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The correlation among particles in a quantum-mechanical gravitational system is discussed. It is 
found with the help of correlated exponential wave functions that the correlation energies in the 
ground state of three- and four-body gravitational systems are 35% and 30% of the total binding 
energy of the system. The correlation energy decreases with the number ofparticles N. In the limit 
N -  co it is less than 2% of the binding energy of the system. Several general properties of 
correlated exponential wave functions are demonstrated. These properties are useful for 
calculations on Coulomb and gravitational many-body systems. 

INTRODUCTION An exact solution of the Schrodinger equation 

Studies of quantum-mechanical systems of particles 
which interact with each other by gravitational forces are 
pertinent to astrophysics' and elementary particle physics.' 
Calculations on such systems were carried out in Refs. 1 and 
2 in the one-particle, self-consistent-field (SCF) approxima- 
tion. Limits on their energies as a function of the number of 
particles making up the system were studied in Refs. 3 and 4. 

The absence of repulsive forces makes the correlation in 
the motion of particles in a gravitational system quite differ- 
ent from that of the electrons in atoms, molecules, or solids. 
Specifically, the particles in a gravitational system try to 
come as close to each other as possible, while the correlation 
of electrons is basically an attempt to avoid each other. For 
this reason one might expect the particle correlation in a 
gravitational system to cause a substantial increase in the 
particle packing density and an increase in the binding ener- 
gy of the system in comparison with the uncorrelated one- 
particle SCF approximation. In an effort to identify the role 
played by a correlation in the motion of particles in gravita- 
tional systems, we carry out some variational calculations 
below, using trial wave functions which are exponential 
functions of the instantaneous distances between all parti- 
cles. As a result we find energies for three- and four-body 
gravitational systems which are substantial refinements of 
the results calculated by the SCF method. The results show 
that the correlation energy in these systems reaches a level 
equal to a third of the total binding energy of the system. We 
also examine the behavior of the correlation energy in the 
limit as the number of particles in the gravitational system 
goes to infinity, N- co. The calculations below are based on 

is known only for a two-particle gravitational system. The 
ground state of that system corresponds to the wave function 
of a hydrogen-like atom, 

\V = exp ( - --- ":?) 
and its energy is 

For an approximate description of the ground state of a 
gravitational system of an arbitrary number of particles N, 
we introduce a trial wave function which is an exponential 
function of all the interparticle distances: 

N 

a, = exp ( - - "%" i<k TiA) 

This wave function contains the variable parameter a, whose 
optimum value is to be found by minimizing the mathemat- 
ical expectation of the energy, 

Making use of the uniformity properties of the operators T 
and U, we reduce the condition for the minimum of the ener- 
gy to the equation 

general properties of correlated exponential wave functions, which must be satisfied by the optimum value of the param- 
which are almost ideally suited for a description of gravita- eter a. 
tional systems. For system of N>3 particles, the diagonal matrix ele- 

CORRELATED EXPONENTIAL WAVE FUNCTIONS FOR 
GRAVITATIONAL SYSTEMS OF PARTICLES 

We consider a system of Nidentical particles (bosons) 
with masses m interacting through gravitational forces. The 
energy operator of the system is 

where G is the gravitational constant, and the operators T 
and U represent the kinetic energy of the particles and the 
potential energy of their mutual attraction. 

ments of the operators T and Uwhich appear in Eq. (5)  are 
3 (N  - 2)-dimensional integrals with nonseparable vari- 
ables, because of "coupling" of the integration variables in 
the argument of the exponential function Q, . Exact analyti- 
cal evaluations of these integrals are possible only for three- 
body systems (through the use of perimetric coordinates5 ). 
As soon as we get to N = 4, an evaluation of these integrals 
requires a complicated Fourier-transform technique, fol- 
lowed by a one-dimensional numerical quadrature."or 
N>5, there are as yet no methods for evaluating these inte- 
grals. Accordingly, for the general case of a system with an 
arbitrary number of particles N, the matrix elements in Eq. 
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(5 )  are unknown, and the problem of determining the opti- 
mum value of the parameter a looks at first glance to be 
beyond solution. 

It turns out that the particular properties of the expo- 
nential trial wave function in Eq. ( 3 )  make it possible to 
solve Eq. ( 5 )  without evaluating any integrals at all. Let us 
demonstrate. 

