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The interaction of a quasilocalized electron with vibrational degrees of freedom of an impurity 
atom is considered within the framework of standard perturbation theory. It is shown that the 
resonance shape changes substantially even in the case of weak electron-phonon coupling. The 
temperature dependence of the band-carrier mobility is discussed. 

1. INTRODUCTION 

Along with the diligent study of metallic systems with 
variable valency, as well as of IV-VI semiconductors doped 
with group-I11 elements, much attention is paid of late to the 
problem of local impurity states located in the allowed band 
of a  ond duct or."^ The presence of such states in the immedi- 
ate vicinity of the system's Fermi level alters greatly the 
transport and thermodynamic properties of the considered 
compounds. The extremely strong (resonant) dependence 
of the scattering cross section on the energy to the 
importance of taking into account various factors capable of 
altering the location of the resonance level relative to the 
Fermi level, as well as the shape of the resonance curve. One 
such factor is inhomogeneity of the sample (inhomogeneous 
broadening). The impurity-level scatter due to this inhomo- 
geneity can decrease noticeably the average scattering cross 
section (if the scatter exceeds the "natural" resonance width 
due to hybridization of the band and impurity states). 

It is important, at the same time, to examine the mecha- 
nisms that lead to "homogeneous broadening" of a level. 
Much interest is attached in this connection to effects of 
interaction of a localized electron with vibrational degrees of 
freedom of an impurity atom (or of its crystalline environ- 
ment). In fact, vibration of an impurity ion about the equi- 
librium position lead to modulation of the potential in which 
the electron localized on the impurity moves. This interac- 
tion gives rise to an additional uncertainty in the energy of 
the electron at the center (on top of the uncertainty due to 
hybridization). The shape of the resonance curve is conse- 
quently altered, and its changes depend substantially on the 
temperature. Clearly, if the local level is close to a Fermi 
level, all these changes are strongly manifested in the kinetic 
properties of the system. 

The aim of the present paper is a detailed analysis of the 
influence of local electron-phonon interaction on the overall 
picture of the resonant scattering. It should be noted that 
Refs. 3 and 4 dealt with scattering of one electron (or hole) 
by a resonant center with local electron-phonon coupling. 
The single-electron treatment yielded an exact expression 
for the scattering cross section. Such a formulation of the 
problem, however, has patently no connection with the situ- 
ation of importance from the standpoint of measuring the 
transport properties. "Single-electron" scattering corre- 
sponds to the case when the local level is far from the Fermi 
surface (when the Pauli principle imposes no noticeable con- 
straints on the scattering of a test particle). It  is clear, how- 

ever, that in this case resonant scattering makes altogether 
no noticeable contribution to the mobility. We shall show 
below that the Fermi-statistics influence is substantial in a 
situation when the local level is close to the Fermi level. We 
shall therefore be unable to carry out calculations for arbi- 
trary electron-phonon coupling constants. Nonetheless, per- 
turbation theory in terms of the coupling constants make it 
possible to draw some qualitative conclusions regarding the 
system in question. 

2. FORMULATION OF MODEL, LOCAL DENSITY OF STATES 
AND RELAXATION TIME AT NEAR-ZERO TEMPERATURES 

We wish to consider the interaction between a quasilo- 
calized electron and the vibrations of an impurity atom. 
Strictly speaking, such oscillations set also in motion the 
surrounding crystal atoms. We can therefore consider either 
quasilocal models that exist against the background of the 
crystal phonon continuum, or the true local vibrations oc- 
curring in the band gap of this crystal. We shall treat all these 
vibrations in a unified manner, introducing a set of discrete 
frequencies Ct, and neglecting the finite lifetimes of some of 
these modes. We describe the interaction of the electrons 
with the vibrations by a term linear in the displacements of 
the impurity ion from an equilibrium position. 

The Hamiltonian takes then in second-quantization 
representation the form 

where 

while cko, d,, and 6, are respectively the annihilation oper- 
ators of the band and impurity electrons and of the local 
phonons, ~ ( k )  and E, are the band and electron-impurity 
energies measured from the Fermi level of the system, S1, 
are the frequencies of the local oscillations, g,  are the elec- 
tron-phonon coupling constants, and t, is the hybridization 
matrix element. 
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We consider the case of zero temperature ( T = 0). In 
this case the system properties are determined by a set of 
causal Green's functions: 

All the operators are chosen here in the Heisenberg repre- 
sentation, T is the chronological-product symbol, and the 
averaging is over the ground state of the system. 

