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The logarithmic part of the Lamb shift, the contribution of relative order a3 log( l / a )  to the 
atomic state energy, is related to the usual infrared divergence. This fact allows one to easily 
calculate this correction in positronium. Logarithmic contributions of the next order, 
a4 log( l / a ) ,  are of a different, relativisitic nature. Their calculation is reduced to ordinary 
perturbation theory for the nonrelativistic Schrodinger equation. The perturbation operators 
have the Breit-type structure and are found by evaluating free-particle diagrams. For 
positronium, the calculated logarithmic correction is nonzero only in n3S, states and is equal to 
5/24ma6 log( l/a)/n3. 

1. INTRODUCTION our recent note,bhere for brevity we restricted ourselves to 

~h~ increasing precision of the spectroscopic measure- a formal scheme of calculations. Here we present in detail a 

merits in hydrogen, rnuonium and positronium demands somewhat different approach to the calculation of the loga- 

higher accuracy of the theoretical calculations for the QED rithmic energy corrections- It naturally leads to the same 

two-body bound states. Certainly, those problems are also of result, but allows one to give physical interpretation of the 

an independent theoretical interest. different contributions. 

The generally accepted theoretical approach to them 
goes back to Refs. 1-3. Its starting point is the introduction 
of a relativistic two-body wave equation, which can be solved 
exactly, and which in the nonrelativistic limit reduces to the 
Schrodinger equation. Then a perturbation series is devel- 
oped about the exact solution. 

Our approach is different. The corrections to the Lamb 
shift that are logarithmic in a originate from the effective 
operators which can be considered local with acceptable ac- 
curacy. These operators are found by evaluating free-parti- 
cle diagrams. The corrections discussed are then computed 
in the standard perturbation theory for the nonrelativistic 
Schrodinger equation. 

The logarithmic contribution to the Lamb shift, i.e., the 
energy correction of relative order a3 log ( l / a ) ,  is related to 
the usual infrared divergence. This allows one to easily cal- 
culate this contribution not only in hydrogen, but in positro- 
nium as well. Those considerations are presented in detail in 
Sec. 2. 

The next logarithmic corrections to the energy, relative -- 
order a4 log(l/a),  are of different, relativistic origin. This 
fact is demonstrated in the next sections of the paper where 
those corrections are calculated explicitly. Meanwhile, in 
Introduction, we restrict ourselves to a somewhat formal 
argument in favor of the relativistic origin of the contribu- 
tions discussed: these corrections of high order in a do not 
have any power of n- in the denominator, as distinct from the 
usual QED expansion. This is why we omit the usual adjec- 
tive "radiative" with the noun "corrections' in our paper. 

This approach in its simplest form was previously used 
by two of us to calculate the corrections of relative order 
a2 log( l / a )  to the para- and orthopositronium decay rates.4 
The calculation of the corrections of the relative order 
a4 log( l / a )  to the energy levels is a much more complicated 
problem. The main object of the present article is again posi- 
tronium. However, to at least have an extra check on our 
results we consider the more general case of particles with 
different masses, m and M. 

The main result of the present work was presented in 

2. THE LAMB SHIFT AND INFRARED DIVERGENCE: 
HYDGROGEN AND POSITRONIUM 

The origin of the Lamb shift in hydrogen is closely relat- 
ed to the infrared divergence in electron scattering by a Cou- 
lomb center. Indeed, at the regularization via the introduc- 
tion of the photon mass A, the logarithmic dependence of the 
vertex part on it (Fig. l a )  is cancelled by the similar depend- 
ence of the bremsstrahlung (Fig. lb) .  (We use the Comlomb 
gauge; the dashed line here and below refers to the Coulomb 
field, the wavy one to a transverse photon.) 