Direct differentiation of the wave function ( 3 )  with re- 
spect to the coordinates of the particles verifies that this 
function satisfies 

(TS v,+ W,)  @ a = ~ a @ a .  ( 6 )  

In Eq. ( 6 )  

and V, and W, are the following functions of the coordi- 
nates of the particles: 

G2m5a2 W ,  = - --- cos O j k l .  

tiJ j ,k<l  

Here B,,, is the angle whose vertex is at particle j and whose 
sides link particle j to particles k and I. The cosine of this 
anlge can be expressed in terms of the interparticle distances: 

Equation (6)  can be thought of as a Schrodinger equa- 
tion for a system of N particles with identical masses m 
which are moving in a potential which is the sum of V, and 
W, , and @, and E, are the eigenfunction and the eigenvalue 
of this equation. 

Since V, is a homogeneous function of the degree - 1 
of the particle coordinates, while W, is a homogeneous func- 
tion of degree 0, we draw the following conclusion regarding 
Eq. ( 6 )  from the virial theorem: 

This equation, which holds identically as the parameter a is 
varied, differs from ( 5 )  in that the actual potential energy U 
has been replaced by the function V, . We now select a value 
of a such that the function V, becomes equal to U. It can be 
seen from Eq. ( 8 )  that for this purpose we should set a = 1/ 
2 .  In this particular case, Eq. ( 1 1  ) takes the form 

The exponential trial function found from Eq. ( 3 )  in 
the case a = 1 / 2  thus satisfies Eq. ( 5 )  and is therefore the 
optimum value in the variational calculation of the energy of 
the gravitational system. The surprising simiplicity of this 
result, which makes it possible to determine the optimum 
value of the scale factor (a  = 1 / 2 )  and to satisfy the virial 
theorem ( 1 2 )  without going through calculations of any 
sort, is a characteristic feature of the correlated exponential 
trial wave function ( 3 ) ,  whose structure reflects the nature 
of the gravitational interaction among particles. 

The function @,/, has another noteworthy property: 
From the Schrodinger equation ( 2 )  we find that the result of 
acting on the exact eigenfunction Y with the operator T  + U 
remains bounded regardless of the arrangement of the parti- 
cles, even if the interparticle distances tend toward zero. The 
reason is that the right side of this equation contains the 
quantity m, which is bounded everywhere. We can show 
that the correlated exponential trial function @,/, has an 
analogous property. Since the functions V, and U are the 
same in the case a = 1/2 ,  Eq. ( 6 )  for the function a,,, can 
be written 

Since the function W l 1 2  in Eq. (9)  is bounded regardless of 
the arrangement of the particles, and since E ,  /, in Eq. (7) is a 
constant number, the quantity ( T +  U ) @ , / ,  is indeed 
bounded everywhere, even at points where particles collide, 
and where their interaction energy increases without bound. 

The correlated exponential wave function @, /, thus has 
the optimum scale, satisfies the virial theorem for the expec- 
tation values of the operators T  and U, and furthermore sup- 
presses the singularities in the potential energy at points 
where particles collide. This result, which holds for a gravi- 
tational system of Nidentical particles, can be generalized to 
gravitational and Coulomb systems of particles with arbi- 
trary masses and charges. Using a method like that used 
here, one can show that the correlated exponential wave 
function 

satisfies the virial theorem, has the optimum scale, and sup- 
presses the singularities in the potential energy at points 
where particles collide. The quantities q, and m, here are the 
charge and mass of particle j. In a gravitational system, the 
charges of the particles should be regarded as purely imagi- 
nary: q, = iG ' /2mj .  For Coulomb systems, the products 
q,q, can have either sign, and Eq. ( 14)  holds if the function 
@ falls off exponentially, for any conceivable method of 
breaking up the system of N particles into two subsystems 
which are far apart. The properties of the function ( 1 4 )  
which we have enumerated here were originally proved for a 
system of three charged particles by Demkov and Filinskii.' 

CORRELATION ENERGY FOR GRAVITATIONAL SYSTEMS 

We now calculate the energy of a gravitational system 
of particles with the correlated exponential wave function 
@,/, whose properties were discussed above. Using Eq. 
( 1 2 ) ,  we find that the mathematical expectation of the ener- 
gy calculated using this function is 

Substituting in the explicit expressions for @ , / ,  and the grav- 
itational potential energy U, making use of the interchange 
symmetry of the problem, and changing the scale of the inte- 
gration variables, we find the formula 
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TABLE I. Ground-state energy of the gravitational system in the one-particle, self-consistent- 
field approximation found with the help of the correlated exponential wave function @,I, (the 
energies are in units of G Zms/fi2, where m is the mass of a particle). 

