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We propose an approach to the determination of the spectral energy density of hydrodynamical 
turbulence which is based on using the properties of a quasi-two-dimensional wavepacket, taken 
as the structural element of the turbulence. We show that there exist three characteristic E ( k )  
functional behaviors. For the long-wavelength region we get the law E(k )  a: k 2 A  ' I 2  which takes 
into account the cluster structure of a vortex. For the scale-invariant and dissipative regions we 
get, respectively, the laws E ( k )  cc k - IPIln(kdk) and E ( k )  cc ln(ko/k). We confirm the 
conclusions of the theory by a specially designed experiment. 

Turbulence is macroscopic chaos and always has struc- 2hg a = - 
ture. The separate vortices, complex eddy formations, are its Q ~ ~ ~ *  

structural elements. It is not always convenient to determine 
the characteristics of the turbulence through a study of the where n ( r )  is the rotational velocity of the   articles of the 
vortices by the usual ~ ~ l ~ ~ i ~ ~  method ( ~ ~ f .  1, vol. 1, p. liquid at a distance r from the center of the vortex. The inte- 

460). l-his refers especially to the experimental study of gration in ( 1.1 ) is from 0 to r/2. This is connected with the 

large-scale structures with space-correlation characteristics fact that only perturbations of the upper half in the thickness 
which depend strongly on the boundary conditions (Ref. 2, ho affect the dynamics of the vortex ~acke t .  1t follows from 
p. 13). (1.1) that for a) 1 we have 

We consider in what follows the possibility of a Lagran- 6 Y r 2  
gian approach based on a direct study of the properties of <h,>= - = 

2s 
' l o ,  

vortex motion of a liquid with a free surface. It is well 
known3 that the equations of motion of a liquid with a free and we can thus separate the effect of the centrifugal forces 
surface are in several cases the same as the equations describ- from the nonequilibrium Part of the perturbation of the sur- 
ing phenomena in compressible plasma media. The results of face level of the vortex: 
thepresent paper can  thus be >elevant to turbulence of a 
different physical nature. h ( z ,  Y, t)=qo+q (x, Y, t ) .  

1. QUASI-TWO-DIMENSIONAL VORTEX PACKET MODEL The role of the perturbation v(x,y,t) will then appear for 

We choose the structure element of the turbulence in 
the form of a quasi-two-dimensional vortex packet with a 
core of radius ro, schematically shown in Fig. 1. Quasi-two- 
dimensionality means the presence of a perturbation 
h(x,y,t) of the surface level of the vortex and the neglect of 
small changes in the averaged characteristics of the motion 
in the equilibrium thickness h,. We denote by 8 the angle 
between the direction of the free fall acceleration g and the z- 
axis, along with the rotational velocity of the vortex core oo 
is directed. In the 8 = 0 case, for which we have designed an 
experiment, h is the perturbation of the free surface of the 
liquid. In the 8 #O cases one must take h to be the perturba- 

a =: 1, i.e., in those cases where the drop in pressure is com- 
parable with the effect of the rotation. This is essentially a 
formulation of the so-called quasi-geostrophic condition of 
geophysical hydrodynamics (Ref. 4, p. 226), which we shall 
use in what follows. 

The structural element model used is more relevant to 
two-dimensional turbulence. However, one must take into 
account that in real turbulence, predominantly in the long- 
wavelength region, the role of two-dimensional vortex for- 
mations will dominate, since due to gyroscopic effects they 
are more stable than three-dimensional structures. In other 
words, due to the tendency of vortex tubes to stretch in a 

tidn of the surface level of the vortex packet, submerged in its 
own medium. To take into account the effect of a different 
orientation of the vortex packet in the turbulent medium on 
the quantity h we introduce into our discussion the value (h ) 
of the component of h along the direction of g, averaged over 
the angle 8, which we calculate in terms of a Gibbs distribu- 
tion of the potential energy of the particles of the liquid rela- 
tive to their rotational energy: 

n/z 

rrp (-a cos 8)cos B sin 0 d0 
0 

(hg>= h n/r 

enp(--a cos 8)sin 0 dt) 
o 

( ) FIG. 1. Sketch of a quasi-two-dimensional vortex packet. 
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turbulent medium the motion inside a vortex tube will basi- 
cally be two-dimensional (Ref. 5, p. 113). 