If there is no acceleration, i.e., if the momentum trans- 
fer q vanishes, the radiation vanishes also. Therefore, it is 
only natural that the infrared part of the vertex corection is 
proportional to q2. Indeed, including this correction the po- 
tential of the electron interaction with a Coulomb center in 
the momentum representation is (see, e.g., Ref. 6, Sec. 117) 

aq' 

3nm 

Of course, in the bound state problem there is no infrared 
radiation. But the electron here is not on the mass shell, but 
deviates from it by an amount on the order of the binding 
energy, -ma2. On the other hand, the role of the photon 
mass in the bremsstrahlung is in fact to fix the minimum 
possible deviation of the final state invariant mass from that 
of the free electron. So, in the bound state problem one can 
put A - ma2 in Eq. ( 1 ) with logarithmic accuracy. 

FIG. 1.  
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Since the typical atomic momentum transfer is q - ma, 
the relative magnitude of the correction to the potential, and 
that of the energy correction as well, a3 log( l / a ) .  

More accurately, in the momentum representation this 
radiative correction to the potential with logarithmic accu- 
racy equals 

In the coordinate representation it evidently equals 

From it we find with logarithmic accuracy the known result 
for the Lamb shift in hydrogen: 

Here n and I are the principal and orbital quantum numbers 
of the atomic state. 

It is useful to consider from the same point of view the 
Lamb shift in positronium. The infrared divergent radiative 
corrections to the electron-positron scattering amplitude are 
described by figures of the type 2, 3. In other words, the 
virtual transverse photon can be absorbed both by the same 
particle that has emitted it, and by the other one. It might be 
expected naively that the resulting perturbation operator 
will turn out to be four times as large as that in hydrogen, and 
the corresponding energy correction will be half as large 
(taking into account the decrease in the reduced mass by a 
factor of two and the resulting decrease in l$(O) 1 2 )  by a 
factor of eight. - 

However, the situation is different for two reasons. The 
first of them allows for a quite simple physical explanation. 
The following arguments constitute a modification, as ap- 
plied to positronium, of the intuitive description of the 
Lamb-shift in hydrogen, going back to Ref. 7. Due to the 
vacuum fluctuations of the electromagnetic field, the radius- 
vector r of a charged particle fluctuates according to 
r -r + p. Then the interaction potential of two such parti- 
cles, averaged over the fluctuations, is equal to 

. . 

FIG. 3. 

The corresponding contribution to the interaction opertor is 
in fact described by Figs. 2a,b. 

Let us consider now the average - 2(plp,). Since the 
particles 1 and 2 have opposite charges and same masses, we 
get p2 = - p,, but only for fluctuations whose wavelength 
exceeds the size of the atomic system. For smaller wave- 
lengths, or higher frequencies, w > ma, the coordinate fluc- 
tuations are uncorrelated, i.e., (plp2) = 0. In other words, 
the upper limit for the integration over frequencies of the 
virtual quanta in the correlator is not m, as in Eq. 
( 6 ) ,  but ma. Therefore, with logarithmic accuracy the con- 
tribution from this correlator, 

is also equal to Eq. ( 6 ) .  It can be easily seen that the correla- 
tor - 2(P1p2) in question corresponds to Figs. 3a,b. Thus, 
the perturbation operator SV, ( r ) ,  generated by Figs. 2, 3 
with the Coulomb interaction, 

a2 1 
6V,  (r) =8 --;: log - 6 (r) ,  

m a 
(8)  

turns out to be three times as large as the perturbation (2)  
for the case of the external field. 

Certainly, to this order in a we have considered all the 
figures with a true infrared divergence which is cut off at 
ma2. The above arguments, however, demonstrate that in 
Figs. 2, 3 with a double exchange there is a contribution 
cutting them off effectively at frequencies larger than the 
typical momentum transfer q- ma. It is natural therefore to 
consider in the same region m a  < w<m Fig. 4a with the dou- - - 

(V(r,-r2+p,-pz) >=V (r,-r,) +'I,( (p,-p2)'>AV (r,-r,). ble magnetic exchange (and the analogous diagram with the 

( ) 
crossed wavy lines). With the acceptable accuracy one can 
neglect in them the three-dimensional external momenta of 

The mean square fluctuations of the electron and positron both particles. It is well-known that in this case, in the totally 
coordinates (p:,, ), are evidently equal. With logarithmic ac- nonrelativistic limit, the scattering of a transverse photon on 
curacy each of them is proportional to (see Ref. 7) the electron or positron is described by the contact operator 

