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We suggest a model for a lightly doped and weakly compensated semiconductor. On the basis of 
the Markov method we calculate the density of the fluctuation potential as a function of the 
degree of compensation K of the semiconductor. We show that the dependence of the position of 
the Fermi level on the degree of compensation is caused by the increase in the amplitude of the 
fluctuation potential with K. In the region of low compensation degrees we calculate the density 
of donor and acceptor states and show that both have two peaks when considered as functions of 
K. The Fermi level for an n-type semiconductor is found to lie between the peaks at the minimum 
of the donor density, and the acceptor density has a "forbidden" gap with an energy of the order of 
e 2 ~  1/3 E, where Nd is the average volume concentration of donors, and E is the dielectric constant 
of the semiconductor. We also find that studying the spectral density of absorption from an 
acceptor level provides theoretically the means for determining the density of the fluctuation 
potential in weakly compensated semiconductors. 

1. INTRODUCTION 

When studying doped semiconductors there practically 
always arises the problem of calculating or estimating the 
impurity fluctuation potential. As a fairly recent investiga- 
tion in this field we cite Ridley's paper,' which, we believe, 
lists a clearly overestimated value of the fluctuation poten- 
tial. On the other hand, such semiconductors have been 
studied fairly well by numerical m ~ d e l i n g . ~ . ~  These results 
can be used to test various models for describing the impuri- 
ty fluctuation potential. Analytical results concerning the 
position of the Fermi level exist only in the limit of a zero 
degree of compen~ation.~ 

In this paper we develop a model of a lightly doped and 
weakly compensated semiconductor. The model made it 
possible to calculate the density of the fluctuation potential 
as a function of the degree of compensation, demonstrate the 
dependence of the Fermi level on the degree of compensation 
obtained earlier by numerical modeling in Ref. 3, formulate 
the physical reasons leading to such a dependence, and cal- 
culate the density of donor and acceptor states in the limit of 
low degrees of compensation. (A  similar problem for a 
strongly compensated semiconductor has been solved by the 
present authors in Refs. 4 and 5.) 

For the sake of definiteness we will consider a semicon- 
ductor of the n-type doped with shallow donors and accep- 
tors with average volume concentrations Nd and Nu. We 
assume that the conditions of light doping are met, namely 
N,,,a:, 9 1, where a, and ad are the respective Bohr ra- 
diuses. This inequality makes it possible to speak of donor 
and acceptor impurity bands in the classical sense, when the 
shift in a level of an impurity band can be assumed equal to 
the potential energy of this center generated by the other 
charged impurities. 

Calculations are done for the case of absolute zero and 
are based on the following qualitative picture. When the de- 
gree of compensation is low, all acceptors are negatively 
charged. Each acceptor is surrounded by many donors, with 
the result that the closest donor is, as a rule, ionized and the 

two form a dipole pair, the so-called l - ~ o m ~ l e x . ~ . ~  These 
dipoles are located far from each other (at a distance of the 
order of N a- 'I3) and, therefore, their interaction is weak. 
There is also a small number of acceptors (about 1.3 % ) for 
which the closest donor is located at a distance greater than 
r, = l/p, where p is the Fermi level energy, with the result 
that each such acceptor is surr~unded only by neutral do- 
nors. Such formations are called 0-complexes. Finally, there 
are what is known as 2-complexes, that is, acceptors near 
which there is a maximum number (two) of ionized do- 
n o r ~ . ~ . ~  By equating the concentrations of 0- and 2-complex- 
es, we ensure the electroneutrality of the sample and find the 
position of the Fermi level for the case where the degree of 
compensation of the semiconductor, K, tends to zero. At this 
stage, as compared to Refs. 2 and 3, we have refined only the 
expression for the concentration of 2-complexes. 

The next step is to apply the Markov method to the 
system of disordered dipoles ( 1-complexes) and calculate 
the density of the fluctuation potential. The presence of a 
fluctuation potential whose amplitude increases with K 
changes the concentration of 0- and 2-complexes. Equating 
their total concentrations, we arrive at the condition of elec- 
troneutrality of the sample and the equation specifying thep 
vs K dependence. This method also provides a way to calcu- 
late, as K-0, the density of donor and acceptor states exact- 
ly. It was found that the density of acceptor states exhibits a 
number of special features (two peaks, among other things) 
that make it possible, at least in principle, to determine the 
density of the fluctuation potential of the sample or the sam- 
ple's degree of compensation by measuring the spectral pat- 
tern of absorption. 