It is known that the Fourier transform Gdd ( t )  of the 
Green's function at the center determines the local density of 
states of the d electron: 

1 
pdd ( E )  = - - sign E .Im Gdd (E). 

n 
(2) 

where E is the energy reckoned from the Fermi level. It is 
easy to show (using, e.g., the method of equations of mo- 
tion) that in the absence of interaction 

where E; = E, + AE, AE is the energy correction due to the 
asymmetry of the band density of states with respect to E,, 
r ( w )  = t inp(w), and p(w) is the band density of st 
which, if a smooth function of the energy, can be set equ 
p(w) = p ( ~ ~ )  = const. We have then (+I-1) 

i.e., we obtain the known Lorentz distribution, Gdd (w) is in 
general a complicated function of w. 

If the exact function Gdd ( a )  is known for one impurity 
we can determine in the case of low impurity-center densities 
the relaxation times of the band carriers. Indeed, as follows 
from analysis of various orders of perturbation theory (with- 
in the framework of the cross and boson techniques5), in the 
linear approximation in the impurity density we have 

1 = -  n,tO2 sign o .Im(Gdd(o) ) ?  

~ ( 0 )  

where n, = Ni,,/N is the density of the impurity atoms, 
and the angle brackets denote averaging over the possible 
scatter of the local levels. 

Note the important circumstance that Eq. (5) contains 
the exact function Gd, (w) in which account is taken of all 
the electron-phonon interaction and tunneling processes. 
Thus, the damping of the band carrier is determined by a 
complicated interference between the resonant and electron- 
phonon scatterings. 

We now calculate Gdd. It is known that this function 
can be represented in the form 

where I:(@) is called the irreducible self-energy part. 
We calculate I: in the lowest order in the electron- 

phonon coupling (note that the formal parameter of the ex- 

pansion is gZ/ma~{I'~,fl~)).  In this case Z is represented by 
the diagram of Fig. 1 and is equal to 

(7) 

Here 

is the phonon unperturbed Green's function. G is given by 
expression (3) ,  and no = no, + no, is the unperturbed local 
density. 

The first term in (7) correspond simply to a static po- 
laron energy shift. This shift is the result of displacement of 
an impurity ion from equilibrium into a new position that 
minimizes the electron-phonon system energy. Note that in 
the diagram technique describing the interaction of the 
Bloch electrons with longitudinal ion oscillations (see, e.g., 
Ref. 5)  there are no diagrams corresponding to a static shift, 
since the matrix element in them is g(k = 0) = 0 ( a  reflec- 
tion of the fact that displacement of the lattice as a whole 
does not change the state of the electron). 

Evaluation of the integral in (7) yield 

~ - ( & o ' + Q m )  + (I-n:) [ a -  (cot+Qrn) lZ+r2 

Here n: = 1/2 - ( l / r )  arctg(&;/I') is the unperturbed 
density of the d-electrons with spin a. 

The local density of states takes the form 

1 r-sign o .Im Z (a) 
pdd(u) =- 

n [o-Eo'-Re B(o )  ]'+IF-sign o . I m Z ( o )  l a  ' 
(9)  

FIG. 1. 
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Note some features of the function pdd . 
1. The logarithmic divergences at the frequencies 

w = + R, lead to pdd ( + Rm ) -0. These divergences are 
due both to the presence of a Fermi step at w = 0 and to 
neglect of the phonon linewidths. Allowance for finite tem- 
perature as well as for phonon-mode damping effects 
smooths out the logarithmic singularities, but the dips in the 
local density of states at the frequencies R, remain. 

2. For (w ( < min{R, } we have Im Z = 0. The reason is 
that an electron with energy a < E < min{R, ) (E is reckoned 
from the Fermi energy) cannot be scattered and emit a 
phonon, for in this case it would have to go over into a state 
with E < 0, which is forbidden at T = 0 by the Pauli princi- 
ple. The same pertains to a hole with energy 
- min{n, 1 < E < 0. We have thus at ( w( < min(fl, 1. 

This averaging is easily effected because the interaction op- 
erator commutes with the electron-number operator (this 
procedure was in fact used in Refs. 3 and 4). 