Correspondingly, the double magnetic exchange is reduced 

FIG. 2. 
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to the simple Fig. 4b with vertices generated by this opera- 
tor. The calculation of the effective interaction arising in this 
way is of no difficulty. In the coordinate representation it is 
equal with logarithmic accuracy to 

The total Lamb-shift operator in positronium is 

6aZ 1 
8V(r)=6Vc(r)+8V, (r) = - log-6(r), 

m2 a 
(1 1) 

and the corresponding energy shift for a level with quantum 
numbers n, I equals 

The answer obtained reproduces the part of the exact result 
for the Lamb-shift in positronium which is logarithmic in a 
found many years ago in Ref. 8 (see also Refs. 9, 10). The 
numerical difference between the logarithmic result ( 12) 
and the exact one is small for parapositronium (with total 
spin S = 0):  log l / a  = 4.9 is replaced by 4.7 in the exact 
result. The difference for orthopositronium (S = 1 ) is larg- 
er: the coefficient analogous to log 1/a = 4.9, is equal to 3.0 
in the exact result. 

In this approach to the logarithmic contribution to the 
Lamb-shift in positronium, this lack of dependence on S be- 
comes quite obvious. For the correction SV, ( r )  related to 
the Coulomb interaction the spin of the infrared radiation 
does not enter. For the correction 6 V,  (r)  due to the double 
magnetic exchange the spin of the Thomson amplitude, i.e., 
of the nonrelativistic limit of the Compton scattering does 
not enter. 

To conclude this section let us emphasize that just as in 
hydrogen, the logarithmic part of the Lamb-shift in positro- 
nium is completely described by the quantum electrodynam- 
ics of nonrelativistic particles. In other words, it is a true 
radiative correction to the nonrelativistic bound-state prob- 
lem. 

3. CALCULATION OF THE CORRECTION - a 4  log(1 /a) TO 
THE BOUND-STATE ENERGY 

In this section we will calculate the correction 
-pa6 log( l / a )  to the energy of a bound state of two parti- 
cles with masses m and M (here and below p = mM/ 
(m + M) is the reduced mass). Considering particles of dif- 
ferent masses allows one to have an additional check on the 
calculations, in particular by comparing with the results for 
the hydrogen atom" obtained to the first order in m/M for 
m<M. 

The direct nonrelativistic approach to the problem is to 
solve the Bethe-Salpeter equation with the expansion in v/c 
in the momenta region which contributes to the energy cor- 
rection in the order of interest to us. This gives rise to an 
equation which resembles the Breit equation, but which in 
contrast to the latter includes not only the corrections to the 
Hamiltonian of the order v2/c2, but those - v4/c4 as well. We 
emphasize that such an expansion is possible since we are 
interested in the logarithmic energy corrections, which can 
be calculated in the nonrelativistic momenta region p g p .  
This equation is satisfied by the solution of the Bethe-Sal- 

peter equation projected onto the positive-energy states and 
integrated over the relative energy of the two particles. 

However, the simplest way to derive the equation dis- 
cussed and the corresponding energy correction is to pro- 
ceed a!ong the lines used for the derivation of the Breit equa- 
tion (Ref. 6, Sec. 83). In this method the correction to the 
effective interaction Hamiltonian is found by expanding the 
scattering amplitude on the mass shell in v/c. In the present 
paper we will use just this approach, which in our opinion, 
not only is simpler, but also allows transparent physical in- 
terpretation of different contributions to the correction dis- 
cussed. 

In the nonrelativistic region of interest to us it is conve- 
nient to use noncovariant perturbation theory and the Cou- 
lomb gauge. Since this technique is not too common, let us 
present the corresponding Feynman rules. We assume that 
the particles have opposite charges. Then the exchange by a 
Coulomb quantum of a momentum q is described by a factor 
- 477a/g2, and the exchange of a magnetic quantum the 
factor - ai e ajSV (q)4ra/2q, where Sv (q)  = Sv - gigj/ 
g2 is the photon polarization density matrix. We recall that 
in the noncovariant perturbation theory the frequency of an 
intermediate photon equals its momentum. The projectors 
onto the positive and negative energy states of a fermion with 
a momentum 3 are correspondingly 

where w,, = \i-*-. In the expression for the effective po- 
tential the projector A- contributes an extra minus sign. 
Any intermediate state introduces the factor 
( E  - En + iO)  - ' where En is the energy of the intermediate 
state and E is the energy of the system. 

