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A "local-band'' theory for an antiferromagnetic metal with a "nesting" singularity of the electron 
spectrum is constructed, and the spin-fluctuation contribution to the energy is obtained in the 
form of the classical Heisenberg Hamiltonian. It is shown that thermodynamic transverse spin- 
density fluctuations have a fundamental influence on the formation of the long-range magnetic 
order, sharply lowering the Ntel temperature T $F relative to the "mean-field" temperature TO, 
for the appearance of a spin-density-wave amplitude. In a wide range of temperatures T%F 
< T <  TO, a regime of short-range magnetic order is realized, and a pseudogap, with smeared-out 
peaks of the density of states near its edges, is preserved in the electron spectrum. In a quasi-two- 
dimensional system there is a crossover regime in the paramagnetic phase, and the temperature 
T vanishes in the purely two-dimensional case. 

1. INTRODUCTION 

In the modern theory of band magnetism it is custom- 
ary to assume that the responsibility for the destruction of 
the long-range magnetic order with increase of temperature 
is carried by comparatively low-energy collective excitations 
of the spin density of the quasiparticles-spin fluctuations, 
while one-particle (Stoner) excitations do not play an essen- 
tial role in this process. The problem of calculating the tran- 
sition temperature Tk reduces, therefore, to taking into ac- 
count more or less correctly the contribution of the spin 
fluctuations to the free energy F of the band magnet.' No 
universal consistent scheme for doing this exists at the pres- 
ent time, although attempts to construct one are being con- 
stantly undertaken (see, e.g., the relevant discussion in Ref. 
1 ). The difficulties that arise on this path are rather diverse, 
but the chief of them is evidently the problem of specifying a 
priori the type of fluctuations (in particular, the degree of 
their spatial localization) that make the principal contribu- 
tion to F. 

In saturated ("strong") band magnets with a spin-den- 
sity amplitude close to the maximum, two groups of theo- 
ries, corresponding to different assumptions about the de- 
gree of localization of the fluctuations, can be distinguished. 
In "alloy" theories (of Hasegawa,* H ~ b b a r d , ~  et al.) it is 
assumed that the principal contribution to F is made by un- 
correlated fluctuations of almost local spins on the lattice 
sites. The field of such fluctuations, with an almost fixed 
spin-density amplitude at a site, is described by introducing a 
self-consistent coherent potential in analogy with the theory 
of alloys in metals. In the theories of Refs. 2 and 3 the de- 
struction of the long-range order occurs by way of a phase 
transformation without the formation of a significant tem- 
perature region with short-range order. 

The other approach, based on the idea of a special role 
for long-wavelength transverse fluctuations in the destruc- 
tion of the long-range order, was put forward by Korenman 
et a1.4,5 and has become known as "local-band theory." The 
picture of the spin fluctuations that arises in this approach is 
closest to the behavior of a system of Heisenberg classical 
spins. Above the transition temperature T, at which the de- 
struction of the long-range order occurs, a phase with partial 

spatial correlation of the spin-density distribution on macro- 
scopic scales is preserved. With increase of temperature this 
correlation is destroyed in a certain interval ATsRo - Tk , 
after which the system can be assumed to be completely dis- 
ordered (in theories of the type of Refs. 2 and 3 it is assumed, 
in effect, that ATsRo Tk and the phase of short-range or- 
der is absent). 

In the theory of "weak" (unsaturated) magnets the 
Moriya-Kawabata method of renormalized spin fluctu- 
ations is used.6 The high-temperature approximation of this 
method corresponds to the Murata-Doniach scheme7 for 
extremely long-wavelength static fluctuation modes of small 
amplitude. For cases of long-wavelength modes of large am- 
plitude, Hertz and Klenin8 proposed a generalization of the 
scheme of Ref. 6. We note that in the theories of the type of 
Refs. 6-8 the longitudinal (amplitude) and transverse 
(orientational) spin fluctuations are taken into account in 
equal measure in the random-Gaussian-field approxima- 
tion, and there was no special discussion of the question of 
the short-range order. Here, too, we shall not set ourselves 
the task of constructing a theory of the short-range order in 
all types of "weak" band magnets (in particular, we shall not 
be discussing ferromagnets of the Stoner type, in which the 
presence of a sufficiently large interaction constant U >  1 is 
necessary). We shall confine ourselves to the standard band- 
antiferromagnetism model of the "spin-density-wave" 
(SDW) type, which is formally valid in the limit U <  1 (see, 
e.g., Ref. 9).  