2. THE FERMI LEVEL FOR K-0 

To determine the concentration of 0-complexes, N,(p), 
we must count the acceptors for which the closest donor is 
situated at a distance greater than 
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Here we have employed dimensionless variables for the dis- 
tance r = r*/rd, with rd = (4rNd/3) - ' I 3 ,  and energy 
E = E */Ed, with Ed = e2/&rd, where E is the dielectric con- 
stant of the semiconductor, and the asterisk denotes dimen- 
sional quantities. The energy was measured from the unper- 
turbed donor state in the conduction band. Assuming that 
the impurities obey the Poisson distribution, we find the fol- 
lowing expression for the concentration of 0-complexes: 

No (p) =K exp (- 1/p3). (2)  

For 2-complexes, the energies of the first and second 
charged donors positioned at points r,  and r, (Fig. 1 ) are 

1 
El,z =-- 

I 

I ,  (r12+r22+2r,r2 cos 0)'!1 ' 

where B is the angle between r, and r,. 
Assuming that the donor closest to an acceptor is 

charged, we can represent the concentration of 2-complexes 
in the form 

1/zp 

N2 ( P I  =SK dr1rl2 esp (-rlJ) (I-exp[v(r,, p) I ) .  (4) 
0 

The upper limit in the integral corresponds to a symmetric 
arrangement of the donors in relation to the acceptor, and 
the last cofactor under the integral sign is found from the 
condition that at least one donor is inside the volume v(r,,p) 
(see Fig. 1 ) enclosed by the sphere of radius r, and the p- 
surface determined by the equation 

Employing the fact that the p-surface possesses cylin- 
drical symmetry, we can represent v(r,,p) as follows: 

Herex,, r,, , and y(x)  (see Fig. 1 ) are given by the following 
relations: x, = r, cos B,, where 8, is determined by the con- 
dition that E,(r,,r, = r,,B, ) = p,  as a result of which we get 

r,, is found from the equation E,(r,,r,, ,B = 0) = p and has 
the form 

and, finally, y (x,p,r, ) is specified by the formula 

The dependence of the concentrations of 0- and 2-com- 
plexes on the position of the Fermi level is depicted in Fig. 2. 
The point where the two curves intersect corresponds to an 
electroneutral sample, that is, this condition fixes the posi- 
tion of the Fermi levelpo as K-0. Note that the more accu- 
rate value p o ~ 0 . 6 0 7  that we obtained does not fall outside 
the limits of the spread of values listed in Ref. 3. 

3. THE DENSITY OF THE FLUCTUATION POTENTIAL 

To find the density of the fluctuation potential in the 
semiconductor we assume, because of low concentrations of 
the 0- and 2-complexes, that the potential is generated by 1- 
complexes, and the donor closest to the acceptor is the 
charged one. This approximation has been substantiated and 
used in calculating the distribution function for the electric 
field in a weakly compensated semicond~ctor.~ Using the 
Markov method,' we can write the probability density of 
potential V as follows: 

9 
C (p) = - r12 drl j r.' exp (-r:) dr, d8{ I 

2 0 0 - 1 

where r, is the distance to the acceptor, r, the distance be- 
tween the acceptor and the closest donor, and { = cos 8, 
with 0 the angle between r, and r,. 

FIG. 1.  The spatial cross section of the structure of a 2-complex along the 
rotation axis x.  

FIG. 2. Concentrations of 0-complexes (curve I )  and 2-complexes (curve 
2) as functions of the position of the Fermi level. 
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Formula ( 10) can be simplified by replacing the poten- 
tial with the commonly used point-dipole approximation 
(r2 < rl ) (Ref. 6). Integrating over the angle and introduc- 
ing the notation y = 4 and z = pr,/r,, we find that 

where a = +T"~c,, with C1 ~ 0 . 6 6 6  the value of the second 
integral, that is, a = 1.769. 

