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The Hamiltonian quantization of the (2 + 1 )-dimensional theory of gravity coupled with a Dirac 
field is performed on the basis of the dynamical-quantization method developed previously by the 
author. The space of the regularized states of the system is constructed. A perturbation theory in 
terms of the gravitational constant is developed, and is used to solve the regularized Heisenberg 
equations. 

1. INTRODUCTION 

The idea of dynamical quantization of field theories was 
formulated by the author in Refs. 1. Here this method is 
applied to the quantization of (2  + 1)-dimensional gravity. 
The result obtained gives us grounds to suppose that the 
method of dynamical quantization can be used to construct a 
consistent quantum theory of gravity (and of other generally 
covariant field theories, such as, e.g., the theory of a relativ- 
istic string). 

We now give a schematic outline of the idea of the meth- 
od of dynamical quantization. 

Consider a particular field theory. Assume that in this 
theory the physical degrees of freedom in the ultraviolet re- 
gion can by classified by modes with the following proper- 
ties: 

a )  The occupation numbers of these modes are con- 
served or are adiabatic invariants of the motion; 

b)  the corresponding creation operators a$ and anni- 
hilation operators a, are gauge-invariant. 

The properties (a )  and (b)  are fundamental for the 
method of dynamical quantization. The regularized theory 
is developed by imposing the constraints of the second kind 

for quantum numbers N from the ultraviolet tail. The con- 
straints ( 1.1 ) cause the initial formal commutation relations 
(CR) to be replaced by the corresponding Dirac CR. Next 
one must solve the Heisenberg equations obtained by means 
of the Dirac CR. Thus, the theory becomes regularized with 
a definite number of physical degrees of freedom. Moreover, 
since the creation and annihilation operators in Eqs. ( 1.1 ) 
are gauge-invariant, the imposition of the constraints ( 1.1 ) 
does not destroy the gauge invariance. 

We must draw attention to the difference between 
Feynman quantization and dynamical quantization of field 
theories. Feynman quantization is based on the hypothesis 
that the interaction can be switched on and off adiabatically. 
This hypothesis is equivalent to the assumption that the 
physical vacuum differs little from the naive vacuum (with 
the interaction switched off). This assumption leads to the 
Feynman rules. But, generally speaking, Feynman perturba- 
tion theory cannot be regularized in such a way that the 
number of physical degrees of freedom is well defined. As 
Gribov noted,' this nonconservation of the total number of 
degrees of freedom of the system leads to the appearance of 
gauge anomalies. 

Consider, for example, Weyl electrodynamics, in which 
the gauge field interacts minimally with a right-handed 
(left-handed) Weyl field. Place this system in a spatial box. 
Let the Weyl field be expanded in plane waves or in some 
other modes, and let a, and a$ denote the corresponding 
annihilation and creation operators. Then regularization of 
the theory in accordance with ( 1.1 ) leads to the appearance 
of a gauge anomaly or to nonconservation of the fermion 
current. The reason for the appearance of the anomaly is that 
the equations of motion relate all the operators a, and a;,  
provided that the chosen modes do not satisfy special condi- 
tions. The dynamical coupling between the operators a, and 
a,+ implies that the imposition of conditions of the form 
(1.1) is dynamically inconsistent. It follows from this that 
there is in the system a flow of particles from the region of the 
ultraviolet tail into the region of the physically accessible 
final energies, and vice versa. For this reason, the regular- 
ized fermion current is not conserved when the constraints 
( 1.1 ) are imposed. The occurrence of a gauge anomaly in 
Feynman PT for any regularization indicates that in Feyn- 
man theory it is impossible to perform a regularization that 
is completely consistent with the dynamics of the system. 
The hypothesis of adiabatic switching on and off turns out to 
be extremely restrictive in this aspect. Here it should be not- 
ed that in Dirac massless electrodynamics the right and left 
Fermi currents are not conserved separately, but their sum is 
conserved in the Feynman theory. 

If, however, the fermion modes considered above are 
not constants in time, but vary in accordance with the equa- 
tions of motion in such a way that the annihilation and cre- 
ation operators corresponding to them are conserved by vir- 
tue of the dynamical equations, then imposition of the 
constraints ( 1.1 ) is possible. Dynamical quantization is 
thereby realized. In this case the gauge anomaly is absent. 
This approach to the study of the gauge anomaly was applied 
in Ref. 3. A deficiency of Ref. 3 was the fact that the gauge 
field remained unquantized. In addition, in dynamical quan- 
tization it is impossible to state that stationary states exist in 
the theory. The latter circumstance is not important in gravi- 
tational theory. 

It appears to us that, in generally covariant theories 
such as gravitational theory, upon dynamical quantization a 
consistent quantum theory free of "harmful" anomalies can 
be constructed in a natural manner. 

We note also that the Feynman rules admit Wick rota- 
tion, as a result of which the equivalence between 
[ (D - 1 ) + 1 ]-dimensional quantum field theories and D- 
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dimensional classical statistical models is established. 
Therefore, Euclidean quantization is automatically equiva- 
lent to Feynman quantization. 

In this paper we present a dynamical quantum theory of 
gravity interacting with a Dirac massless field in (2 + 1)- 
dimensional space. The space of the regularized states of the 
system is constructed, and the regularized Heisenberg equa- 
tions for the field operators are written out. Next, we develop 
a mathematically correct PT in the gravitational constant 
and use it to carry out certain calculations. The construction 
of the PT in the gravitational constant is the main achieve- 
ment of this paper. 

Note that the (2  + 1 )-dimensional theory of gravity is 
close in a certain sense to the chiral Schwinger model studied 
previously by the method of dynamical quantization.' In 
fact, in both theories the gauge fields (the connection and 
the triads in the theory of gravity) do not have their own 
independent local degrees of freedom (the photon is absent 
for D = 1 + 1, and the gravitation is absent for D = 2 + 1 ). 