Usually, in the SDW model, mean-field theory makes it 
possible to give a satisfactory description of the thermody- 
namics of the system, although a regular technique for tak- 
ing fluctuation corrections into account has not been worked 
out. Hasegawa" has calculated in the framework of the 
scheme of Ref. 6 corrections to the Ntel temperature TN and 
SDW amplitude. The use here of a simple one-loop approxi- 
mation for the renormalized susceptibility was not justified 
in any way. Allowance by Volkov and Tugushev" for a more 
complicated renormalization in the ladder approximation 
has displayed the presence of nonanalytic behavior of the 
functional F in  the vicinity of TN , and, as a consequence, has 
led to a change of the transition from second-order to first- 
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order. We note that these papers discussed only SDW ampli- 
tude fluctuations, and, in essence, the presence of long-wave- 
length fluctuations of the direction of the spin-polarization 
vector was not taken into account, inasmuch as the analysis 
was performed in the so-called "Z-representation," with a 
fixed quantization axis, which is extremely inconvenient for 
this purpose. 

As shown in this paper, fluctuations of the direction of 
the SDW vector have a fundamental influence on the forma- 
tion of long-range antiferromagnetic order, sharply lower- 
ing the NCel temperature from the value TO, (the "mean- 
field" temperature of the appearance of a nonzero SDW 
amplitude) to a value T y 4 TON. In a wide range of tempera- 
tures T y  < T< TON a regime of short-range magnetic order 
is realized, the spin-density correlation function has a sharp- 
ly expressed peak at the wave vector of the AFM structure, 
and a pseudogap, with smeared-out peaks of the density of 
states near its edges, is preserved in the electron spectrum. 

Another aspect of the problem of short-range magnetic 
order, discussed in this paper, involves the increase of the 
role of this effect in systems with lower dimensionality. In 
particular, in a quasi-two-dimensional system with SDW the 
temperature interval in which short-range AFM order exists 
expands in the low-temperature direction, a crossover re- 
gime obtains in the paramagnetic phase, and the tempera- 
ture of the onset of long-range order decreases, vanishing in 
the purely two-dimensional case. The structure of the short- 
range AFM order and the possibility of a transition of the 
Kosterlitz-Thouless type in a quasi-two-dimensional sys- 
tem with SDW are not considered in detail in this paper, 
although it is apparent that we may expect the appearance of 
complicated SDW vortex structures and of associated unu- 
sual behavior of the thermodynamic characteristics. 

2. TRANSVERSE SDW FLUCTUATIONS AND THE "LOCAL- 
BAND" METHOD IN ANTIFERROMAGNETS WITH SHORT- 
RANGE ORDER 

Before proceeding to the original part of the paper, for 
the convenience of the reader we recall briefly a number of 
familiar techniques used in the spin-fluctuation theory of 
band magnetism (see the detailed account in Ref. 12). 

The starting point of the analysis is the one-band Hub- 
bard model with Hamiltonian 

where 

c, is a Fermi operator in the site representation, U is the 
intra-atomic Coulomb repulsion, and to is the hopping inte- 
gral, which we shall assume to be nonzero only for nearest 
neighbors. 

The partition function for the Hamiltonian ( 1 ) 

can be expressed in the form of a functional integral, with 

imaginary time T, over the anticommuting "classical" vari- 
able c, ( T) : 

~ = c o n s t l  ~ [ c . c ' ] e x p ( - ~ [ c . c ' ] ) ,  (2) 

where po is the chemical potential of the system, and 

By means of the identity 

we can rewrite the interaction Hamiltonian in terms of the 
charge density ni and spin density Siz : 

Assuming that the unit vector ei that specifies the local 
orientation of the quantization axis at site i makes an arbi- 
trary angle with respect to the crystallographic axes, we 
write the Hubbard term in the form 

The representation (4) of the interaction Hamiltonian 
permits us to make use of the Hubbard-Stratonovich repre- 
sentation: 

1 /T  

By means of this representation the initial many-parti- 
cle problem ( 1 ) is replaced by the one-particle problem of 
the motion of an electron in a scalar field xi (T) and a vector 
field 

that fluctuate arbitrarily in space and time. We note that the 
configuration integration in (5)  over all possible orienta- 
tions of the vector ei restores the rotational invariance of the 
system. We shall perform the subsequent calculations with 
neglect of the dependence of the fluctuations on the "time" 
variable T,  i.e., we assume that the static approximation gives 
the principal contribution to the integral (5)  [in fact, this is 
equivalent to the high-temperature approximation in the in- 
tegral (5)  ]. 