3.1. Pure Coulomb exchange 

Let us start with the correction due to Coulomb ex- 
change. The calculations will be performed in the momen- 
tum representation in the center of mass frame where the 
particle of mass m has momentum p, and that of mass M has 
momentum - p, with E z m  + M. Writing the Dirac spin- 
ors as 

we find easily that the correction to the Hamiltonian can be 
written as 

The second-order Breit correction V p' (p,pl), including in 
particular the relativistic correction to the dispersion law, is 

p4 1 1 nu 1 1 
V? (p, p') = - -(-,+ -) (2nI36(q) + -(--,+ -) 

8 m M3 2 rn MZ 
ina 

where a and a' are the Pauli matrices for the first and second 
particles, and q = p' - p. The next relativistic correction to 
the Breit Hamiltonian in v2/c2 due to the Coulomb exchange 
is 
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The energy correction SE ;7 due to the operator Vg' equals 
its value averaged over nonrelativistic wave functions. Eval- 
uating the integral with logarithmic accuracy in the region 
pa <p, p ' gp ,  we obtain 

where ~ = a ~ ( p ~ / m M ) l o g (  l/a)S, 0/n3. The logarithmic 
contribution arises only from the last two terms from Eq. 
( 14). Note that in the expansion in p/m we get operators 
which do not lead to contributions logarithmic in a ,  but lead 
to momentum integrals that diverge linearly, not logarithmi- 
cally at the upper limit (e.g., the term -p6 from the expan- 
sion of w, ). Those operators give rise to corrections -a5 
and hence can be omitted. 

The contribution to the energy -pa6 log( l / a )  from 
the Breit Hamiltonian V g' arises in the second order pertur- 
bation theory, i.e., from iterating Vg': 

d p  dp' d P  dP' 
BE,"= 5 -  4' ( p )  I'd2' ( P ,  P )  G ( P ,  P' 1 E )  vd2) 

( 2 n ) j 2  

Here G(P,PfIE) is the nonrelativistic Coulomb Green's 
function. Actually, we only need the zeroth and the first 
terms of its expansion in a :  

(2n )V j  ( P - P ' )  
G'O' ( P ,  P' I E )  = 

E - P z / 2 p  ' 

1 -4na 
G"' ( P ,  P' ( E )  = 

1 
E - P 2 / 2 p  (P-P') '  E-P"I2p 

. (18) 

Simply counting the powers of the momenta in the integrand 
of ( 16) demonstrates that only the function G"' contributes 
to the logarithm. So we find with logarithmic accuracy 

This contribution is evidently spin-independent, since the 
only spin-dependent term in expression ( 13) is the spin-or- 
bit interaction, which is absent in the S-state. 

Then, there is a contribution due to the negative-energy 
intermediate states. It is described by diagrams like that of 
Fig. 5. Since some intermediate states in these diagrams are 
"heavy," i.e., satisfy IE - En 1 -2m, 2M>p, the line going 
in the opposite direction contracts into a point. Diagrams 
like that on Fig. 5 lead to the effective operator 

while all the other diagrams with heavy intermediate states 
can be shown to be nonlogarithmic. The perturbation (20) 
gives the energy shift 

- -- - - .- 

FIG. 5 .  

Adding up (15), (19), and (21), we get the total energy 
correction due to Coulomb exchange: 

In complete accord with the exact solution of the Dirac 
equation in the Coulomb field, this correction, which is loga- 
rithmic in a ,  vanishes when one of the particles becomes 
infinitely heavy. The spin-dependent part of expression (22) 
has been found previously in Refs. 2, 12, and 13. 