2. THE LAGRANGIAN AND HAMlLTONlAN OFTHE SYSTEM 

Let xp = (x0,x',x2) denote local coordinates in some 
three-dimensional metric space: the metric is represented in 
the form 

where ei  are triads. The Latin indices a, 6, ... = 0, 1, 2 per- 
tain to local Lorentz frames, and the diagonal matrix r],, is 
defined as follows: v,, = diag( 1, - 1, - 1 ). Let @" be the 
inverse metric tensor, and 

Then 

The connection 1-form is denoted by w", ww",, dxp. Since the 
connection is consistent with the metric, we have 

Following Witten,4 we shall use the equi~alent quantity 

In this notation the scalar curvature has the form 

As the Dirac matrices 4, satisfying the conditions 

we take the Pauli matrices 

We denote by $ and $ = $+yo  the Dirac two-component 
complex field. The covariant Dirac operator is represented 
as follows: 

According to (2.5) and (2.8 ), the simplest generally 
covariant action has the form 

where 

Note that the fermion part of the action (2.9) has been sym- 
metrized to make the action Hermitian. In fact, the expres- 
sion 

is not Hermitian if the connection has torsion. But the equa- 
tions of motion that follow from the action (2.9) lead to a 
connection with torsion. 

Everywhere below we shall use the letters x, y, ... to de- 
note the set of spatial coordinates (x',x2), (y',y2), ..., the 
time argument xO will be omitted, and a dot over a symbol 
will denote the derivative a /ax0. In addition, we introduce 
the notation 

d4=dx'dx2, 6") (x) =6 (xi) 6 (2) 

In the derivation of the Hamiltonian from the action 
(2.9) the following difficulty arises. Since the action (2.9) 
contains the quantities 4 and $, both the fields $and $must 
be regarded as coordinate variables. However, the corre- 
sponding momentum variables a, and a$ are proportional 
to these same fields $ and 4. Therefore, the following con- 
straints hold: ' )  

Thus, the Hamiltonian dynamical variables are com- 
bined into the following pairs: 

The Latin indices i, j, ... are spatial indices, taking the values 
1,2; E~ = - E ~ ~ .  The fields og = wa and eg = e" play the role 
of Lagrange multipliers. 

We shall need the parity function a ,  defined on uniform 
fields or operators with values in the group Z2. By definition, 

a (mu) =a (e") =a (op)=a (P.') =0, 

a($)=a(no)=a(iji)=a(ns)=l. 

If the function a is defined on operators A and B, we set 
a(AB) = [a (A)  + a(B)]/mod 2. Throughout, by the 
commutator of two homogeneous operators A and B we shall 
mean the expression 

[ A ,  B] =AB-BA (-l)"'A'"'B'. (2.13) 

The initial nonzero single-time CR are written as follows: 

[oia(x), pbj (y) ] 'i6ij6ba6(2) (Z-Y). 

[ $ ( x ) ,  n.o(~)l=1~6cz '(x-y) ,  
[$(x), nc(y)'] =1.6(') (x-y). 
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The Hamiltonian of the system has the form 

where 

Xa=diP,'-l/z&ab (~ ,~p , '+P , 'u ,b )  +'/,$g'"e;$, (2.14b) 

C ~ ~ = ' / ~ E , ,  (d,m~-d3m?-&b$uiLoJe) 

f l / , i  (8nG) 'ebCa ($ybP:d,$-d,$Pc'yb$) 

+ ' / , (8nG)2~bCa${P, 'udc  [sybyd+ ( I - S )  y d y b l  

+ud,Po* [ (1-s)ybyd+~rdyb1 ) 9. (2 .14~)  

The quantity g"2< must be expressed in terms of the 
canonical variables: 

In (2 .14~)  s is a free real parameter. The existing arbi- 
trariness in the choice of the parameter s implies arbitrari- 
ness in the ordering of the operators in the Hamiltonian 
(2.14). This arbitrariness will be eliminated below. 

Up to the end of Sec. 2 we shall ignore the noncommuta- 
tivity of the operators, and, therefore, we shall not keep track 
of their ordering. At the same time we shall regard the 
bracket [ ..., ...I as a classical Poisson bracket. 

According to the general scheme for the construction of 
the Hamiltonian mechanics for systems that are invariant 
under arbitrary coordinate transformations, the Hamilto- 
nian should be a constraint of the first kind.6 In our case this 
implies that 

Xo=O. qn=0,  

[ x a ,  T I  =o,  I@*. TI  =o, [x., x b l " O ,  (2.16) 
[ x a ,  qb1 10, [gat gbl G O .  

Here the quantities and @, can differ from xa and pa by a 
linear combination of the constraints T and 7. From the 
definition (2.12) and the initial CR the value of the Poisson 
bracket is easily derived: 

where a, p = 1, 2 are spinor indices. Using (2.13) and 
(2.17), it is not difficult to establish that the quantities 

satisfy the conditions (2.16). The relations (2.16) and 
(2.17) imply that on the classical level the constraints 
(2.12) can be regarded as constraints of the second kind. 
This gives the possibility of going over to the corresponding 
Dirac commutation relations, after which the constraints 
(2.12) can be set equal to zero in the strong sense. 

3. FORMALCOMMUTATION RELATIONS 

We proceed to the Dirac commutation relations that 
arise when the constraints (2.12) of the second kind are im- 
posed. 

Obviously, the quantity 

is the inverse of the quantity (2.17). (The definition of the 
quantity TP is given by (2.11) and (2.15).) Let A, B, C, ... 
denote the homogeneous fundamental fields my, Pi, $, $. 
The Dirac CR are defined as follows: 

[ A ,  B l '=IA ,B l+  J d 2 z { [ A ,  P ~ ( z ) I  ( r O ) a p - l ( ~ )  t ~ p ( z ) , B I  
- ( - I ) ~ ( ~ ) ~ ( ~ ) [ B ,  T ~ ( Z ) ]  ( r o ) o p - l ( ~ )  [ T ~ ( z ) .  A ] ) .  (3.1) 

Let us clarify the meaning of the definition (3.1 ). Since 
T and 7 are Fermi operators it is useful to follow the transi- 
tion to the Dirac commutation relations in a system contain- 
ing only one pair of fermion creation and annihilation opera- 
tors a + and a, which should be set to zero. The CR 

and the constraints 

hold. For arbitrary operators the following representation is 
valid: 

The operators Kg and L,, (i, j = 0, 1 ) in (3.4) can de- 
pend on any of the boson and fermion operators except the 
operators a + and a. 

We define the Dirac CR analogous to (3.1 ) in the case 
when the constraints (3.3) are imposed: 

To avoid ambiguities it is necessary to adopt the follow- 
ing rule: 
Rule I: Before the constraints (3.3) [or (2.12)] are im- 
posed, the operators a + and a (or 7 and T )  should be nor- 
mally ordered, i.e., the operators a + (or 7) should stand to 
the left of the operators a (or 7).  