2. INITIAL EQUATIONS 

We must determine the velocity v and pressurep fields 
caused by the initial circulation 

in the (x,y) or (r ,p)  plane, in a Cartesian or polar coordi- 
nate system, respectively. The vortex motion is character- 
ized by the vorticity curl v in each point, and some average of 
its value [e.g., over the polar angle p-(curl v) = 2fl(r)]  
must be maintained by external action, which is the condi- 
tion for stationary turbulence generation. The connection 
between R(r )  and I?, can be established through Kelvin's 
theorem: 

(curl v > d S = f  J I2 (r)dS=l.,. 
S S 

where S is the singly connected surface subtended by the 
vortex as a whole with respect to the average dynamic char- 
acteristics. The proviso about S is connected with the fact 
that the Kelvin theorem for vortex motion is applicable in- 
side a loop of the separatrix of the stream f ~ n c t i o n . ~  The 
single-valued connection used by us in what follows between 
the pressure and the density generalizes the applicability of 
this theorem to the case where there is viscosity (Ref. 7, p. 
31). 

One can take into account a given average vorticity field 
2R in the equations of motion through chaning to a reference 
frame consisting of an infinite set of annular layers differen- 
tially rotating with angular velocity R(r )  in which centrifu- 
gal and Coriolis forces act upon the particles of the liquid. 
We then look for the velocity v(x,y,t) and pressurep(x,y,t) 
fields perturbed about the average vorticity and centrifugal 
force pressure fields. We write the final expressions for the 
Euler quantities v,,, andp,,, in the form 

V Eul = u + v + [ ~ I ] ,  pa=p,,+pf p [%']'/2, (2.2) 

where u is the translational velocity of the vortex, which is 
the same as the Lagrangian velocity when the center of the 
vortex has a rectilinear trajectory andp, andp are the pres- 
sure and the density of the medium. 

In accordance with the quasi-two-dimensional nature 
of the problem we start from the equations of the "shallow 
water" theory (Ref. 7, p. 60). Generalizing the continuity 
equation to the r ]  = r](x,y,t) case and taking viscosity into 
account in the equations of motion we have 

Taking the curl of (2.3) and using (2.4) we get an equation 
for the stream function $: 

where V2 is the Laplacian. In (2.5) we have used the follow- 
ing notation: 

d $  alp a$ arl 99 dll 

v x  = ay' 
v = -- J ( $  q)= ----- 

ax' a , ~  a ! ~  a~ ax ' 

and also the condition 

Equation (2.5) contains two unknown functions $ and r ]  

and the problem consists of determining $ for arbitrary r] .  

This is why the right-hand side of (2.4) is not a trivial 
expression after we have introduced the stream function, al- 
though we have div v = 0. Inequality (2.6) means that we 
are considering long-wavelength perturbations of $ which 
are stretched out in rand vary with p. 

When there exist functional relations 

the Jacobian J in (2.5) vanishes. To obtain such simplifica- 
tions we use linear relations which have a well defined phys- 
ical meaning. We can uniquely construct from the basic pa- 
rameters of the problem the simple relationship 

where the minus sign reflects the formation of depressions 
on the surface of the vortex the size of which is proportional 
to the rotational velocity of the annular layer considered. On 
the other hand, the relation (2.7) is an expression of the 
quasi-geostrophic motion condition mentioned earlier. 

To establish a relationship V2$ = F ( $ )  we take into 
account the possibility that different perturbation waves 
form and interact in the vortex packet considered. The usual 
harmonic analysis of the linearized system (2.3) and (2.4) 
[without the term (vV)v] indicates the possibility that there 
may occur three kinds of perturbation waves: a transverse 
vorticity wave, and also longitudinal elastic and entropy 
waves with the respective spectra 

wta=4Q2 cosZa+vZk', (Qk) =Qzk cos a, k l v ,  (2.8) 

where wi is the frequency and k the magnitude of the wave- 
vector. We have obtained Eq. (2.8) by taking the curl of 
(2.3) and Eqs. (2.9) and (2.10) by taking the div and using 
(2.4). If we neglect the quantity r] in the dispersion relations 
for the longitudinal wave ( r ]  4 h,) we obtain Eq. (2.9), if we 
assume that r]-h,, and we use (2.7), then we obtain Eq. 
(2.10). 