The electron variables can be eliminated in a straight- 
forward manner by writing them first in the form of the se- 
ries 

where the frequencies 
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0,,=xT(212+1), 0=0. il. +-2, . . . . 
k is the quasimomentum, ri is the coordinate of the ith site, 
and N is the total number of atoms in the crystal. Substitut- 
ing the expansion ( 6 )  into the action Sand then integrating 
over the Fourier components c,, and c:,, , we obtain a parti- 
tion function of the following form: 

where 

is the Green function of the noninteracting electrons, with 
dispersion 

er= C ti e x p  ( - i l i r , ) ,  (9)  

is the random potential, a are the Pauli matrices, and Z,  is 
the partition function of the noninteracting particles. 

In the expression (7) and henceforth, the symbol Tr  
denotes a sum of the diagonal matrix elements over the spin 
indices u and site indices i and over the frequency variable n. 

The integration over the charge variables xi can be per- 
formed in the simplest, stationary-phase approximation, 
which is equivalent to neglecting the charge-density fluctu- 
ations (the characteristic frequency of which is of the order 
of the plasma frequency), and this determines their small 
contribution to (7)  in temperature range of interest to us. As 
a result, we obtain in (7)  the renormalization of the chemi- 
cal potential 

where X is the saddle point. 
Now, after giving an account of this necessary informa- 

tion, we turn specifically to the problem of an antiferromag- 
net with SDW. For simplicity we shall consider a situation 
with a doubled (Ntel) SDW structure in the ground state, 
without touching upon the interesting question of the ther- 
modynamics of more-complicated structures with a modu- 
lated SDW amplitude. We shall assume that for the electron 
spectrum the "nesting" condition 

is fulfilled, where Q = + G/2, G being a reciprocal-lattice 
vector of the crystal. We distinguish two alternating magnet- 
ic sublattices, shifted by half a lattice constant: For one of 
these we shall take the local quantization axis ei to coincide 
in direction with the local site magnetization Sf, while for 
the other we shall assume that the vectors ei and Si are anti- 
parallel. Thus, 

eiS,=Si, e s p  ( iQri)  

We shall also apply the stationary-phase method to de- 
termine the vector-field amplitude y; , which, below, we shall 
measure in energy units: 

A,= (nUl7)".yi exp (iQr,) =US, exp ( iQri)  . ( 10) 

The effective free-energy functional has the form 

where 

Vi=Aio e s p  ( - i Q r i ) .  

Assuming that, in the absence of fluctuations, a doubled 
SDW phase is realized (Ai = A = const, Q = G/2), we 
find, by varying the functional ( 1 1 ), the Hartree-Fock self- 
consistency condition for A: 

In the following calculations we shall need the Green 
function of the quasiparticle in the SDW exchange field: 

We write it in explicit form: 

whereS,,, = 1 i fk  = p, and S,,, = 0 i fk fp .  
Allowance for the SDW fluctuations about the saddle 

point given by Eq. ( 12) requires certain assumptions about 
the character of these fluctuations. Generally speaking, Eq. 
( 12) has a nontrivial solution in the range of temperatures 
T <  T k ,  but the identification of T k  with the Ntel tempera- 
ture is by no means obvious. In "weak" magnets, with U/ 
t 4  1 ( t  is the width of the forbidden band), the quantity T :  
is related to U /t by a relation of the BCS type, but is expon- 
entially small. For U/t > 1 ("strong" magnets), formal solu- 
tion of (12) gives T k -  U, and in the physically real tem- 
perature range T< t the amplitude A is practically fixed, and 
depends only weakly on T. A calculation of the renormaliza- 
tion of the SDW amplitude on account of quantum (princi- 
pally, longitudinal) fluctuations for a two-dimensional sys- 
tem with SDW has been performed recently by Schrieffer et 
a1. l 3  in the random-phase approximation for T  < T  k .  