Taking this rule into account, using the CR (3.2), it is 
easy to find that 

[ A ,  Bl'=[Koo, Loo]. (3.6) 

Thus, the Dirac CR (3.5), after imposition of the constraints 
(3.3), can be expressed in terms of ordinary CR in accor- 
dance with (3.4) and (3.6). Obviously, we can also assert 
that the Dirac CR (3.1 ), after imposition of the constraints 
(2.12), are expressed in terms of CR of the form (2.13). It 
follows from this that the Dirac CR (3.1 ) satisfy all the gen- 
eral properties of arbitrary CR; namely, for arbitrary com- 
plex numbers x and y the following equalities hold: 

[ A ,  B ]  ' = - [B ,  A]'  (-I)"'"'"'*'. 
(3.7) 

[xA+yB, C ]  '=x [ A ,  C ] ' + y [ B ,  C] ' ,  

which is directly obvious from the definition (3.1 ) . In addi- 
tion, 
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[A, BC]'= [A ,  B] ' C+B [A ,  C]'(-l)a'A'a'B', 
(3.8) 

[A, [B, CJ'] *(-l)a'A'a'C'+[B, [C, A]*]'(-l)a'A'a(B' 
+ [C, [A, B] '1 ' (-l)"(B)a'C' = 0. 

We now write out the nonzero single-time Dirac com- 
mutation relations (3.1 ) for the fundamental fields: 

!Q.(x), To (y ) l=6 (2 ' (~ -~ )  (rO)oo-'(~), 

[Pa1(,), a," (y)] = -i6r,626(2)(x-y), 

[ot"(x), $(Y)I 

=112i6(2) (x- y) (8nG) erreaCa (PE) (I?')-' ybg) (y), (3.9) 

IwP(x), T(y)I 
='/2i6'z' (3-61) (8nG)' eueaca($yb(I'O)-l P,') (y), 

The quantities e: are given by (2.15). Here and below, 
we omit the asterisk in the symbol of the Dirac CR (3.1); 
everywhere below, [ ..., ...I denotes the Dirac CR (3.1 ), and 
the constraints (2.12) are set equal to zero in the strong 
sense. The formulas (3.7)-(3.9) inductively determine the 
Dirac commutation relations for any functionals of the fun- 
damental fields w:, PL , $, $. 

4. EXTRACTION OF THE GAUGE-INVARIANT DEGREES OF 
FREEDOM AND REGULARIZATION 

To perform the quantization we must construct the 
states that are annihilated by the operators (2.14) and solve 
the Heisenberg equations ik = [ A ,  HI ,  where A is any of the 
fundamental fields (or a functional of them) and H i s  given 
by (2.14). 

However, this problem can be solved only jointly with 
the problem of extracting the gauge-invariant degrees of 
freedom and regularizing the theory. In this section the lat- 
ter problem is solved. 

The regularization of the theory is performed in Sec. 
4.2. Therefore, at first sight, the account in Sec. 4.1 has a 
heuristic character. However, all results needed in this sub- 
section are rigorously justified below. These justifications 
are based in essence on the fact that the regularized Heisen- 
berg equations for the fundamental fields have the same 
form as the formal equations. Therefore, the proposed con- 
struction is self-consistent. 

4.1. Extraction of the conserved gauge-invariant fermion 
variables 

Let the Heisenberg equation for the Dirac field have the 
form 

and let {$,(x)) be a complete set of boson spinor fields 
satisfying (4.1 ). This implies that at any moment of time the 
following formulas hold: 

The set of functions I$,) can be obtained as follows. Let 

{x , )  be a complete set of c-number spinor boson fields, sat- 
isfying the conditions 

Then for the fields 

the conditions (4.2) are fulfilled at the time to. 
If the fields $, satisfy Eq. (4.1 ) and the quantity To 

varies in accordance with the Heisenberg equations, the con- 
ditions (4.2) remain valid with the passage of time (as 
shown below, both in the formal theory and in the regular- 
ized theory). Therefore, we must solve (4.1 ) with the initial 
conditions (4.3) and (4.4). The problem of the determina- 
tion of the complete set of spinor fields with the properties 
(4.2) is thereby solved. 

It turns out that the fields constructed in this way pos- 
sess a further important property: The right-hand side of Eq. 
(4.1 ) for the fields $, can be represented in the form of the 
Heisenberg commutator [$,,H 1. The proof of this fact is 
given in the Appendix. 

Thus, (4.1 ) can also be written in the form 

From the relations (4.5) it follows that 

In fact, the CR (4.6) are valid at t = to as a consequence of 
the definition (4.4) and the CR (3.9). But it follows from 
(4.5) that the evolution in time reduces to a unitary transfor- 
mation. Therefore, the CR (4.6) is preserved in time. 

Now we can define conserved fermion creation opera- 
tors a: and annihilation operators a ,  with the commuta- 
tion properties 

and 

It follows from (4.8) and (4.5) that all the CR are dynami- 
cally reproduced. 

The relations (4.2) and the CR (4.6), (4.7) make it 
possible to represent the Fermi fields in the form 

It is obvious that the fields (4.9) satisfy the correct CR 
(3.9). From what has been said it also follows that the cre- 
ation operators can be represented in the form 

(If particular formulas are written out for the quantities a, 
or Ijl, the analogous formulas for a,+ or $ are obtained by 
Hermitian conjugation. ) 

941 Sov. Phys. JETP 75 (6), December 1992 S. N. Vergeles 941 



Remark: The outcome of Sec. 4.1 is the extraction of 
gauge-invariant dynamical variables. In a number of gauge 
theories this problem is easily solved. For example, consider 
in flat space a set of modes {JI,) of the Dirac operator 
- iyJV,, where V, = 13, - iA,. Then in the expansion (4.9) 

the operators a, and a$ are gauge-invariant. However, in 
contrast with an ordinary gauge theory (such as electrody- 
namics), in gravitational theory the gauge transformations 
exhaust the entire dynamics of the system. 

J 

4.2. The imposition of regularizing constraints 

As has been elucidated by Witten,4 in the absence of 
matter quantum gravity in (2 + 1 )-dimensional space is not 
only a renormalizable theory but is even finite (in the frame- 
work of Feynman theory). However, the introduction of the 
Dirac field makes Feynman quantization impossible, since 
in the Witten variables (P ,wP) the zeroth approximation 
for the Dirac field is absent. The reason for this is that, ac- 
cording to Witten, the variables Pi and wq fluctuate about 
the classical values Pi = 0 and wq = 0. This point of view is 
also adopted in our work. But it can be seen from (2.14) that 
in this case the fermion contribution to the Hamiltonian con- 
tains only contributions of higher than quadratic order in 
the fundamental fields. Therefore, the fermion part of the 
Hamiltonian can be taken into account only as a whole by 
perturbation theory, which is impossible in the framework of 
Feynman theory. 