When there is noviscosity (v = 0) Eq. (2.8) changes to 
the well known spectrum of inertial waves, but in that case 
2R(r)  signifies an average vorticity rather than an angular 
velocity, so that one can call such waves vorticity waves. 
When v = 0 holds, Eq. (2.9) changes to the spectrum of 
long-wavelength gravitational waves occurring due to the 
elastic oscillations of the surface of the liquid. A wave with 
the spectrum (2.10) is possible only when there is viscosity 
and is therefore called an entropy wave. 

We get from the condition for resonant interactions be- 
tween two longitudinal waves (w, = w,) an estimate for the 
value of the velocity of the liquid 
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for which the hydrodynamic analog of the Cherenkov effect 
occurs and a discontinuity starts in the behavior of several 
dynamical characteristics of the vortex. 

On the basis of these results we may assume that the 
stream function to a first approximation satisfies a wave 
equation: 

where vPh is the phase velocity of the wave. We find the 
required relation 

in the form (2.12). This relation can also be considered as an 
equation to determine $. Its solution in polar coordinates 
can be expressed in terms of oscillating Bessel functions. 
However, these solutions do not take into account the role 
played by n ( r )  and v, so that it is necessary to use Eq. (2.5) 
together with conditions (2.7) and (2.12). In order to take 
into account the effect of the viscosity on the induced vorti- 
city, 

A$ = - curl v 

we must then use conditon (2.12) only once on the right- 
hand side of (2.5). Introducing the damping rate y we have 

where we have put 

Here R is the ratio of the Reynolds number R, = flor2,/v to 
its critical value defined in terms of the "wave viscosity" y/ 
k ', since V2$ changes sign for R = 1. Condition (2.1 1 ) thus 
leads to a discontinuity in the vorticity, i.e., to a weak tan- 
gential discontinuity. The condition R = 1, or 
y = y, = k 2 v is additional to (2.1 1 ) and it defines the criti- 
cal value y, of the unknown quantity y = y(k,R,). We can 
call the occurrence of a discontinuity for R = 1 also a sec- 
ond-order phase transition since then the symmetry of the 
motion (the sign of curl v )  changes, while the physical quan- 
tity (the velocity) may stay constant but its first derivative 
shows a jump. 

3. FUNDAMENTAL SOLUTIONS FOR THE STREAM 
FUNCTION 

We shall look for two kinds of solution of (2.13 ) which 
occur for R < 1 and for R > 1 and which satisfy the condi- 
tions 

We use the method of separation of variables, putting 

We choose the constant A in the separation of variables so 
that 

A-2/f (R) =mZ>O. (3.2) 

Here we have used the fact that the parameter g does not 
dominate for an induced vortex, and also the fact that we 
assumedin(2.13) thatqGb=$,,.IfR<l [ f ( R ) < O ]  holds 
we must take A with a negative sign in order to avoid satisfy- 
ing (3.2) (R = 0)  trivially. It then follows from (2.13) that 
for the R < 1 case we have 

rZL" (r)+rL' (r) -I-kL(r) =0, 0" ((p) -mZ@ ((p)=07(3.3) 

and for the R > 1 case 

z2LN(r)+rL'(r)-hL(r) =0, @"((p)+m2@ (9) =0. (3.4) 

Using the solutions of those equations corresponding to 
(3.1 ) we can write down expressions for the stream function 
including the time-dependence: 

exp(-yt), R t l ,  m=O, 

(3.5) 

exp (imcp - yt), R > 1, 

These solutions reflect actual physical phenomena and are of 
fundamental value for further discussions. If we assume that 
for the basic perturbation mode we have k = l / r  the condi- 
tion y, = k Z / Y  (R = 1)  determines the boundaries of the 
spatial separation of the regions where the solutions (3.5) 
and (3.6)  can be applied. Inside the circle r = r. = (v/ 
y. ) ' I2 we have periodicity in the polar angle with the forma- 
tion of a discrete number (m)  of structures. The continuous 
and discrete spatial motions in the vortex are mutually ex- 
clusive. The solution (3.6) describes a vortex cluster with m 
"branches." 