It was shown that fluctuations decrease the amplitude 
A given by Eq. (12), the more strongly the greater the ratio 
U/t. Here, for simplicity, we shall not take into account 
quantum corrections in the self-consistency condition ( 12) 
for the SDW amplitude. Next, we assume that the analysis is 
performed in the region T g  T,  and the quantity A does not 
depend on T. We shall assume that the decisive role in the 
destruction of the long-range order is played by the trans- 
verse long-wavelength components of the spin fluctuations, 
which lead to vanishing of the coherence in the orientation of 
the spin density Si for the alternating sublattices, with main- 
tenance of an almost constant value of the SDW amplitude. 
This picture corresponds to the ideas of the "local-band the- 
ory" that has already been mentioned above.495 Here, the 
temperature T g  specifies only the limit of applicability of 
our approximation of constancy of the amplitude A, but does 
not have the meaning of the Ntel temperature. 

Thus, we assume that the main contribution to the par- 
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tition function of the system is made by SDW configurations 
for which 

where ei is a unit vector that is varying slowly in space 
( lei 1 = 1, and 1 ei - ej I < 1 for neighboring lattice sites). 
We introduce a local coordinate system, specified by three 
angles Bi , Qi, and bi . The angles Bi and Qi specify, in spheri- 
cal coordinates, the directin of the local quantization axis ei 
with respect to the laboratory quantization axis, and the an- 
gle bi describes the rotation of the spin-density vector about 
the axis ei . 

In the local coordinate system the Hamiltonian ( 1 ) can 
be rewritten in the form 

J n 

~ , ~ z ' / ~  C A P  (-ifit,) ((I),] sin fit,-totJ). (17) 

g,,='/: (b,,+cI),, cos 0,)). (18) 

where 

and analogously for the angles bi and @ i .  In Eqs. ( 14)-( 16) 
it is to be understood that the operators ci and c+ act in the 
local coordinate system, and the Hamiltonians H, and Hint 
do not change their form when we go from the laboratory to 
the local coordinate system. The expressions (17)-(19) 
have been written with allowance for the condition 

for nearest neighbors. After going over to the local coordi- 
nate system we can calculate the free energy 

under the assumption that the orientation of the vector Ai is 
slowly varying from site to site, with a fixed modulus (Ai 1 .  In 
second order in H, and H, we obtain 

where F,, = F [ A ]  (see Ref. 1 I ) ,  

and Gii, is the Green function ( 13) in the site representa- 
tion. 

Thus, the calculation of the partition function of the 
system has reduced to the problem of integrating over the 
orientations of the random vector field e = {e, 1: 

3. EFFECTIVE SDW HAMlLTONlAN IN THE PHASE OF SHORT- 
RANGE ORDER 

The analysis of the expressions (21 )-(23) still remains 
rather complicated. Introducting further simplifying as- 
sumptions, we require that all four vectors ei appearing in 
(2 1 ) and (22) be close in direction for neighboring sites, and 
write the simplified relation 

After this replacement the spin-fluctuation contribution FsF 
acquires the simple form 

i.e., has the form of the Heisenberg Hamiltonian for classical 
spins S = 1 with exchange integral 

1 
jij=-X J k , k r  exp ( ik~i- ik ' r~)~ (26) 

N2 k , k ,  

J r r ~ = I , S r , r , f  K k G r , r ~ + ~ ,  

iw,-p+~~ 
A ,  = 

A B --- . P -  
D e f  Detnp 

Up to now we have not made explicit use of the special 
form of the spectrum ~ ( k )  in the model with "nesting," so 
that Eqs. (27)-(28) have a rather general form. When the 
condition 

is rigorously fulfilled, we can convince ourselves that the 
"ferromagnetic" component of the exchange integral 

To calculate the NCel temperature we shall need the quantity 

which, after certain transformations, can be written in the 
form 

where the summation over the wave vector p is bounded by 
the first Brillouin zone. For the classical Heisenberg model 
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with S= 1, mean-field theory gives the following phase- 
transition temperature: 

2 1 
TN.F = --z M.. 