The picture is different for dynamical quantization. Dy- 
namical quantization permits one to preserve in the theory 
any (including a finite) number of fermion degrees of free- 
dom. In this case the remaining fermion degrees of freedom 
are eliminated completely from the dynamics. The theory 
thereby becomes regularized.2' Moreover, since the "num- 
ber" of conserved fermion degrees of freedom can be "suffi- 
ciently small," the development of a PT by expansion of the 
Hamiltonian in its fermion part becomes possible. 

For example, let the surface xn = const be a compact 
Riemann surface of genus g, which we denote by 2. We in- 
troduce on the surface 2 a certain metric and a connection 
that is without torsion and consistent with the metric. In the 
local coordinates xi ( i  = 1, 2) let eai (x )  (a  = 1, 2) denote 
dyads, so that 

where g,. is the metric tensor in the coordinates xi. The 
connection can be represented as wabi = E,,,w~. In this case 
the quantities (2.1 1 ) have the form 

The covariant Dirac operator on the surface Z can be written 
as follows: 

The absence of torsion is expressed by the equality 

As a consequence of (4.13) the operator (4.12) is self-ad- 
joint. Therefore, the operator (4.12) has a complete set of 
eigenmodes {x, (x)):  

xN (x) xXi  ( y ) =ti1') (x-Y) . 
N 

The c-number boson spinor fields x, found in this way will 
be used in Eq. (4.4). 

Since 2 is a compact surface, it may be assumed that the 
set of indices N coincides with the set Z. 

The theory is regularized by imposing an infinite series 
of second-class constraints: 

aN=O for IN1 >No=Z. (4.15) 

The specific choice of the metric (4.1 1) and of the 
modes xN for IN I <No, and also the way of filling the "vacu- 
um" (see below), implies a choice of initial physical condi- 
tions. 

5. DlRAC COMMUTATION RELATIONS 

The Dirac CR corresponding to the constraints (4.15) 
are determined in analogy with the CR (3.1 ) and (3.5). 

We define for the fundamental fields A, B, ... the quanli- 
t Y 

Then the nonzero Dirac CR for the Fermi fields have the 
following form: 

[lp(x)17(y) I'=[lp(x).T(y) I - - [ $ ( ~ ) , ~ ( Y ) I T  

In the derivation of the CR (5.2) we took Eqs. (4.6) and 
(4.7) into account. 

If we take the point of view that (see the Appendix) the 
fundamental boson variables are the generators x,, pa of 
gauge transformations and the local coordinates (7) in the 
gauge group 9, while the fermion variables are the opera- 
tors a,f and a, for IN I < No, the picture becomes rather sim- 
ple. In fact, as a consequence of (4.8) and the definition 
(5.1) we have 

and so 

I$(x), Hl*=[$(x), HI, [%(XI, Hl*=I$(x), HI. (5.4) 

Analogously, we obtain the following result: 

According to Sec. 3, the Dirac CR defined in this way satisfy 
all the necessary properties of the arbitrary CR (3.7)-(3.9). 
Therefore, the Dirac CR for composite fields (such as wy and 
Pi ) can be defined with the aid of Eqs. (3.7)-(3.9) with 
allowance for the CR (5.2)-(5.5). Thus, we obtain 
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The equations (5.4)-(5.6) show that the regularized Hei- 
senberg equations for the fields w:, P and $, $coincide with 
the formal equations, and the regularized algebra of the 
gauge transformations coincides with the formal algebra. 

It is possible to arrive at the same result by working 
directly with the fields wq, Pb, $, $. To shorten the expres- 
sions we introduce some notation: 

Thus, the quantities Ta and Ra are the fermion parts of the 
operators xa and pa ,  respectivelyA 

Since in (5.7) the operators ViP i ,  Fa ,  etc., are compli- 
cated, Dirac CR of the form [Fa(x) ,  $(y) 1 * can be decom- 
posed into Dirac CR of the fundamental fields, in accor- 
dance with (3.8). Therefore, we must define the Dirac CR 
for the fundamental fields. Suppose that, by definition, Eqs. 
(5.4) hold. Then the relations (5.2) and (5.4) define the 
Dirac CR 

The last two CR can be determined in practice by expanding 
in the parameter G. Since expanding in G is equivalent to 
expanding in the quantities Ta and Ra in (5.7), which are 
the fermion parts of the constraints xa and pa ,  while the 
number of fermion degrees of freedom is bounded, for a suffi- 
ciently small value of the parameter G this expansion is 
mathematically correct. In Sec. 7 this expansion is discussed 
in more detail. 

In the next section it is shown that the right-hand sides 
of Eqs. (4.1) and (5.4) coincide. Suppose that in the expan- 
sion (4.9) for the Dirac fields the summation is bounded by 
those N for which IN I < N o  holds. In addition, the CR (4.7) 
hold. Then the Fermi operators a, and a$ are integrals of 
the motion. In fact, it follows from what has been said that 

whence, by virtue of the linear independence of the functions 
$, (x), it follows that 

As a consequence of (4.5) the relation (4.2b) is conserved in 
time. Consequently, the relation (4.2a) is also conserved. 
Therefore, the conserved operators (a:, a, ) can be repre- 
sented at any moment of time in the form (4.10). 

Comparison of (5.8) with the analogous equations in 
an ordinary gauge theory [see (3.17) in Ref. 1 J shows that 
the application of the method of dynamical quantization to 
generally covariant theories is the most natural. This is be- 
cause in the given case the entire dynamics reduces to gauge 
transformations, and the essence of the method consists in 
singling out gauge-invariant operators of the type a$ and 
a,. As Ref. 1 shows, in ordinary gauge theories the analo- 
gous gauge-invariant operators near the momentum cutoff 
acquire a phase factor in the process of the dynamics. 

