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We study the transformation of a photon, propagating in a close-packed system of strong 
scatterers (small metallic particles) at frequencies close to the frequency of the dipole surface 
plasmon in an isolated particle, into a standing electromagnetic wave localized in a bounded 
region of space with characteristic size of the order of the wavelength A of the photon (A i. R ~ 6 ,  
R is the particle size, and 6 is the distance between particles). It is shown that the localization is 
due to the distortion produced in the characteristic Rayleigh scattering phase function of an 
isolated scatterer by cooperative interference effects occurring in a system of random close- 
packed scatterers. The scattering phase function which is initially symmetric in the forward and 
backward directions, "swells" into the back hemisphere. Strong localization results in effective 
absorption of light even if the system consists of absolutely nonabsorbing particles. 

1. INTRODUCTION 

The phenomenon of localization of electromagnetic 
waves propagating in a disordered medium is now an inde- 
pendent field of research.' As is well known, weak and 
strong localization are distinguished. Weak localization re- 
fers to interference effects accompanying scattering of waves 
strictly backwards. The trajectory of a photon in this case is 
an infinitely narrow loop and it is impossible to distinguish 
the direction in which the photon goes around the loop. The 
gist of the weak-localization phenomenon, studied, for ex- 
ample, in Refs. 2-7, is constructive interference of the proba- 
bility amplitudes corresponding to the two alternative possi- 
bilities of going around the loop (clockwise and 
counterclockwise) and resulting in an anomalous increase in 
the backscattered signal. 

The phenomenon of strong localization usually arises 
when long-wavelength radiation propagates in a disordered 
system of close-packed scatterers which are small in the 
sense that the radiation wavelength A i. R ~ 6 ,  where R is the 
characteristic size of the scatterers and S is the average dis- 
tance between the scatterers. Since the photon wavelength 
encompasses an entire group of particles, it is impossible in 
principle to obtain information about the trajectory of a pho- 
ton in the system. For this reason, in order to calculate the 
probability W of any electrodynamic process we must first 
sum the probability amplitudes A, of all possible ways by 
which the process can be realized and then calculate the total 
probability as the squared modulus of the total amplitude 
W =  ( Z , A ,  1' and not as the sum of the partial probabilities 
( W =  8, ( A ,  12), as is done in the classical calculation. In so 
doing, so-called cross or interference terms A,AY (i+ j )  ap- 
pear in the expression for the probability of the process. It 
may seem at first glance that because the particles are dis- 
tributed randomly in a region of characteristic size -A the 
phases of all partial amplitudes will be random and there will 
be no interference. This is not the case, however, and there 
exist at least two types of processes the interference of whose 
probability amplitudes is in no way affected by the random- 
ness. First, a photon can pass in the forward and backward 
directions along the same open chain of particles lying in a 
region of characteristic size -A. The phases corresponding 

to these two probability amplitudes are identical and the am- 
plitudes add up. Second, suppose that the photon has a 
looped trajectory. The photon can follow the loops in two 
different ways-clockwise and counterclockwise-which in 
our case are absolutely indistinguishable. The correspond- 
ing probability amplitudes behave in the same manner, since 
the increment to the phase of the photon around the loop is 
zero. The constructive interference of the probability ampli- 
tudes corresponding to the two alternative ways of going 
around a loop gives rise to anomalously strong scattering of 
light into the back hemisphere. This, in turn, stimulates the 
production of new loops on the trajectory of the photon, and 
so on. A kind of feedback mechanism is established, and as a 
result the photon becomes stuck in the system of loops and is 
trapped in a bounded spatial region of characteristic size 
-A. 

This is the gist of the phenomenon of strong or Ander- 
son localization of light (see also Refs. 8 and 9).  

Thus weak and strong localization are both caused by 
the interference of virtual photons going around a loop in the 
photon trajectory. In the first case, however, the entire tra- 
jectory is a degenerate (infinitely narrow) loop, whereas in 
the second case the loops develop on arbitrary photon trajec- 
tories. 

Strong localization of light is a quite capricious phe- 
nomenon and by no means observable in any arbitrary sys- 
tem of scatterers. First of all, the photon elastic scattering 
length I, must be less than the photon absorption length la. 
Recall that I, = (noas ) - ', where 5, is the elastic light scat- 
tering cross section of an individual scatterer and no is the 
number density of scatterers in the system, and 
la = (n,oa ) - I ,  where a, is the corresponding absorption 
cross section. In addition, the elastic light scattering length 
I, must be of the order of the photon wavelength /Z (in the 
case I, %A there is no localization, and the situation I, < A  is 
meaningless ) . 