Here dr is the volume element of the 3 ( N  - 2)-dimensional 
space of relative coordinates of the particles. 

Equation ( 16) holds for systems with an arbitrary num- 
ber of particles. We have used it to calculate variational val- 
ues of the energy of systems with N = 3 (in which case all the 
necessary integrals can be evaluated in a simple manner by 
switching to perimetric coordinates) and also with N = 4 
(in this case, these integrals, calculated by the method of 
Ref. 6, were graciously furnished to us by K. Krauthuser of 
the University of Delaware). The results are shown in Table 
I, where they are compared with results calculated from the 
formula derived for the energy in the one-electron Hartree 
approximati~n'.~ after the self-effects of the particles on 
themselves are eliminated.3 

We see in Table I that the correlation treated using the 
wave function @,/,, which depends on all the interparticle 
distances, leads to a binding energy for the system which is 
substantially larger than that found in the SCF approxima- 
tion. For the three-body system, this increase in binding en- 
ergy (i.e., the correlation energy) is 65%, and for the four- 
body system it is 43%, of the binding energy calculated in 
the correlation-free one-particle SCF approximation. The 
role of interparticle correlations in gravitational systems is 
much greater than in the case of electrons in atoms. For the 
three-electron lithium atom and the four-electron beryllium 
atom, for example, the correlation energies are only 0.6% 
and 0.4% of the binding energies calculated in the SCF ap- 
proximat i~n .~ .~  

To find the accuracy of this calculation of the energy of 
a gravitational system with the help of the wave function 
@, /,, we carried out variational calculations of the energy of 
a three-body gravitational system with large bases consisting 
of from 10 to 60 functions. In these bases we included the 
function @, /, and also functions of the type 

Number of One-particle 
particles N Hartree approximation 

where P represents symmetrization with respect to inter- 
changes of all three particles. The exponential parameters 
a,, Pk,  and y, were found by the quasirandom method de- 
scribed in Refs. 10 and l l .  As the basis is expanded, the 
energies found by the variational calculations rapidly con- 
verge on the value 

Correlation exponential Correlation 
wave function I energy 

which is essentially the exact value of the ground-state ener- 
gy of a three-body gravitational system. This value is only 
0.03% lower than the value E = - 15/14 = - 1.071429 
which is found from Eq. (16) with the help of @,/,. This 
agreement is yet further demonstration of the excellence of 
the correlated exponential function in calculations on 
gravitational systems. 

Finally, we consider the role played by the correlation 
energy in gravitational systems with a large number of parti- 
cles N. It was found in Ref. 3 that the energy of a gravitation- 
al system has the following lower bound in the limit N- oo : 

I I I 

E (N) > -0,05556 N3G2m5/tz2. (19) 

The exact energy of a gravitational system as N- w obvious- 
ly lies between its upper (Hartree) bound1s2 

E (N) <-0,05426 N3G2m5/tz2 (20) 

and the lower bound in Eq. ( 19). It follows that in the limit 
N- co the correlation energy of a gravitational system is less 
than 2% of the total binding energy of the system. This de- 
crease in the relative size of the correlation energy with in- 
creasing number of particles arises because for large N the 
gravitational system forms a very compact cluster of matter, 
and each particle in this cluster "senses" primarily the aver- 
age gravitational field of all the other particles, reacting only 
weakly to fluctuations in this field. 

CONCLUSION 

The results derived here show that the correlation ener- 
gy in quantum-mechanical gravitational systems amounts to 
35-30% of the total binding energy of the system when the 
number of particles is small ( N  = 3 or 4), while as N- co it 
amounts to less than 2% of the total binding energy. Because 
of the differences in the signs of the interaction forces, the 
correlation among particles in gravitational systems is quite 
different from that among the electrons in Coulomb systems. 
The properties of the correlated exponential wave function 
@,,, [and of the function cP in Eq. ( 14) ] which we have 
proved here-i.e., has the optimum scale, that it satisfies the 
virial theorem, and that it suppresses signularties in the po- 
tential energy-show that these functions hold promise for 
use in quantum-mechanical calculations on many-body 
Coulomb and gravitational systems in which the correlation 
in the motion of particles is taken into account. 
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