3.2. Exchange of a single magnetic photon 

Let us consider now the contribution to the energy due 
to the exchange of one magnetic photon. Before we take the 
expectation value over the Dirac spinors the interaction op- 
erator looks as follows 

We are interested in the region of the variables 
q % I AE I = IE - R,. - w, I. The energy corrections arise 
both from expanding in v2/c2 of the expectation value of the 
operator ai s aj , and from expanding the denominators in 
the ratio AE /q. Taking the leading terms in the numerator 
and denominator, we obtain the well-known magnetic con- 
tribution to the Breit Hamiltonian: 

no [ p p ' I 2  q2uuf+ ( q u )  (90 . )  v - = - [ 4 - -  mMq 

To find the contribution of this operator to the energy shift, 
one has to calculate the second order of the perturbation 
theory, taking V, as one of the operators and V 2' as the 
other. Now the logarithmic contributions arise due to the 
functions G'O) and G'". These energy corrections are 

Retaining the next term of the expansion in v2/c2 in the ma- 
trix element of the operator ai s a,, we easily get for this 
relativistic correction 

Let us turn to the expansion of the denominator in Eq. 
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FIG. 6 .  

(23) in powers of AE /q. Its first term gives the contribution 
-pa5 log(l/a) to the Lamb shift. This correction origi- 
nates from the region p,pl -pa, pa2 < q <pa. The next term 
of the expansion gives the necessary contribution due to the 
region pa <p,p ' <p : 

Now we have to consider the possibility of Coulomb 
exchange between the emission and absorption of a magnetic 
photon, where both particles stay in the positive-energy 
states. Counting the powers of the momentum in the inte- 
grand demonstrates that the logarithmic contribution origi- 
nates from Figs. 6a,b with the exchange of one and two Cou- 
lomb quanta in the intermediate state. The energy 
denominators here are of the form E - E' - k where E'  is 
the energy of the particles in the intermediate state and k is 
the photon energy. The logarithmic contributuion arises 
from the energy region k s  IE - E 'I. Therefore the denomi- 
nators can be expanded in the ratio AE/k. In the case of the 
single Coulomb exchange the leading term of the expansion 
gives the Lamb-shift correction -pa5 log( l / a )  . One could 
expect the energy correction of the necessary order of magni- 
tude, pa6 log( l / a ) ,  to appear if the next term of the expan- 
sion in AE /k is included. It would evidently correspond to 
the correction to the Lamb-shift of first order in u/c. How- 
ever, there is one more correction of the same order of mag- 
nitude originating from Fig. 6b. Its meaning is the expansion 
of the Green's function not in AE /k, but in the ratio of the 
Coulomb potential to k. Meanwhile a relativistic correction 
should start from u2/c2-a'. Therefore the total contribu- 
tion of Figs. 6a and 6b to the energy correction we are inter- 
ested in, is equal to zero. The vanishing of this contribution is 
also confirmed by the direct cal~ulation.~ (Unfortunately, in 
our paper5 Figs. 2d and 2c were interchanged). 

At last, let us consider the energy shift due to the transi- 
tions to the negative-energy states. The corresponding dia- 
grams of the noncovariant perturbation theory are shown in 
Fig. 7. As it was mentioned above, the line corresponding to 
a particle of negative energy can be contracted into a point. 
In this case an effective vertex arises corresponding to the 
emission of Coulomb and magnetic quanta. Such an interac- 

tion is evidently of a spin nature. After simple calculations 
we find the effective operator corresponding to the diagrams 
in Fig. 7, 

and the energy correction induced by it: 

Adding up the corection SE :g) we get the total contribu- 
tion to the energy from the single magnetic exchange: 

Its spin-dependent part was calculated previously.' The first 
term in the brackets agrees with the corresponding correc- 
tion for hydrogen found recently. l 1  