We now define the remaining Dirac CR. In the defini- 

tion of Dirac commutation relations of boson variables, of 
the form [PL (x),Pb (y)]* etc., the difficulty is that the 
quantity [see (5.1) ] [Pb (x),P', (y) ] cannot be determined 
directly, since the commutators [ - Ph (x,a,] are un- 
known. However, these commutators can be found by means 
of Eqs. (4.8). (The analogous commutators in Ref. 1 were 
found in the same way. ) For example, in place of the quanti- 
ty 

we must everywhere substitute 

In addition, in place of the quantity 

we shall everywhere substitute 

The latter quantity is more convenient, since in its cal- 
culation wecan use the usual rules (3.7)-(3.9), expanding it 
in the CR of the fundamental fields. 

Thus, by definition, 

Combining (5.9) and (5. lo) ,  we find 

Analogously, we arrive at the following equations: 

Note that the definitions (5.4) and (5. lo),  (5.13) are mutu- 
ally consistent. In fact, following our rule for the construc- 
tion of CR, which leads to the definitions (5.10) and (5.13), 
we have 

etc. The equalities obtained in this way are equivalent to Eqs. 
(5.4). 

In fact, the necessary Dirac CR can be extracted from 
(5.2), (5.4), and (5.9)-(5.15) by expandingintheconstant 
G. In order to begin this expansion we must establish the 
order of the following quantities in the parameter G: 

The commutator [$, $1 * is known exactly by (5.2). 

943 Sov. Phys. JETP 75 (6), December 1992 S. N. Vergeles 943 



From the equation 

[see(5.4) ] we extract the contribution of zeroth order in G. 
For this we must neglect the quantities 

[see (2.25) and (5.16)]. We find 

Here the superscripts (O), ( I ) ,  ... denote the order of the 
quantity in the parameter G. 

From the eguation 

we extract the contribution of order G. Taking (5.16), 
(2.14c), and (3.9) into account, we obtain 

The last term in (5.18) is obtained from R, (y) by replacing 
$(y) by the quantity 

Analogously, we also find 

In view of its unwieldiness, we do not write out the expres- 
sion for the quantity 

The equations (5.18)-(5.21) make it possible to deter- 
mine the CR (5.16) to lowest order in the parameter G. We 
can then develop the iteration in G, using (5.9), (5.12), 
(5.15), and the initial values for the commutators (5.18)- 
(5.21) and (5.2). 

It can be seen from (5.18 )-(5.2 1 ) that the Dirac CR of 
the fundamental fields are not uniquely determined by these 
equations. Therefore, the process of determining the Dirac 
CR should be supplemented by the principle that Eqs. (5.6) 

are valid. The latter are consistent with Eqs. (5.1 I ) ,  (5.14), 
and (5.15). 

It is now not difficult to establish the following: 
Assertion: The Dirac CR defined in this section possess all 
the necessary properties (3.7), (3.8). 

In fact, according to the definition (5.2) and the rela- 
tion (3.6), the fermion CR (5.2) are ordinary commutators. 
Furthermore, all the remaining Dirac CR are expanded in a 
series in the gravitational constant. The first nonzero terms 
of these expansions contain only fermion Dirac commuta- 
tion relations, and so are ordinary commutators. Since in the 
expansion of the Dirac CR in the gravitational constant each 
subsequent term is expressed in terms of the preceding 
terms, all the terms in this expansion are ordinary commuta- 
tors. Consequently, the above assertion is valid. 

6. THE HEISENBERG EQUATIONS AND STATE VECTORS 

Equations (5.4)-(5.6) show that the regularized Hei- 
senberg equations can be obtained using the formal commu- 
tation relations ( 3.9 ) . 

Here two questions arise: 1) How does one define a 
product of operator fields at one spatial point x? 2) How 
does one arrange the operator fields at one spatial point x in 
the Heisenberg equations obtained [since the CR (3.9) dif- 
fer from the Dirac CR]? 

The answer to the first question is as follows: As a con- 
sequence of the imposition of the constraints (4.15) the 
Dirac fields $ and $ are smooth, and so their product (in 
either order, and, possibly, at the same point x )  is regular. 

If in the theory under consideration the fermion degrees 
of freedom were absent, there would be no local degrees of 
freedom. In this case there would be only global degrees of 
freedom, associated with the fundamental group of a spatial 
surface. If the spatial surface is a compact Riemann surface 
of genus g, its fundamental group has 2g generators ai, b, 
(i, j = 1, ..., g) ,  with the single relationship 

We introduce the notation 

where yi (ci ) is some particular representative of the class ai 
( bi ), and T is the operator of ordering along the contour of 
integration. Since, in the absence of fermions, Fa = 0, the 
quantities (6.2) do not depend on representatives of the 
classes a i  (bi). The quantities (6.2) satisfy the relation 
(6.1): 

The relation (6.3) is a natural restriction for the quanti- 
ties (6.2) (see Ref. 4). The wave functions of the system in 
the absence of the Fermi fields Yo( Ui, 5 ) depend only on 
the quantities (6.2); the Yo are defined on the hypersurface 
(6.3) and are invariant under the transformations 

where E is a certain element from the group SO(2, 1 ) . We 
also have the restrictions 
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It follows from what has been said that in the absence of 
fermions small-scale fluctuations of the fields wq and P do 
not play any role, and can be "discarded." By small-scale 
fluctuations we mean fluctuations with wavelengths -A for 
which 

~ c h ~ < s , ,  ri ( i = t  . . . , g), (6.6) 

where si, ri are the characteristic lengths of the cycles yi, ai 
in any particular metric. The "discarding" of the small-scale 
fluctuations of the fields wq and PL implies that in the corre- 
sponding commutator in (3.9) the 6-function is replaced by 
a smoothed S-function, which we denote by S4,. The actual 
way in which the 6-function is smoothed is of no importance 
here. It is important only that S,,, acts on smooth functions 
(that vary appreciably on scales much greater than A,) in 
the same way as the 6-function. 

In our case, in the presence of the fermion degrees of 
freedom, one must proceed analogously. Let A, be a length 
of the order of the largest wavelengths of the functions $,, 
for IN I <No. Then the condition (6.6) for A, should be sup- 
plemented by the condition 

after which the scheme of regularization of the fields wq and 
P L remains in force. Thus, we have given the answer to the 
first question. 

The answer to the second question will be given after we 
have carried out certain formal calculations in the unregu- 
larized theory. 

We say that a given system is formally quantized if the 
formal algebra of the operators (x,, pa ) is closed and the 
structure functions are positioned all to the left (or right) of 
the generators (x,, pa ), as in Sec. 1. 

