperatures, a range of ex- 
treme interest to the processes considered here, we can ig- 
nore the magnon occupation numbers. Then the probability 
of magnon-initiated carrier transitions between the localized 
states p and p, is 

with Si = W;,&/~E;, , when rqoi 1, and 

W ( p l + p , t ) -  - ( i ,b ,L(2~)  - a E ~ ~ ~ o ( ~ ~ ~ , - A ~ ~ ~ )  
A6AO3 r 

+0 ( ~ ~ , , - f i w ~ ~ )  le-zr'ro, (33) 
when rqoi ) I. 
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6 IT), arb. units 

FIG. 2. The temperaturedependence ofconductivity ( T o  = 100 K, fw,8/ 
k =  14K, andfiwo,/k= 42 K) .  

5. At low temperatures the conductivity of this two- 
dimension La,Cu04 system with a low dopant concentra- 
tion is of a hopping nature. The prevailing conductivity here 
is the one with varying hopping length. The respective 
expression for the specific resistance of two-dimensional sys- 
tems, p ( T ) ,  has the 

where To = p/kg(p)  6 ,  with g (p )  the density of states at 
the Fermi surface (depending on the impurity concentration 
and also caused by the spread in the impurity levels), and the 
numerical factor p=: 13.8 within the framework of percola- 
tion theory. 

According to Shklovskii and ~f ros ,"  the pre-exponen- 
tial factor po has the form p, = L$,, where 

and Lo is the characteristic correlation range. Estimates of 
Lo yield Lo = roc + ", with v=: 1.34 the critical index of the 
correlation range. l2  

Noting that r = 7 and E,,, = E,  are given by (34), we 
find that the characteristic parameter go, r determining the 
form of the expression for the transition probability [Eqs. 
(32) and (33)] is 

with i = a,p. Let us write the expression for po in the two 
limiting cases in x:  

with y, = kTS, - hoi and Soi = m&fi2/2E;. 
We see that the temperature dependence of the pre-ex- 

ponential factor differs considerably in the limiting cases 
x ( 1 and x % 1, but in both cases po diminishes as T grows. 
We especially note that because of the unit-step functions in 
(35) and (36) p experiences two jumps at temperatures Toi 
defined by 

Since near a jump x - 0  holds, we must use Eq. (35) when 
studying the behavior of po in this region. Since hoi kTo, 
the temperature To of the jump determined by (36) proves to 
be essentially smaller than the existing energy gap in the 
spectrum of the ferromagnet. The temperature dependence 
of a obtained via Eq. ( 35 ) is depicted in Fig. 2. 

This discussion and the resulting jump in conductivity 
are, of coures, idealized. In reality, owing to the spread in 
energy levels, even at temperatures below the jump there are 
states that lead to a finite value of conductivity. As a result, 
in the jump region one should observe a change in the tem- 
perature dependence of conductivity. Moreover, the resis- 
tance caused by carrier hopping with a fixed hopping length 
becomes essential. A detailed analysis of the transition from 
the temperature behavior of conductivity considered here to 
the one in the case of T S  Toi requires special treatment. 

Note that the characteristic variation in the tempera- 
ture behavior of conductivity in La,Cu04 compounds in the 
low-temperature range and the transition from conductivity 
with a varying hopping length to conductivity of the activa- 
tion type, which corresponds to a constant hopping length, 
have been observed in  experiment^,'^^'^ and the transition 
temperature in such experiments is, apparently, commen- 
surate with the temperature Toi defined by Eq. (37), which 
corresponds to a higher branch of spin excitations. 
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