We find the values of r, from the contition that (3.5) 
and (3.6) must be matched at that point. To do that we must 
renormalize the function $,. The renormalization coeffi- 
cient and the value of r, are found from the conditions that 
the stream function and the absolute magnitude of the veloc- 
ity are continuous: 

I% 

1 4 ~ ~ = + ~ ,  C O S ( A "  In $)(%) , (3.8) 

1 ,z '1, 

r..=ro exp [ -parota& + i) + n n ] ,  n = ~ .  1.2,.  . . 

Since the argument of (.39) is multivalued, the wavelike and 
structural characteristics of the motion in the vortex on mul- 
tiple scales are superposed on the shorter-scale perturba- 
tions. This means that the vortex motion, as a structural 
element for turbulence, also has hierarchical properties 
which are characteristic of the turbulent motion, such as the 
formation of subharmonics (Ref. 8, p. 180). 
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4. ENERGY INTEGRAL ANDSPATIALTURBULENCE 
SPECTRUM 

One can prove that Eq. (2.13), written in Cartesian co- 
ordinates, has an invariant functional 

2& (1.) 
dxdy 

fn/ ( R )  

Indeed, if we put the functional derivative of the integrand 
with respect to qb equal to zero, which is the condition that it 
is conserved, we get the initial equation (2.13). We call the 
functional E($) the energy of the vortex since the first two 
terms are essentially proportional to the kinetic energy and 
the last term is proportional to the interaction energy of the 
particles of the liquid. Replacing 6' /ax, a /dy by a /dr, a /dq, 
we get an expression for the energy in coordinates: 

r 3n 

If we change to function of the wavenumber (r-t l /k) ,  the 
energy of the vortex packet determines the spectral energy 
density of the turbulent pulsations according to the normali- 
zation 

where the ul are the pulsations of the component of the 
translational velocity of the vortex, k,, is the minimum 
value of the wavenumber corresponding to the area S of the 
surface of the vortex, and we have k, = l/r,. 

We first consider the small wavenumber region where 
we have 

Using (3.8) we have from (4.2) 

E ( k ,  Ic,) = E ,  [ h  m2 + 2/f  ( R ) ]  (IZ? ' - k2'"), 

Eo = 11022nr;k5A/1"'-. (4.4) 

Iffrom (3.2) 

m2+2/f  ( R )  =A, 

holds in (4.4), the result will not depend explicity on the 
number of structures in the cluster. However, the solution 
(3.6) allows the number of structures to change sponta- 
neously. One can therefore consider a virtual state of a vor- 
tex with a number m + j of structures, where 
j = 0, k 1, + 2, ... is the number of virtual secondary struc- 
tures. In that case (4.4) takes the form 

One can treat this expression as the binding energy necessary 
to form j secondary vortex structures from m primary struc- 
tures in the wavenumber range from k to k.. We denote by 
E(k.  ) the maximum energy of a single vortex in a localized 
state ( j = 0)  and by E(k,m, j) the energy of a vortex cluster 
containing m + jstructures. From the definition of the bind- 
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ing energy we then have 

E ( k ,  I U )  -- E (k,) 7- E (li, k,,, rn, j )  

It is necessary to take into account that E(k+O,m)>O, 
which reflects that there are no pulsations with infinitely 
large spatial scales. This condition determines the sign and 
maximum value of j = j( k )  (j < 0,l jl<2m ) and indicates 
that it is possible spontaneously to form coherent structures 
with a complex configuration in the O<k<k, range. The 
properties of these structures, formed when vortices are cou- 
pled were considered in Ref. 9. 

Depending on the actual magnitude of the difference 

E(k,m) takes on different values. Extremal values of 
E(k,m) are reached for m = j/2 and m = j. In the first case 
E(k,m) is a minimum [the binding energy occurring in 
(4.6) with a negative sign takes on its maximum value, 
zero]. 