We shall carry out formal calculations of the necessary 
commutators, using relations of the form 

etc., which follow formally from the CR (3.9). This ap- 
proach makes it possible to calculate the (operator) coeffi- 
cient of the symbol 6"' (O), which arises as a result of permu- 
tations of the field operators in various expressions. In this 
way we arrive at the conclusion that the system (2.14) is 
formally quantized only for the value 

Thus, the requirement of formal quantizability of the system 
uniquely fixes the ordering of the operator fields in the Ham- 
iltonian. The formulas given below are valid for s = 5/8. 

6.1. The equations of motion 

The formal calculations can be carried out in stages. In 
the first stage we find the Heisenberg equations ik = [A, HI 
for the fundamental fields: 

In the classical limit all the equations (6.10) with the 
exception of the Dirac equations coincide with Euler-La- 
grange equations that are obtained by variation of the action 
(2.9). The equations (6.10) for the Dirac fields differ insig- 
nificantly from the Dirac equations, by only a term that is 
equal to zero in the weak sense. 

6.2. The algebra of generators of the gauge group 

Let A be any particular fundamental field. We have the 
Jacobi identity 

The right-hand side in (6.11 ) is calculated with the aid of 
Eqs. (6.10). Knowing the right-hand side of the expression 
(6.11), and also the classical Poisson bracket 
[pa (x), pb ( y )  1, as a result of lengthy calculations we can 
establish the quantum formal commutator 
[pa (x), pb (y) 1. Here, in all the calculations, we use only 
(6.10) and the formal algebra (6.8). Note that in all the 
formal calculations described the symbol a'*' (0) is encoun- 
tered to a power no higher than the first, and symbols of the 
form S'(0) are absent in the calculations. Also, the final re- 
sults do not contain the indeterminate symbol S"'(0). 

The answer is 

[xa(x), ~ ( y )  I (x-y) E ~ ~ ~ X ~ ( X ) ,  (6.12a) 
[x. (x ) ,  cpb(y)] =-is(') (x-Y) eeobqC (x) ,  (6.12b) 

[cpa (x) , cpb (y) I ='lzi6(2) (x-y) (8nG) '~,"~ ($4) (pc 

+'126(') (x-y ) (8nG) ' ( e d U b e ~ c - ~ a b e ~ d ~ )  . 
, fip:y~(ro)-iydv,g-viqyd(ro)-i~gP,~+~~h 

+'/,6(2) (I-y) (8nG)l (eabhegdf-egObedfh) . 
. {A~$y~(r')-'yd~xt+Bxt?yg (rO)-'yd$xh 
+@y% (r?--'yd~xt+D$ySx~ (rO) -'yd$xh 

+4~'(r9)-'~~xxh$xt+Q7yY(r~) -- 'ydxt$xh 

+ ~ y g ( r o ) - ' y d $ ~ h ~ t  
+ (1-A-B-C-D-F-Q-H) . 

.$~~(r")-'~~$xrXh). (6 .12~)  

Here A, B, C, D, F, Q, and H are certain numerical real 
parameters, satisfying the following equations: 

D+F+2=0, B+H=I, 

All the operators in the right-hand sides of (6.12) are taken 
at the point x. The right-hand side of (6 .12~)  is formally 
anti-Hermitian. 

6.3. The regularized Heisenberg equations 

The theory described above gives us the possibility of 
formulating: 
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Rule 2: The regularized Heisenberg equations for the funda- 
mental fields coincide with (6.10); the values of the commu- 
tators 

coincide with the right-hand sides of Eqs. (6.12a), (6.12b), 
and (6.12c), respectively. 

It follows from Rule 2 that the right-hand side of 
(6 .12~)  is anti-Hermitian in the regularized theory as well. 
It is possible that Rule 2 completely fixes the Dirac CR. 
However, this question is not answered here. 

6.4. The state vectors 

First we shall correct the Heisenberg equations (5.8) 
for the operators a,, since the Dirac equations (6.10) differ 
from Eqs. (4.1) for the functions $, (x) in the weak sense. 
In fact, the conclusion reached above that the quantity 
(4.10) is conserved would be rigorously true if the equation 
for the functions $, (x)  coincided strictly with the Dirac 
equation for the field $(x). Therefore, in our case we have 
for the operator (4.10) 

We work in the representation in which the action of the 
operators a$ reduce to multiplication of the vectors by a 
Grassmann number, denoted by the same symbol a s .  Then 
the operators a, can be represented in the form 

By definition, for the wave functions Yo [see the relations 
(6.5)] we have 

From (6.5) and (6.15) it follows that 

We now have all the means for the construction of the 
state vectors. We write out the state vectors with a well de- 
fined occupation of the vacuum: 

Any state is a superposition of the states (6.17). From 
the relations (6.13) and (6.16) it follows quickly that 

Remark: Since in the theory under consideration the 
problem of the normal modes of the Dirac operator has no 
meaning, it is impossible to classify the operators a, and a$ 
by their energy. Therefore, the problem of the occupation of 
the physical vacuum remains unsolved here. A criterion per- 
mitting one to distinguish the ground and excited states, or 
the degree of excitation of the states is completely absent. 

7. PERTURBATION THEORY 

We show now that in the model under consideration 
dynamical quantization makes it possible to construct a 
mathematically correct PT in the gravitational constant. 

For simplicity we assume that the spatial surface Z is a 
compact Riemann surface of genus 1, or a two-dimensional 
torm3'  In this case all the field variables should be doubly 
periodic: 

A (xi, x2) = A  (xL+a,  x2)  =A (xi, x 2 f  a ) .  (7.1) 

In the given case the geometric characteristics of the surface 
Z can be chosen to be trivial: 

Therefore, the Dirac operator (4.12) - iyOy'di is easily di- 
agonalized. We have 

2n 
(k,, k 2 ) N  = - (n,, n,) ,  n,=O, f 1,. . . . 

a 

The Heisenberg fields can be expanded in a series in the 
constant G: 

where A 'O' is the zeroth approximation, A ''' is the first ap- 
proximation, etc. It is obvious that the Dirac CR 
[ A  '", B "'1 * should be calculated in the ( i  + j )  th approxi- 
mation. 