3 N  k 

while the method of spin Green  function^'^ gives 

The summation in (30) and ( 3  1 ) runs over the first 
Brillouin zone. For an explicit calculation of (3 1 ) we specify 
the following form of dispersion law E, , satisfying the "nest- 
ing" condition: 

tp=-2t ( C O S  p,a+cos p,a) -2t, cos p,c.  (32) 

where a is the lattice constant in the x and y directions, and c 
is the lattice constant in thez direction. By varying the spec- 
tral-anisotropy constant 

we can calculate the dependence of the Niel temperature on 
the effective dimensionality of the electorn subsystem of the 
crystal. 

First of all we shall consider the formal limit of strong 
interaction U) t, when the spin density is localized at the 
lattice sites. For purely half filling of the band, we obtain 
from Eqs. ( 12) and (29) in this limit 

and the exchange integral 

tZ 
d l ,  = 7 (2+y2-cos It&-cos k,a-yP cos k ,c ) .  (33 

The mean-field phase-transition temperature (30) is 
equal to 

and remains finite for the two-dimensional case, when y + 0. 
More correct allowance for thermodynamic fluctuations, 
which leads to the relation ( 3 1 ) , gives, for small y, 

The Ntel temperature TN (34) tends to zero as y-0, 
although giving the system a small degree of three-dimen- 
sionality leads to a sharp increase of TN ( y) . For an isotropic 
system, with y = 1 ( a  simple cubic lattice), we have 

A dependence of the Niel temperature on the anisotropy 
parameter analogous to (34) was obtained in Ref. 15 for a 
phenomenological model of an anisotropic Heisenberg anti- 
ferromagnet. 

Formally, the "temperature of the appearnce of the 
SDW amplitude," which is given by the expression (12) 
(and which is essentially the characteristic temperature for 
the excitation of SDW amplitude fluctuations), amounts in 
the limit t /U( 1 to TO, - U, i.e., is certainly greater than 
(30) and (3 1). Thus, in the entire range of temperatures 

above the Niel point the phase of short-range order can be 
described by the above-considered model with a fixed SDW 
amplitude. In a three-dimensional system the correlation 
length f ( T )  of the spin fluctuations in this phase has the 
standard square-root behavior 

In a quasi-two-dimensional system there is a regime of cross- 
over from high-temperature two-dimensional behavior at 
T) T S,F, when 

2n 4tZ 
6 ( T )  -erp(--) T U '  

to three-dimensional behavior at T- T y. This result can be 
obtained using the technique of Ref. 16 for investigating a 
two-dimensional chiral model in the continuum approxima- 
tion with a small coupling constant, and we shall not focus 
attention on it here. 

Let us consider in more detail the limit of delocalized 
spin density (the case of weak interaction t) U). For a two- 
dimensional system, with y = 0 and half filling (p = O), the 
temperature of formation of the SDW amplitude is, as fol- 
lows from (12), 

T,"a t esp  [-2"n ( t / U )  '1. (35) 

The region of critical amplitude fluctuations is small, 
and can be estimated as 

For T < TN the dependence A ( T) reaches saturation, and 
the thermodynamics of the system is determined by the low- 
energy transverse SDW fluctuations. We shall confine our- 
selves to the case of half filling (p = 0) and to the quasi-two- 
dimensionality condition y( 1 in the calculation of the 
exchange integral (29), since the calculation of M, in gen- 
eral form is extremely cumbersome. Allowance for the 
strong dependence of M ,  on the quasimomentum k in the 
region of small values of k (we have in mind the region 
(ka) 4 1 ) is of fundamental importance. Integration over 
the frequencies and internal momenta in (29) for 

gives for the case y = 0 

For 

and y = 0, to within corrections of higher order in (A/t12, 
we obtain 

i.e., the dependence on k reaches saturation. 
We have not succeeded in obtaining an exact analytical 

expression for the function M,, and therefore, to estimate 
the transition temperature, we shall make use of the 
piecewise-linear approximation 
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,Ifk< for Icck,,, 
~ll,' for h*>lio. 