Substituting ( 1 1 ) into ( lo), we can easily verify that 
the density of the fluctuation potential in the point-dipole 
approximation for any degree of compensation is expressed 
in terms of the universal function Pd ( x )  : 

where 

The shape of the function Pd (x)  obtained by numerical inte- 
gration is depicted in Fig. 3. 

The results of computer calculations using the more ex- 
act formulas (10) demonstrate that on the same scale the 
expression for P( V,K) in the case of a dipole interaction with 
a finite "arm" is approximately given by formula ( 12) but 
with a different characteristic function PC (x). Its shape is 
depicted in Fig. 3. As one would expect, in comparison to 
P, (XI this function has a sharper peak as V+ 0 and falls off 
more rapidly as V increases. 

4. THE POSITION OF THE FERMl LEVEL AS A FUNCTION OF 
THE DEGREE OF COMPENSATION 

To findp(K) we employ the fact that on the average the 
dipoles are at a distance N; 'I3 from 0- and 2-complexes 
and, hence, the characteristic spatial scale of fluctuation- 
potential variations is also N; 'I3. The characteristic size of 
0- and 2-complexes, however, is of the order of N; 'I3, that 

is, at small compensation degrees (K< 1) we can assume 
that the fluctuation potential is constant within a 0- or 2- 
complex and that its probability is given by the function 
P( V,K) established above. This enables writing the electro- 
neutrality condition as 

where N2,(p- V) =N,(p-  V) -No@ - V). Using a 
scaling transformation similar to (12) and the calculated 
function PC (x), we can write the electroneutrality condition 
(14) as 

For moderate values of K the principal contribution to the 
integral is provided by the small values of the potential, 
( V ( <p, and the value of the Fermi level differs little fromp,, 
or Ip - pol (po. Using these inequalities and performing an 
expansion in ( 15 ) , we find that 

where 

Carrying out numerical calculations, we get the following 
values: N;, (po) = - 0.368, N;b (po) = - 0.374, and 
( V f )  = 1.10. Substituting these values into (16), we find 
that 

This dependence coincides with the results of numerical 
modeling2v3 (Fig. 4). The remarkable thing here is that this 
agreement occurs within a broad range of degrees of com- 
pensation, O<K < 0.6. 

FIG. 3. The probability density of the potential for the dipole approxima- 
tion. Curve I corresponds to the potential of a point dipole, and curve2 to FIG. 4. The position of the Fermi level versus the degree of compensation 
the potential of a dipole with a finite moment. (the points stand for the results of numerical modeling taken from Ref. 3 ). 
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Thus, locally the fluctuation potential of 1-complexes 
changes the number of 0- and 2-complexes and in this way 
lowers the Fermi level as the degree of compensation of the 
semiconductor increases. 

If the integral equation ( 1 5 ) is solved numerically, al- 
ready at K = 0.01 there is a deviation from the dependence 
specified by ( 16) (p increases with K)  . The reason is that as 
K and, hence, V increase, formula ( 15 ) begins to overesti- 
mate the value of the concentration of 2-complexes. Since 
with an increase in V the spatial size of 2-complexes also 
increases, the potential cannot be assumed constant within a 
2-complex. For 0-complexes the opposite is true: as Vgrows, 
the 0-complexes become smaller. Hence, the fact that the p 
vs K dependence specified by ( 17) coincides with the results 
of numerical modeling3 suggests that formula ( 15 ) provides 
correct values for the concentration of 0-complexes within a 
broad range of compensation degrees. 

5. THE DENSITIES OF DONOR AND ACCEPTOR STATES 

To find the density of donor states one must determine 
the probability density of the potential near each acceptor 
and sum over all acceptors. Here the normalization volume 
f l  is the volume per acceptor (in dimensionless units we have 
f l  = fl*/r; = 477/3K). The density of charged donors is de- 
termined by all the donors in the 1- and 2-complexes, while 
neutral donors are also in 0-complexes. 