Let PL'O)(x) and (x)  be certain operator fields, 
having in the zeroth approximation in the gravitational con- 
stant the following (nonzero) commutation relations: 

[at(') ( x ) ,  Pbj(O) (y)] '=i6j6ba6(2) (5-y). (7.3) 

According to (4.4), 

We assume that the index N = (n,, n,) obeys the condition 
that IN I <No if In, I <no. The regularized Dirac field at the 
time to can be represented in the form 

$(O)(X)= aNqN(t0-2)- (7.4) 
INICNQ 

The constant operators {a,, a$ ) satisfy the CR (4.7). 
We extract the zeroth approximation from (6.10) : 

The equations (7.5) are easily solved. We introduce the no- 
tation 

Let the c-number matrix field satisfy the equation 

From group-theoretical arguments it is obvious that the op- 
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erators X ,  generate gauge transformations, which are easily 
eliminated. For this we introduce fields with the tilde sym- 
bol: 

co,=UaD+iUa.V, 
P=UPU, +=Uq, (7.8) 

Z( t , x )=u ( t ,  x)e(t.x)L'(t,x), 

where v =  SoU'f. We note that DU = 1. In the adopted 
notation, the solutions of Eqs. (7.5) have the form 

iijr"' ( t )  = ~ t " )  (to), 
, 

& 
~ ( ~ ) ( t , = ~ * ( ~ ) ( t ~ )  - 2 at1 (a,~-i[.:", ~ 1 )  ( tp) ,  (7.9) 

8nG, 

In (7.9) all the fields are taken at the point x. 
Let us write out the equations for the first-order correc- 

tions to the Heisenberg fields (all the fields carry the tilde 
symbol, although, to simplify the writing, it is absent in the 
formulas ) : 

In (7.10a) and (7 .10~)  all the fields in the right-hand side 
are taken in the zeroth approximation as in (7.9). The solu- 
tions of Eqs. (7.10) are obvious. As in the zeroth approxima- 
tion, we first solve (7.10a) for the connection and then solve 
(7. lob) for the triads. 

One must also correct the Dirac CR (7.3) so that these 
CR will be valid to first order inclusive in the gravitational 
constant. This problem is solved in Sec. 5. 

Thus, the chain of regularized recursion equations does 
not differ formally from the analogous unregularized equa- 
tions. In the essence of the matter, however, in our theory a 
correctly defined chain of recursion equations arises. This is 
a consequence of the regularization of the Dirac field in ac- 
cordance with (7.4) and the replacement of the formal CR 
(3.9) by Dirac CR. 

We note that the set of fields w!O'(t0), Pi(O)(t0), 
$'O) (to), and $'O' (to) is precisely the field (see the Ap- 
pendix). 

Finally, we consider one exactly solvable model. Let the 
system contain only one fermion degree of freedom. This 
implies that from the set of modes {$,I we choose a certain 
mode $,(x) and impose the infinite series of constraints 
(4.15) with IN I > 0. With allowance for the constraints 
(4.15 ) the Fermi fields have the form 

From this it can be seen that 

The relations (7.11 ) permit us to find the Dirac CR exactly 
and to solve the Heisenberg equations exactly. It is easy to 

see that Eqs. (7.8 )-(7.10) give the exact solution of the Hei- 
senberg equations. In fact, subsequent iterations in the gravi- 
tational constant lead to corrections that contain the fields $ 
or $ to powers higher than the first. As a consequence of 
(7.1 1 ), all these corrections vanish. Terms containing $ (or 
$) to the power 2 or higher vanish even in the case when 
these fields are separated by operators w: or P i .  In this case 
one of the fields $ ($) must be moved so that it stands along- 
side the other field $ ($). According to (7.1 I) ,  such a term 
vanishes. In any case, the commutators (of the field $ ($) 
with the boson variables) that arise in this move increase the 
order in the gravitational constant by unity. It is clear, there- 
fore, that by continuing this process of permutations we 
shall obtain either zero or a term of infinitely high degree in 
the gravitational constant. Here, everywhere in Eqs. (7. lo),  
by the symbols $ and we mean the exact values of the Dirac 
fields which satisfy Eq. (7 .10~) .  From this it can be seen that 
in the given case the expansion of the Heisenberg equations 
in the gravitational constant terminates on Eqs. (7.10). 

It is not difficult to convince oneself that in the case of 
one fermion degree of freedom the expansions for the Dirac 
CR in the gravitational constant are also truncated. 

8. CONCLUSION 

Thus, the theory of dynamical quantization developed 
here is found to be adequate for the construction of a quan- 
tum theory of gravity in (2  + 1)-dimensional space. The 
theory possesses the following necessary properties: 

a )  The theory is unitary and causal; the set of evolution 
operators forms a group (this property is not obvious in Wit- 
ten's theory4) ; 

b) the algebra (6.12) of gauge transformations holds; 
C )  there exists a mathematically correct perturbation 

theory in the gravitational constant G. 
It appears to us that the theory of dynamical quantiza- 

tion can be applied successfully to construct a quantum the- 
ory of gravity in (3 + 1)-dimensional space. The main dif- 
ference between that theory and the present one is that it is 
necessary to identify not only fermion but also boson gauge- 
invariant creation and annihilation operators. It makes 
sense to study the supersymmetric variant of the theory. Dy- 
namical quantization should not break the supersymmetry, 
in analogy with the fact that dynamical quantization pre- 
serves the gauge symmetry (with regard to the absence of a 
gauge anomaly in dynamical quantization, see Ref. 1). 
Therefore, the occupation of the vacuum can be implemen- 
ted in such a way that the contributions from the boson and 
fermion zero-point oscillations to the energy-momentum 
tensor of matter cancel out. It is evident that in this case a 
perturbation theory in the gravitational constant analogous 
to the PT considered in Sec. 7 will be valid. Thus, it appears 
to us that the method of dynamical quantization gives the 
possibility of constructing a quantum theory of gravity in a 
space of any dimensionality with the necessary properties 
(a)+). 

APPENDIX 

Let the spinor boson field $, ( t )  be the solution of Eq. 
(4.1) with certain initial conditions. We must establish that 
the equation for the field $,(t) can be represented in the 
form of a Heisenberg equation as in (4.6). 
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To establish this fact the following arguments are neces- 
sary. 

The set of generators X, (x)  and pa (x)  in the classical 
limit form an algebra, i.e., the Poisson brackets of the form 
[xu ,  pb ] are proportional to these generators. For exam- 
ple, 

Here the structure functions fa,, (x)  and gab, (x)  de- 
pend on the dynamical variables. In quantum mechanics 
regularization should preserve the algebra of the generators 
(,yo, pa ). This means that the regularized CR should pre- 
serve the form of (A l ) ,  and the structure functions fa,, (x)  
andg,, (x) should stand to the left of the generators p, and 
xc in (A 1 ). This is necessary, since the quantities fa,, (x)  
andg,,, (x)  depend on the Heisenberg operators. In this case 
we can speak of a group 9 of gauge transformations, the 
generators of which are the constraints (x, , pa ) . 