where 

After this, the "mean-field" NCel temperature can be esti- 
mated as 

To calculate the "true" NCel temperature in the spin- 
fluctuation approach for a quasi-two-dimensional system we 
shall calculate M ,  in lowest order in t, . Assuming that 

we obtain 

Substituting this expression into (3 I ) ,  after integration 
over k we obtain 

For small values y -+ 0, when T ;F T :F, just as in the 
case of the limit of local moments, crossover from the three- 
dimensional (near T y )  to the two-dimensional regime be- 
comes possible. The latter regime, characterized by an expo- 
nential dependence of ((T) on the temperature: 

is bounded from above, however, by the requirement 
T< T i ,  while the latter is itself bounded by T$<t, U. The 
region of temperatures 

may conventionally be called the region of two-dimensional 
short-range order, while the region 

may be called the region of three-dimensional short-range 
order. 

4. DENSITY OF STATES IN THE PHASE OF SHORT-RANGE 
ORDER 

To determine the one-electron characteristics of a sys- 
tem with short-range antiferromagnetic order it is necessary 
to specify a procedure for averaging over the SDW-fluctu- 
ation ensemble, specified in our approach by the set of vec- 
tors {e, 1, for the corresponding one-particle Green func- 
tions. 

Considering the Hamiltonian H, + H, as a perturba- 
tion with a given SDW configuration in the system of band 
electrons, we write for the "configuration" Green function 
the symbolic relation 

where G is the one-electron Green function ( 13) of the 
ground (NCel) state. We shall determine the averaged (over 
the orientations {e, 1) Green function (G in the simplest, 
Gaussian approximation for the distribution of the spin fluc- 

tuations, the effective Hamiltonian of which is specified by 
the quadratic form (25). In this approximation all even spin 
correlators are decoupled into pair correlators 
( (e,  ... e, ) - (eie, )  ... (em e,) ), and all odd correlators are de- 
coupled into products of pair correlators and averages (e,  ) . 
We shall confine ourselves to considering only phases with 
short-range order, when all (e ,  ) = 0 and the odd correlators 
vanish upon summation over the spin indices. Making in 
( 13) the replacement 

we write for the temporal Green functions averaged over the 
ensemble of configurations Ce,) the relation 

We write out the self-energy part in explicit form: 

where 

In Eq. (42) the quantity fq is a Fourier component of 
the pair correlation function (e,  e, ). To be specific, we shall 
consider the case of a purely two-dimensional system 
( y = 0)  and perform the calculation in the long-wavelength 
approximation, assuming fq to be nonzero in a small range of 
quasimomenta 9-4 l/a. We introduce the dimensionless 
quantity 

which is inversely proportional to the square of the correla- 
tion length of the short-range order. 

Direct determination of the poles of the averaged Green 
function (41 ) leads to the dispersion relation 

It can be seen from this relation that thermodynamic 
SDW fluctuations lead to a doubling of the number of dis- 
persion branches in comparison with the case T = 0 , 6 =  a, 
i.e., when there exists long-range AFM order with 

The physical meaning of this doubling is related to the possi- 
bility of motion of an electron with the "right" and the 
"wrong" spin in each of the two antiferromagnetic sublat- 
tices when they are partially disoriented. For the case of 
ideal long-range order the branch with the "wrong" spin 
disappears (the corresponding residue in the Green function 
vanishes), and the short-range order leads to a redistribu- 
tion of the population of the "right" and "wrong" branches. 
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Near the point of onset of long-range order ({- ) the 
expression (44) is simplified: 

Substituting (45) into the standard formula for the den- 
sity of statesp(w), we obtain 

The complexity in the exact calculation of the double 
integral in (46) is due to the differing symmetries in k of the 
functions E~ and 7, ; it is the function q k  that determines the 
behavior of the integrand near the Fermi surface. Simplify- 
ing the calculations, in (46) we replace the quantity 7, by its 
value on the Fermi surface, after which the double integral 
reduces to successive integration over the energy E, reckoned 
from the Fermi level, and the polar angle $. Performing the 
first of these, we have 

2 1 2  

wherep(w) is the density of states for a system with a uni- 
form SDW on a square lattice: 

Here, K ( k )  is a complete elliptic integral of the first 
kind. For a qualitative estimate of the dependence p(w) in 
the most interesting range of energies 

l o Y A Z - l l a l  

we use in the integral (47) the simplifying approximation 

sin I$-+$, 

assuming that the quantity 

after this we obtain 

Thus, the transverse spin fluctuations smear out the 
density-of-states singularity at w = + A that would have oc- 
curred in the phase with ideal long-range order when 

At the same time, the gap decreases to the value 

while the temperature dependence of 2& ( T) is determined 
by the corresponding behavior of the correlation length, 
which, in a two-dimensional system, is exponential in T. For 
a quasi-two-dimensional system near the NCel point the 
quantity & (T)  can also have a part with a square-root tem- 
perature dependence. 