Near acceptors forming 0-complexes there are only 
neutral donors with energies E satisfying the inequalities 
p > E >  K 'I3. The contribution of the neutral donors to the 
density of donor states is 

Substituting formula (2) that expresses the concentration of 
0-complexes and employing the fact that the neutral donors 
in the 0-complexes are in a potential equal to l/r, we find 
after calculations that 

N ~ ,  ( E )  = ~ ( 3 / E ' ) e x p  (-l/p3), P>E>K"'. (19) 

The distribution of 1-complexes along the arm of a di- 
pole, r,, which in what follows will be denoted by N,(r,,,u), 
is 

N ,  ( r , ,  P) =3Kr12 exp [ - r ,3 -v ( r , ,  p)]. (20) 

Here v(r,,,u) is determined by (6),  and its appearance in the 
exponential in (20) is the reflection of the requirement that 
nrear the given acceptor no 2-complex forms [see Eq. (4)]. 
Allowing for the fact that a charged donor is in a potential 
equal to l/r, and doing calculations similar to (18), we ar- 
rive at the following formula for the density of charged do- 
nors in 1-complexes: 

IV,, ( E )  =K ( 3 / E 4 )  e s p [  -E-=-v (I/E, p )  1, E>p.  (21 ) 

Neutral donors that are close to 1-complexes find them- 
selves in the dipole potential E(r,,r,B) of the type (3) in 
which r2 must be replaced by the current coordinate r. Com- 
bining ( 3 ) and ( 18) and calculating, for a 1 -complex with an 
arm r, we find that 

where r,, = min( rE,K -'I3), with 

The total density of neutral donors can be obtained by 
integrating over all 1-complexes: 

Here r , ,  is the maximum value of r, at which the energy of 
neutral donors in 1-complexes still reaches E (note that the 
neutral donors are at a distance from the acceptor greater 
than r, ) : 

min ( l / 2 E ,  Up), p>E>O, 
rtmS EeO. (25) 

For the charged donors in 2-complexes one must calcu- 
late separately the density of states due to the first charged 
donor (closest to the acceptor) and that due to the second 
charged donor, since the different energies of these donors 
[see Eq. (3 ) ]  lead to different limits of integration when 
calculating N,, (E) .  

The concentration of 2-complexes in which the first do- 
nor is inside the spherical layer between r, and r, + dr, and 
the second donor inside the spherical layer between r, and 
r, + dr2 is given by the following expression: 

="lzr,2 exp(-r l3)dr1rZZdr2 erp [-v(r,, E2) Id$. (26) 

Here, f = cos 6, with 6 the angle between r, and r,, and 
v(r,,E2) is specified by Eq. (6) where p must be replaced 
with E2 given by formula (3 ) . 

The density of charged donor states from 2-complexes 
is 

Here the first and second terms in square brackets corre- 
spond, respectively, to the first and second charged donors 
in a 2-complex. Integrating over 6, we get 
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rlE rWB equal top,, and its height is equal to the concentration of O- 
LZ (El = J drl dr2Nd2 ( r l ,  r ~ .  bl) (ri2+r,2+2rir2$,) Ys complexes and is given by Eq. (2).  

I / =  r t s ,  rirz The contribution to the density from 1-complexes is 
~ S Z  equal to the donor density (21 ) provided that we change the 

(r,Z+r22+2rir2~Er)qa + 1 dr ,  d r 2 N ,  ( r l ,  r2, 5 , )  origin from which energies are measured ( E  is replaced with 
r1r2 9 

0 r, - E) and (21) use IE ( instead of E. 

(28) For 2-complexes the acceptor potential is 

where 

E l z  ( 2 - E l  r2 -- Er,2 (2-Er2) - 
, 5 , s  =. 

* = 2 r ( l - E r I ) z  2r. 2 r l ( l - E r z ) 2  2rz ' This is the relation that should be used in (27) when calcu- 
lating the acceptor density. Integrating once via the delta 

Here the limits of integration are found from the condition function, we find that 
that there exists a charged donor with the given energy E in a 
2-complex and are equal to (see Fig. 1 ) I 

I "us 
n P 

r , ~  = 
I rZE2 = "[-*+(I -K)'] 4 . 