We go over to new dynamical variables. We denote by r ]  

certain local coordinates in the group 9. By the symbol 
@( t )  we denote the set of Heisenberg fields wq, PL, $, and 
at the time t, and by the symbol c ( t )  the set of c-number 
fields w, ( t )  and e, ( t ) .  It is required that we express the 
fields @(t )  in terms of the coordinates r] ,  the vector fields on 
the group 9 (i.e., the differential operators of first order on 
the group 9 ), and the fields @'O' that do not depend on the 
group 9. Thus, the fields @'O' are integrals of the motion. 
This problem has a solution. 

In fact, the fields wp and PL constitute independent bo- 
son degrees of freedom of the system. At each point x there 
are 6 degrees of freedom wy and 6 degrees of freedom P L .  On 
the other hand, at the point x there are 6 degrees of freedom 
of the operators X, (x )  and pa (x)  and 6 degrees of freedom 
of the parameters c (x )  = [w, (x),  e, (x ) ] .  It can be seen 
from Eqs. (2.14) that the operatorsx, depend in an essential 
way on the longitudinal parts of the fields P;, while the 
operators pa depend on the transverse parts of the fields w:. 
The gauge transformations (which are generated complete- 
ly by the Heisenberg equations) give essential increments of 
the transverse parts of the fields P f, and of the longitudinal 
parts of the fields 04. Therefore, locally (in the space of the 
fields), we can take as the independent boson dynamical 
variables the operators xa and pa ,  and also the coordinates 
r]. In fact, the fields @ can be expressed in terms of the field r ]  

and xa (x), pa (x) by expanding in the gravitational con- 
stant G and simultaneously integrating in the group 3 over 
the variables r]. The fields @ here will also depend on the 
constant fields a''', so that @ ( r ]  ) -@'O' for r] + 0. 

The fields @, expressed in terms of the variables r] ,  p,, 
x,, and @'O', will be denoted by 6. It is convenient to choose 
the variables r ]  in such a way that 

Q=-i[q, HI' = E, q+Q. (-42) 

Equation (A2) shows that as 7-0 the Hamiltonian 
operator can be represented in the form of the following dif- 
ferential operator: 

To find the operator h we can make use of the following 

device. Let { r ] )  = {tea, to,} be a set of local coordinates in 
the group 9 ; this set can also be regarded as a complete set of 
commuting boson variables. The operator (2.14), expressed 
in terms of the fields @'O' and multiplied by t, will be denoted 
by H F'. We shall represent an element of the group 9 with 
coordinates r ]  in the form 

The product of two elements of the group 9 can be 
represented in an analogous way by means of the Campbell- 
Hausdorff formula: 

( 0 )  exp (-iH, ) .exp ( - i ~ f '  ) =exp ( - i ~ ?  ) . 
The operator HkO' is expressed in terms of the quantity 
Z ( r ] ,  A, a''') in the same way as the operator HF' is ex- 
pressed in terms of the field r](x). Here, in the quantity H kO' 
the operators p F' and X:O' stand to the right of the operators 
Z (x); this is a consequence of the algebra (6.12). 

If the theory is regularized, application of the Camp- 
bell-Hausdorff formula is legitimate. 

Now the vector field (A3) is obtained by differentiation 
of the quantity X: 

The quantity (A3') or (A3) is a Heisenberg operator in the 
new variables. Using the explicit form of the Campbell- 
Hausdorff expansion, it is easy to establish that 

where n(q, A )  + 0 if r ]  -. 0 or A -. 0. From this it follows that 
in (A3) 

Since the operator d (4.1) depends linearly on 4, it is 
useful to note this with the aid of the corresponding notation 

Let $, ( t )  and *, ( t )  be known near the point r] = 0, 
which can be any point in the group 9. We shall trace the 
change of these fields at the point r] = 0. Let at-0. From 
(4.1 ) we have 

From this, and from the definitions given above, it follows 
that 

Here r ]  = St{ are the coordinates of a point infinitesimally 
close to the point q = 0. The field $, ( t )  depends only on the 
fields a'''. As a consequence of (A3) and (A4) we have 

Let E-0. We shall consider the "encased" (A6) (to 
simplify the writing we omit the tilde): 

We go over to the limit St-0 in (A8). As a consequence of 
(A7) and the relation 
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(A8) goes over into the equality 

which is valid at any point in the space of the fields. Combin- 
ing (A9) and (A6), we obtain the required equality (4.5). 

Remark: Since in the regularized theory the Heisenberg 
equations and the algebra of the operators pa, ,ya have the 
same form as in the formal theory, the derivation in this 
Appendix remains valid in the regularized theory. 

"This question is also discussed in Ref. 5. 
Here we are concerned with fermion degrees of freedom only, since in 

our case local boson degrees of freedom are completely absent. In more 
complicated theories it is necessary to perform an analogous analysis for 
the boson degrees of freedom as well. 

') The problem of the calculation of the transition amplitudes with change 
of the topology of the space is not considered here. 

S .  N. Vergeles, Pis'ma Zh. Eksp. Teor. Fiz. 49, 375 ( 1989) [JETP Lett. 
49,427 (1989)l; Zh. Eksp. Teor. Fiz. 96,445 (1989) [Sov. Phys. JETP 
69,251 (1989)l; Yad. Fiz, 50,1476 (1989) [Sov. J. Nucl. Phys. 50,917 
(1989)l; Int. J. Mod. Phys. A 5,2117 (1990). 
V. N. Gribov, Preprint No. KFKI-66, Budapest ( 1981 ). 
' S. N. Vergeles, Zh. Eksv. Teor. Fiz. 95,397 ( 1989) [SOV. Phys. JETP 68, 
225 (1985)l. 

4E. Witten. Nucl. Phvs. B311.46 ( 1988): B323. 113 (1989) 
R. de A. camPosand J. M. ~ . F i s c h ,  1nt:j. ~ o d :  phys: A3,2371 (1988). 

6P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, 
New York, 1964) [Russ. Transl., Mir, Moscow, 19681. 

Translated by P. J. Shepherd 

949 Sov. Phys. JETP 75 (6), December 1992 S. N. Vergeles 949 