5. CONCLUSION 

Thus, a phase of short-range order can exist in systems 
with SDW in a wide range of temperatures above the NCel 
point, irrespective of the degree of saturation of the magnetic 
moment of the sublattice (i.e., both in the band limit and in 
the localized limit). Of course, throughout we have been 
concerned only with systems with weak magnetic anisotro- 
py, and electron-electron interaction has been considered i.1 
the exchange approximation. The inclusion of relativistic 
terms (of the spin-orbit or magnetic-dipole type) can sup- 
press orientational fluctuations for Wan > T$F, where Wan is 
the magnetic-anisotropy energy, and for such systems the 
temperature TN of the establishment of long-range order is - T,,. It is apparently the latter situation that we encounter 
in Cr alloys for a 1Q state with a fixed axis of sublattice 
magneti~ation.~ Nevertheless, a "tail" of a phase of short- 
range order above the Ntel point has been observed both in 
pure Cr (Ref. 17) and in Cr-V  alloy^,'^ although in a sub- 
stantially weakened form (the nominal root-mean-square 
amplitude of the SDW is reduced by a factor of approximate- 
ly five in comparison with the maximum value in the phase 
with long-range order). It may be supposed that a phase of 
short-range antiferromagnetic order will be manifested 
more clearly in complex magnets. In particular, we would 
hope that the above approach will be applicable to systems of 
the type K,NiF,, La,CuO,, and similar systems (see the dis- 
cussion in the review in Ref. 19). 

In the framework of the standard SDW model we have 
shown that above the NCel point the dielectric type of elec- 
tron spectrum is preserved and the square-root singularities 
in the density of states are smeared out. The edges of the 
pseudogap have been determined [see Eqs. (41 ) 1. It should 
also be noted that allowance for the short-wavelength com- 
ponents of the SDW fluctuations, which, in view of their 
smallness, were discarded in our scheme, would lead to the 
appearance of an imaginary part in the poles of the averaged 
Green functions of the band electrons, and, as a conse- 
quence, to smearing out of the edges of the pseudogap by 
virtue of the attenuation. 

An important queestion that has not been touched upon 
in the present paper is that of the description of dynamical 
SDW fluctuations in the phase of short-range order, and, in 
the first place, the construction of an effective Lagrangian 
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from a microscopic model. The solution of this question de- 
pends on the performance of correct averaging over the 
SDW configurations of the two-particle electron Green 
functions in the phase of short-range order. Such averaging 
is in no way trivial, even in the case of band ferromagnetism 
(see the similar paper Ref. 20) with a simple form of electron 
spectrum. 

Of course, the "naive" approach with the introduction 
of an effective quantum Hamiltonian of the quasi-two-di- 
mensional Heisenberg model with an antiferromagnetic ex- 
change integral calculated in the static approximation can- 
not be used seriously in the situation of a band 
antiferromagnet with delocalized spin density. We hope that 
the solution of this problem in the framework of an approach 
analogous to that of Ref. 20 will make it possible to calculate 
the dynamic susceptibility, spectrum, and damping of the 
paramagnons, and other magnetic characteristics, in the 
phase of short-range order with SDW. 

A further interesting problem is the construction of a 
model of short-range order in systems with SDW with other 
than half ( p  = 0 )  filling of the band, and the determination 
of the T, ( p )  phase diagram. 

We must expect an increase of ferromagnetic fluctu- 
ations and an increase of the weight of the corresponding 
configurations in the partition function; structures with 
phase separation into "normal," "ferromagnetic," and "an- 
tiferromagnetic" droplets, and also structures with a modu- 
lated SDW amplitude, are possible. 
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