We use (4.6) in Fig. 2 for the k < k. region to show the 
curves corresponding to A = 18, 6, and 3. We took these 
values to desc' ribe the coupling of vortices (m = 4,2, and 1 ) 
taking into account that for large Reynolds numbers we have 
f ( R )  + 1 in Eq. (3.2). The restriction on the maximum val- 
ue of m is connected with the fact that a system with a large 
number of vortices becomes stochastic (in an ideal liquid 
forr0 m>4). The lowest curve (A = 18, j = 0 )  was chosen to 
show the pumping energy which causes states with m = 2, 1 
to appear spontaneously. The positions of the minima ( k  / 
k. = ;,a) correspond to the multiple change of the localiza- 
tion region of a system of vortices when they are coupled. 
The value of r. for m = 1, A = 3 is determined from (3.9). 
The dashed line shows the possible behavior of E(k,m). The 
turbulence spectrum in the long-wavelength region, dis- 
cussed in the literature from various points of view (Ref. 1, 
Vol. 2, p. 15 1 ) may thus turn out to be irregular. 

We find the energy of the turbulent pulsations in the 
k > k . region by using the solution (3.5) : 

FIG. 2. Theoretical behavior of the homogeneous turbulence spectrum. 
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If we take into account the condition m = 0 corresponding 
to (3.5 ) and assume 

which is possible for y - k *, we have 

k ,  
B ( X .  k,,) =2:1 #,,'h In- 

k (4.8) 

for the vortices on the small scales determined by the viscos- 
ity. 

The scale-invariant (inertial) region of the turbulence 
spectrum is determined by the quasistationary properties of 
the vortices. A quasistationary vortex is a virtual system 
where direct (splitting up) and inverse (merging) cascades 
of changes in the number of structures take place." Then, 
although m = 0 holds, one can describe the cascade pro- 
cesses in some k range thanks to the y = y(k,R,) depend- 
ence which may cause A to differ from 2/f (R) .  

We find the approximate form ofB(k,k,) in the inertial 
region. We can take the function in the square brackets in 
(4.7) from under the integral sign because of the slow, loga- 
rithmic nature of the change of its argument. Moreover, we 
require that this function be a homogeneous function of de- 
gree 8, i.e., proportional to kO. We find the proportionality 
coefficient from the condition for matching with expression 
(4.6) for k = k,  : 

'iO k E ( A , ,  I f , )  = P (k,) ki3 In -- , E (k,) -- ~,,2hk.g" "'/I 11 -2- 
12 k* 

From the way it is introduced, we have P <  0. F o r 0  = - 5/ 
3 Eq. (4.9) goes over into the Kolmogorov-Obukhov spec- 
trum with the logarithmic correction factor established in 
Ref. 12. Applying Euler's theorem for homogeneous func- 
tions to the integrand in (4.7) gives us a connection between 
y(k)  and the degree of homogeneity 8: 

We have obtained an integral relation, typical for the charac- 
teristics of strong turbulence.13 We restrict ourselves to the 
first approximation for y(k). Substituting into the right- 
hand side of (4.10) the value of the absolute magnitude 

we get 

Hence the inertial region range satifies the condition 

guaranteeing that we have y(k)  )O. 
From (4.9) follows the possibility of determining the 

parameter for given a, and r, in terms of the empirical 
constant occurring in the Kolmogorov-Obukhov spectrum. 
In the k < k. range that parameter was determined in terms 
of the number of structures in the vortex cluster. In Fig. 2 we 
show the function (4.9) in the k > k , range for = - +. 

5. EXPERIMENT 

The conclusions of the theory were checked through a 
specially designed experiment. Quasi-two-dimensional vor- 
tices were produced on the surface of the liquid in a rectan- 
gular tank of dimensions 38 X 60 X 6.5 cm by the steady rota- 
tion of 10-20 mm diameter disks. The thickness of the liquid 
above the disk was 1-3 mm in the state of rest. Taking the 
centrifugal effect into account, it was chosen so that liquid 
remained at the edge of the disk and identical conditions 
were created to induce vortex motion at the surface of the 
liquid at rest. In accordance with the aim of the experiment 
the depth h, of the liquid in the tank had to satisfy the condi- 
tion of the "shallow water" theory (neglect of changes in the 
average characteristics of the flow in the transverse direc- 
tion). We chose h, = 2 cm since for smaller values of h, 
(h, 5 1 cm) the effects of the boundary layer formed on the 
bottom of the tank affected the picture of the flow. 