E+ (EP)'I3 ' 2 where r,, can be found from (30) by replacing E, by the 

(29) 
current energy E, and 

The total density of donor states is depicted in Fig. 5. 
What is important and not obvious here is that the Fermi 
level is in close connection with the minimum in the density 
of states and that the density of states is continuous at the 
Fermi level. The continuity of Nd (E) with decreasing E is 
achieved because of the continuous transition of the density 
of charged (second) donors from 2-complexes to the density 
of neutral donors from 1-complexes and the density of 
charged donors from 1-complexes to the density of neutral 
donors from 0-complexes. Note that here we have ignored 
the small density of neutral donors in 2-complexes that ap- 
pears at E < 0 and has practically no effect on Nd (E). We 
have also ignored the possible features that are associated 
with the dipole interaction near the Fermi level and lead to a 
Coulomb gap.2 

Similar calculations can easily be done for acceptor 
states. All acceptors in 0-complexes have a zero energy and 
form, in the limit of K+ 0, a delta-like peak in the density of 
states (for acceptors the origin from which energies are mea- 
sured is shifted downward by AEd,, , the difference between 
the unperturbed energies of donor and acceptor centers). 
This peak is separated from the rest of the density of states, 

The results of calculations are depicted in Fig. 6. An 
unexpected though easily explained feature is the presence of 
two peaks in the distribution Nu (E) for the initial monoen- 
ergetic acceptor level. The presence of a delta-like peak sepa- 
rated by a broad Coulomb gap from the rest of the distribu- 
tion, can, apparently, be discovered in the spectral 
dependence of optical absorption from an acceptor to the 
conduction band. The study of such absorption may at the 
same time serve as a measurement of the degree of compen- 
sation of the semiconductor, since from the p vs K depend- 
ence established above and the probability density of the 
fluctuation potential ( 10) one can easily determine the posi- 
tion and spread of the density of acceptor states correspond- 
ing to 0-complexes. And vice versa, if the degree of compen- 
sation of a semiconductor is known, the spectral dependence 
of absorption makes it possible to establish the density of the 
fluctuation potential. 

3 
FIG. 5. The density of donor states in the limit of K-0: (a) the 
general shape of the No (E)/K vs E dependence (the maximum at 
zero is proportional to K - ' I 3  and is cut off in the figure); (b) 
Nd (E)/K near the Fermi level (0, I ,  and 2 correspond to densities 
created by 0-, I - ,  and 2-complexes and 3 corresponds to the total 
density Nd (E)/K). 
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FIG. 6. Density of acceptor states. 

6. CONCLUSION 

The suggested model is based on the possibility of carry- 
ing out analytical calculations of the structure of the impuri- 
ty band as K-0. At small compensation degrees the dipole 
interaction potential is weak and is characterized by a large 
spatial scale (NdK)-"3. Hence, the total concentration of 
0- and Zcomplexes can be established by calculating the 
density of the fluctuation potential. In the limit of small val- 
ues ofK this agrees well with the situation in a real semicon- 
ductor (i.e., the experiment in numerical m~deling'.~), 
while the expansion for small K describes correctly thep vs 
K dependence for 0 < K < 0.6. However, the numerical solu- 
tion of the nonlinear integral equation (15) obtained on 

these assumptions changes this dependence quite rapidly 
(for K > 0.01 ) . The reason is that the size of 0- and 2-com- 
plexes is ignored in Eq. ( 15 ), while the characteristic size of 
2-complexes increases with the compensation degree. 

We wish to stress once more the special features of the 
calculated densities of donor and acceptor states. For donor 
states the Fermi level is closely connected with the minimum 
in the density of states, and the density of states is continuous 
near the Fermi level owing to the jump-like transition be- 
tween densities from different complexes (Fig. 5b). A char- 
acteristic feature of the acceptor density of states is the pres- 
ence of a delta-like peak separated from the rest of the 
density by a broad Coulomb gap equal top .  Studies of opti- 
cal transitions, for instance, optical absorption from an ac- 
ceptor impurity to the conduction band, may provide easily 
interpreted information about the degree of compensation of 
a semiconductor or, for a known K, about the density of the 
fluctuation potential. 
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