3. FINITE TEMPERATURE. TEMPERATURE DEPENDENCE OF 
MOBILITY 

To study the temperature dependence of the system it is 
convenient to use the retarded Green's function Gdd : 

1 
It follows from (10) that the root of the equation pdd(E,  T )  = - n Im GddR(E: T), 

w - E; Re B(w) = 0 in the interval Iw( <rnin{R,} deter- 1 
mines the position of the maximum of the function pdd. pi= toZ~z, Im GddH (0,  T). 

t (o. T) 
Owing to the polaron effect, the maximum shifts towards - 
negative w and this in turn increases the electron density at 
the center. On the other hand, the value ofpdd at the center 
does not change and is equal to l / rT .  

In the general case the shape of the resonance curve 
depends strongly on the location of E;. Thus, if E; -- R, , two 
equal maxima appear on the pdd (w) plot. An approximate 
form of pdd in the case EL = 0(n: = J), 
r = R(m = I ) ,  g'/r2 = 0.5 is shown in Fig. 2. 

To conclude this section, we consider the case 
E; $- fl, , r .  It follows then from ( 8 ) and (9) that p,,, < 1/ 
n-r (i.e., the resonance broadens). Although the static po- 
laron increment tends in this limit to zero. Since nO+O, 
nonetheless the maximum of the resonance is shifted away 
from E; by dynamic effects. Note also that in this limiting 
case the problem can be solved exactly, since the Green's 
function Gdd has patently a single-electron character (it is 
analytic in the upper w half-plane). It is easily seen that 
calculation of Gdd with the aid of diagrams is equivalent to 
averaging over an electron vacuum with a Hamiltonian 

FIG. 2. Approximate form of pdd(w)  in the case 
E; = 0, r = 51(m = I) ,  $/r2 = 0.5. The unperturbed density pOd, is 
shown dashed. 

It is known that determination of GR ( a )  by perturbation 
theory reduces to finding a Matsubara function G(wn) 
(which can be determined by standard diagram technique) 
and continuing it into the upper half-plane (an > 0).  The 
Matsubara self-energy part has the form 

where no( T )  is the unperturbed charge density in the center 
at the temperature T,P = 1/T, w, = r (2n  + 1 ) T. Since the 
electron function has a sign w,. singularity, it is convenient 
to break up the sum over n' into two parts with nl>O and 
n' < 0. We can then go over from the sum to integrals along 
the countours c, and c, enclosing the upper and lower imagi- 
nary axes, respectively. Next, extending the contours to in- 
finity and taking into account the poles encountered along 
the way, as well replacing iw, by w + iS(S > 0) in the last 
expression, we obtain the function ZR ( a ) ,  which is analytic 
in the upper half-plane. Thus, after separating the real and 
imaginary parts of the function ZR (a), we obtain 
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where 

is the fermion distribution function, and 

n (Q,) = 11 (eF-1- 1)  

is the phonon distribution function. 
We note now some peculiarities of the function 

pdd ( a ,  TI. 

1. The logarithmic divergences at the points w = + fl, 
drop out. However, the value of Re ZR at these points is 

and remains large so long as T< (&A2 + T2) '". Thus, the 
resonance curvep,, (GI) has dips at the points w = + R, , 
which decrease with increase of T and drop out completely 
at T- (&A2 + r2) ll'.  

2. At temperatures other than zero, Im ZR is not zero in 
the interval Iw 1 < minCfl,). This is due both to the smearing 
of the Fermi step and to the presence of real phonons at 
T >  0. In addition, the damping due to the scattering of the d 
electrons by phonons increases with increase of T. Thus, at 
w = 0 we have 

3. pr < l / n r ,  and the value at the maximum de- 

creases with increase of T. Thus, the resonance broadens- 
the value of pdd decreases near the maximum and the level 
density in the peripheral region increases correspondingly. 

We discuss now the temperature dependence of the mo- 
bility of the band electrons. This dependence is given by the 
integral 

where f,(w) is the equilibrium distribution function of the 
band carriers. As follows from the preceding analysis in 
( 12), T(W, T) increases with increase of temperature at fre- 
quencies w near the maximum of the local density of states; it 
decreases, conversely, at frequencies corresponding to the 
periphery of the resonance curve. A substantial contribution 
to the integral is made at low temperatures by the energy 
regions close to the Fermi energy. Therefore, if the Fermi 
level is located near the maximum of the function pdd, the 
mobility increases with increase of T. From Eqs. ( 14) we 
obtain that at T g  R, the mobility p takes the form 

where po and p, are certain constant quantities, and Eo is 
the location of the maximum of the resonance curve (reck- 
oned from the Fermi level). If Eo < l? the mobility (along 
with the static electric conductivity) increases exponentially 
with temperature. In the case T$ fl, the exponential 
growth becomes linear. The interaction between a polarized 

electron and vibrations of an impurity atom weakens thus 
the resonant scattering of the band carriers. 