The rotational frequency of the disks was varied from 
20 to 40 s- ' and was measured by electron counters supplied 
by light detectors. The change in the level h of the surface of 
the liquid was fixed with an accuracy of + 0.01 mm by 
checking the contact between the point of an ordinary needle 
and the surface of the liquid. The contact was observed by 
optical and electrical means. The velocity of the liquid was 
measured with an accuracy of f 0.02 m/s using a 1.2 cm 
diameter vane made from a light foil. To reduce the friction 
of the rotation of the vane we used the bearings of a watch 
mechanism. The rotation frequency of the vane was deter- 
mined by fixing the interruption of a light beam passing 
through holes in the vane equally spaced along a circle. The 
velocity detector was calibrated by comparing the measured 
velocity with the rate at which liquid passed through special 
channels of different cross-sections. 

The kinematic viscosity of the working liquid-glycer- 
ine-could be varied over two orders of magnitude by add- 
ing the necessary amount of water. The flow was visualized 
by introducting to the liquid an amount of the same liquid of 
a somewhat different viscosity (density). 

The experiments showed the complex nature of the mo- 
tion in a hydrodynamic surface vortex. For several values of 
the Reynolds number 

RO=Qnr,2/v (flu> 10') 

we observed oscillations of the level h of the surface of the 
liquid inside a closed line. For R, 2 2 X lo2 wave perturba- 
tions appear beyond this line in the shape of separate vortex 
structures; i.e., a discontinuity of the vorticity or a weak 
tangential discontinuity occurs. The evolution of the new 
structures is nonlinear in nature.14 

We shall discuss the data from the measurements of the 
pressure and the velocity necessary for the determination of 
the energy of the vortex, i.e., the turbulent spectrum. We 
show in Figs. 3 and 4, respectively, typical changes along the 
radial coordinate of the relative values of the pressure and of 
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FIG. 5. Experimental dependence of the energy of a vortez on its spatial 
scale. R. = 3.17, E ( k .  ) = 0.957 R:r:. 

FIG. 3. Measurement of the pressure in a vortex as function of the radial 
coordinate. R, = 20.9 (O) ,  28.7 ( 0 ) , 4 1 . 2  ( W ) ,  54.6 ( O ) ,  77.2 ( A ) ,  108 
( V ) ,  184 ( A ) , 2 3 6  ( V ) .  

the velocity, averaged over the time and the polar angle, for 
different values of R,. One can, according to (2.7) and 
(4.2), determine from these data (by evaluating the area 
bounded by the curves in the appropriate coordinates) the 

FIG. 4. Measurement of the velocity in a vortex as function of the radial 
coordinate. R, = 7.31 ( a ) ,  10.7 (O), 14.8 (U), 24.6 (m), 31.7 ( A ) ,  39.6 
( v ) ,  41.5 ( A ) ,  61.7 ( v ) ,  116 (+), 162 (O), 354 (0). 

dependence of the energy of the vortex (of the turbulent 
pulsations) on R,. Using the relations 

we can obtain from the experimental data the function 

For the cluster and quasistationary states of the vortex 
(R 2 1 ) we can neglect variatons in the function y(R ) and 
assume that we have y = y. since in that case the role of the 
viscosity is small. For R < 1 (k  > k. ) it is necessary to take 
into account the difference between the functions y (R)  and 
y(R . ). It follows from the theory of hydrodynamic stability 
(Ref. 8, p. 86) that the scales of the perturbations in the 
viscous sublayer are proportional to R 'I3. Hence in the dissi- 
pative range we can put 

We show in Fig. 5 the experimental dependence of the spec- 
tral energy density E(k) /E(k ,  ) on the wavenumber k /  
k. =R- ' I 2  in the k 5 k .  range and k /k .  =R- ' I 3  for 
k>k . .  

The first, weak minimum of E ( k )  corresponds to a state 
of the vortex which is a cluster consisting of three or four 
vortices. Most often one observes a four-vortex regime. The 
second minimum corresponds to a stable configuration of 
two vortices. The value of E (k ,  ) determines the maximum 
energy of a localized single ( m  = 0) vortex. By comparing 
Figs. 2 and 5 we can judge the validity of the basic conclu- 
sions of the theory. 