3.3. Double magnetic exchange 

Our consideration of the double-magnetic-exchange 
contribution to the energy shift will start from the second- 
order perturbation theory in V, [cf. Eq. (16), where V, 
should now replace V g ' ] .  Again we have to take into ac- 
count in the Green's function G the terms G 'O' and G '" only. 
In the first case the energy correction is 

in the second one 

Let us consider now the contributions of the negative- 
energy states, starting from the case presented in Fig. 8 when 
only one particle goes over into the negative-energy state. In 
our approximation such a zigzag in a diagram contracts into 
the vertex described by the two-photon operator e2A2/2m of 
the nonrelativistic electrodynamics. Since this vertex is spin- 
independent, the perturbation operator originating from the 
diagrams presented in Fig. 8 is also spin-independent: 

The corresponding energy correction equals 

SE,'~' =-E. (35) 

Let us consider now the case when both particles go 
over into the negative-energy states (see Fig. 9) .  By the same 
reasoning as above, these contributions are spin-indepen- 
dent. If one retains the photon energy k + q only in the ener- 

FIG. 7. FIG. 8. 
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FIG. 9. 

gy denominators of Fig. 9a corresponding to two particles 
with positive energies, a Lamb-shift contribution ( 10) of or- 
der ,ua5 log( l / a )  arises. As in the case of single magnetic 
exchange, the corrections to the Lamb-shift which are first 
order in u/c arising due to the next term of the expansion of 
Fig. 9a in AE / (k  + q ) ,  exactly cancel with the next correc- 
tion of the same order of magnitude originating from Fig. 9b, 
its meaning being the expansion of the Green function in the 
ratio of the Coulomb potential to k + q. Direct calculation 
(see Ref. 5) also confirms that the total contribution of Fig. 
9 to the energy correction --,ua6 log( l / a )  vanishes. 

In addition, we have checked that the diagrams where 
magnetic quanta are emitted and absorbed by the same parti- 
cle, do not contribute to the correction of interest to us. 

Therefore, the total contribution of the double magnet- 
ic exchange equals 

The spin-dependent part of this expression was found pre- 
viously in Ref. 2. The first term in the brackets, - 1, agrees 
with the result for hydrogen obtained in Refs 11, 14. 

4. DISCUSSION 

Thus, our total result for the contribution -,ua6 log( 1/ 
a) to the energy of the two-body bound state in QED, the 
sum of (22), (31), and (36), equals 

Note that this energy shift is in fact a relativistic correction. 
The relativistic origin of the contributions arising to the sec- 
ond order in the terms - u2/c2 in the Breit equation and to 
first order in the corrections - u4/c4, is self-evident. For oth- 
er contributions, due to negative-energy states, this assertion 
is somewhat more a matter of convention. 

As for positronium, one should add to (37) the annihil- 
ation contribution, l5  

1 i 6 1 . 0  
BE, (n, I )  = - mas log - (3-t-00') - . 

9 6 a nJ 

Since the annihilation operator reduces with the required 
accuracy to the same form as the contact magnetic spin-spin 
interaction in the Briet equation (see Ref. 6, Sec. 83), the 
calculation of this correction can be also easily performed 
within the approach used here. 

The final result for positronium is 

which can be rewritten also in a more compact form: 

In other words, this correction in positronium is nonvanish- 
ing only for triplet S-states. 

Our result (40) differs from the recent one,16 

1 1 6t o 
6E (n, 2 )  = - 96 ma6 log - a (3+5uaf) +, n 

obtained via a relativistic two-particle equation for positro- 
nium. The absence of the results for separate contributions 
in Ref. 16, as well as the difference in the calculation tech- 
nique, makes it difficult to investigate the reasons of the dis- 
agreement. However, based on private communications 
with R. Fell, our results agree for the pure Coulomb and 
single-magnetic exchanges. 

Adding (40) to the known contributions of orders low- 
er in a ,  we obtain the following theoretical values for transi- 
tion frequencies in positronium (in MHz): 

The correction (40) contributes - 16.7 MHz to the first of 
these frequencies and 2.4 MHz to all others. 

A comparison with the experimental values 

shows that the calculated correction will be essential for the 
next generation of experiments. 

Our interest in the problem consisted here was stimulat- 
ed by the late Arthur Rich. We are grateful also to R. Conti, 
V. Fadin, R. Fell, T. Fulton, D. Gidley, and M. Eides for 
useful discussions. 
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