To consider a real situation, however, it is necessary to 
bear in mind that r contains contributions from direct scat- 
tering of band electrons by the lattice vibrations. Therefore 
the total value of r must be calculated using the Mathiessen 
rule 

Here l/r,,,, increases with temperature (obeying a power- 
law if the phonons are acoustic and an exponentially if opti- 
cal). The two effects are thus in competition. At not too low 
a density of the resonant centers, and also in the presence of a 
relatively soft mode in the spectrum of the local oscillations, 
the contribution ot 1/r from the impurity scattering (its 
temperature part) can exceed l/.r,,,, . The p ( T) depend- 
ence is then nonmonotonic. 

Thus, in the case of scattering by acoustic vibrations of 
ions we have 

( T  is lower than the Debye temperature 0 )  and the condi- 
tion for the onset of a minimum of the function p ( T )  is 

Note also that an additional contribution is made to 1/r by 
the interference between the band-carrier scattering by lat- 
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tice vibrations and by impurities; the damping due to this 
interference, however, is small. In fact, the perturbation of 
the band-carrier state densities by the presence of resonance 
centers is equal to ptand (E, ) [ n, /pband (E, ) ] so that the 
damping due to phonons changes by an amount 

A ( ~ / ~ b ~ , , d )  -&and Pband ( & F ) n e  

(optical vibrations). Then 

The origin of the factor (e,r)' is easy to understand. If 
J? = 0, the entire electron density connected with the reso- 
nance is concentrated on the impurity center. If r#O this 
density spreads out over the band states (over the neighbor- 
ing atoms of the principal lattice of the semiconductor) like 
(T/E,)'. The exponent 2 is entered here because we are 
dealing with density and not with amplitude. Obviously, the 
phonon modes of the crystal "affect" only the wings of the 
electron resonance density, i.e., only the electrons that tun- 
nel from the center into the band. The electron-phonon in- 
teraction with the resonance is therefore suppressed like ( r /  
&F > 2 .  

4. DISCUSSION OF RESULTS 

The results reported in the preceding sections show that 
even weak electron-phonon interaction at a center can alter 
strongly the pattern of resonant scattering. 

1. At energies corresponding to local-vibration quanta, 
the density of state of d-electrons has abrupt dips that be- 
come smeared out when the temperature is increased. The 
form of the resonance changes particularly substantially 
when the local-level energy E; (reckoned from the Fermi 
level) is close to one of the frequencies R, . Two equal state- 
density maxima appear then. Observation and analysis of 
such singularities have yielded valuable information both on 
the characer of the local vibrations of the impurity ion and 

that specifies the energy shift of an electron with a given spin 
in Eqs. (7) and (13) contains the total charge density 
(no = n: + ny ). Account is therefore taken here of both the 
"self-action" effect and the effect of interaction with an elec- 
tron with opposite spin (bipolaron effect). 

3. The resonance broadens at finite temperatures. The 
scattering of band electrons having an energy close to the 
resonance maximum becomes weaker and, conversely, the 
scattering cross sections of electrons with energies far from 
the maximum of the functionp, increase. All this can be the 
cause of the nonmonotonic temperature dependence of the 
mobility. We note in this connection a study6 of the tempera- 
ture dependence of the conductivity of PbTe compounds 
doped with thallium. The authors observed a nonmonotonic 
o ( T )  variation, where the initial section of the conductivity 
growth was exponential and its temperature was 5 100 K. It 
is possible that this behavior of the conductivity is due to the 
local electron-phonon interaction effects considered above. 
It must be assumed in this case that the frequency of the local 
mode is R - 100 K, and the initial decrease of the conductiv- 
ity is due to scattering of band carriers by lattice vibrations. 

We conclude by discussing briefly the influence of inho- 
mogeneous broadening on the transport properties of the 
system. Formal allowance for the scatter of the impurity 
levels reduces to integration of the function G,, (a) in 
expression (5)  over the position of co with a certain weight 
function f(e,) (the distribution function of the impurity lev- 
els). It is easily seen that if the width Wofthe spread exceeds 
the width r of the resonance, then the average time of flight r 
is increased by the ratio W/ r .  At the same time, the tem- 
perature-induced increment to T, due to the homogeneous 
broadening, decreases in the ratio r/ W. It is therefore hard- 
ly possible to observe in strongly inhomogeneous samples a 
substantial temperature dependence brought about by the 
effects considered above. 
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