To describe Euler turbulence produced, for instance, in 
a liquid stream, one must determine k, in accordance with 
the Komogorov length scale: 

where E is the energy dissipation rate and find from (3.9) the 
ratio k / k  . as function of n. Depending on how the energy of 
the pulsations is measured (whether or not the energy of the 
regular motion is included) one must use (2.2) to take into 
account the change of the Euler velocity. 

The irregular nature of the turbulence spectrum in the 
long-wavelength region is also observed in the experiment 
described in Ref. 15 which is based on the usual Euler meth- 
od. The extent k,/k, of the inertial region determined in 
various experiments may differ by several orders of magni- 
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tude. This corresponds to different values of n in (3.9). 
Summarizing, we note that models of quasi-two-dimen- 

sional structures can apparently be used also for the descrip- 
tion of inhomogeneous turbulence. To do this it is necessary, 
in particular, to know the features of the interaction between 
vortex packets taking into account their internal degrees of 
freedom. '" 
'A. S. Monin and A. A. Yaglom, Statistical Fluid Mechanics, Vol. 1, 
Nauka, Moscow (1965); Vol. 2, Nauka, Moscow (1967) [English 
translation published by MIT]. 

'B. J. Cantwell, Vortices and Waves [Russian translation], Mir, Moscow 
(1984). 

'D. V. Filippov and V. V. Yan'kov, Fiz. Plazmy 12,953 ( 1986) [Sov. J. 
Plasma Phys. 12,548 ( 1986) 1. 
%. S. Monin, P. Ya. Polubarinova-Kochina, and V. I. Khlebnikov, Cos- 
mology. Hydrodynamics. and Turbulence, Nauka, Moscow ( 1989). 

5G. A. Kuz'min, in Structural Turbulence (Ed. M .  A. Gol'dshtik), Inst. 
Theor. Phys., Siberian Branch, Acad. Sci. USSR (1982). 

'S. T. Belyaev and Yu. K. Krasnov, Dokl. Akad. Nauk SSSR 305, 808 
( 1989) [Sov. Phys. Dokl. 34,309 ( 1989) 1. 

'L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Nauka, Moscow 
( 1986) [English translation published by Pergamon, Oxford, 19871. 

'V. N. Zhigulev and A. M. Tumin, Onset of Turbulence, Nauka, Novosi- 
birsk (1987). 

'G. A. Kuz'min, 0. A. Likhachev, and A. Z. Patashinskii, in Structural 
Turbulence (Ed. M. A. Gol'dshtik), Inst. Theor. Phys., Siberian 
Branch, Acad. Sci. USSR ( 1982). 

"'E. N. Novikov and Yu. B. Sedov, Zh. Eksp. Teor. Fiz. 75, 868 (1978) 
[Sov. Phys. JETP 48,440 (1978)l. 

"A. G. Bershanskii, Zh. Eksp. Teor. Fiz. 94, No. 9, 117 (1988) [Sov. 
Phys. JETP 67, 1800 (1988)l. 

"A. G. Bershanskii, Zh. Eksp. Teor. Fiz. 98, 162 (1990) [Sov. Phys. 
JETP 71, 89 ( 1990) 1. 

"V. I. Belinicher and V. S. L'vov, Zh. Eksp. Teor. Fiz. 93, 533 (1987) 
[Sov. Phys. JETP 66, 303 (1987)l. 
142. Zh. Zhanabaev and 0 . 0 .  Alimzhanov, Izv. Russ. Akad. Nauk, Ser. 

Fiz. Atoms. Ok. 28(7), 90 ( 1992). 
"K. B. N. Zaman and A. K. M. Hussain, J. Fluid Mech. 138,325 ( 1989). 
IhZ. Zh. Zhanabaev, Abstracts All-Union Seminar on Hydrodynamic Sta- 

bility and Turbulence, Inst. Theor. Phys., Siberian Branch, Acad. Sci 
USSR. Novosibirsk. 

Translated by D. ter Haar 

989 Sov. Phys. JETP 75 (6), December 1992 Z. Zh. Zhanabaev 989 