It may appear at first glance that because of the small- 
ness of the elastic light-scattering cross section of an individ- 
ual scatterer (oS/n-R -- (R /A l4 < 1 ) the parameter 
p = A / I , ,  which determines the probability of strong local- 
ization, remains negligibly small, even with the maximum 
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possible packing factor. This is indeed the case, but the situa- 
tion changes if the frequency of the incident photon is equal 
to the frequency of a characteristic electromagnetic mode of 
an individual scatterer. An example of such a mode is a sur- 
face plasmon, if the individual particle is metallic. Thus, for 
example, at frequencies close to the frequency w, of a dipole 
surface plasmon in a spherical metallic granule 
(w, = 3- "2wo, where wo is the classical plasma frequency of 
the electron gas of the metal) the cross section for elastic 
light scattering by the particle 

has a sharp peak, since for many metals the plasma-reso- 
nance width g is usually - l o p 2  (Ref. 10). In this case the 
parameter p2. (R //1)3f/g2 reaches unity for particles with 
R /A - 10- ' already forf= 10 - ' (j-= 4 n-R 3 n 0 i ~  the parti- 
cle packing factor of the system). The photon absorption 
length I, (a, = 8 g R  3gw4//1 [ (w2 - w: ) 2  + ] re- 
mains comparable to I , ,  i.e., at external radiation frequencies 
of order w, (the optical-UV range of the spectrum) a close- 
packed system of small metallic particles is a suitable candi- 
date for observing the localization phenomenon. Metallic 
particles with such parameters are widely employed in mod- 
ern technologies and their anomalous optical properties are 
the subject of lively  discussion^.'^ 

Our problem will be to calculate the elastic light-scat- 
tering and light-absorption cross sections of close-packed 
particles, taking into account strong photon localization. 
We shall show that a photon entering the system will become 
trapped in a region of characteristic size -A 2.1,. We shall 
find that the physical reason for localization is anomalous 
scattering of light into the back hemisphere by an individual 
scatterer of the system owing to cooperative effects. Photon 
trapping in the system will be formally expressed in the fact 
that the plasmon-polariton mode acquires the character of a 
standing wave. We shall verify this by investigating the law 
of dispersion of a plasmon-polariton. The transformation of 
the external radiation into standing waves results in anoma- 
lously high attenuation of the incident light by close-packed 
particles. The physical reason for the attenuation is accumu- 
lation of energy in the system. 

2. DIAGRAMMATIC REPRESENTATION FOR THE AVERAGE 
ELASTIC LIGHT-SCATTERING CROSS SECTION. BASIC 
EQUATIONS 

In this section we introduce the diagram technique em- 
ployed in the problem, with the construction of the perturba- 
tion series for the differential elastic scattering cross section 
as the example. 

Consider the propagation of a photon with wavelength 
A in a system consisting of a large number of spherical metal- 
lic particles of radius R &. We assume that the average dis- 
tance between the particles is - R .  The photon elastic scat- 
tering amplitude 7, connected with the differential cross 
section of the process da/dnf (nf is a unit vector in the direc- 
tion of the scattered photon) by the relation 

is the sum of the following series: 

FIG. 1. Perturbation-theory series for the average differential photon 
elastic scattering cross section of a system of particles. 

8-e , .  J exp ( - i k l r )  C P,@' (r, r l ) e , ,  exp (ik,rr) dr drr 

D 

x e s p ( i k , r ' ) d r  dr' dr, dr2+.  . . : (1) 

where k is the wave vector of the photon; e is the unit polar- 
ization vector; the indices i and f refer to the incident and 
scattered photons; D o  is the free-photon propagator in a 
gauge with zero scalar potential; Pa is the interaction poten- 
tial between the photon and a particle centered at a point 
with radius vector a; and repeated indices are summed over. 

Neglecting spatial correlations and averaging the 
expression ( 1) over the positions of the particles in the sys- 
tem, it is easy to derive a perturbation series for the averaged 
elastic-scattering cross section (do/dnf). Some characteris- 
tic terms of this series are presented in diagrammatic form in 
Fig. 1. Here the wavy lines correspond to the wave functions 
of the photons e,e * "'; the horizontal lines correspond to 
single-photon vacuum propagators; the dashed lines corre- 
spond to the interaction potential; and, a factor no/( 1 -8 is 
associated with each dot. The connected diagrams in Fig. 1 
correspond to two types of interference processes which oc- 
cur in the system: 1 ) ladder diagrams describe the interfer- 
ence of the amplitudes corresponding to the two ways a pho- 
ton can follow an arbitrary chain of particles belonging to a 

FIG. 2. a )  Characteristic ladder diagram describing two interfering pro- 
cesses-forward and backward passage of a chain of particles in a region 
of characteristic size -A by a photon. b) Characteristic fan diagram de- 
scribing two interfering processes-a photon going clockwise and coun- 
terclockwise around a loop in its trajectory. 
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region of characteristic size -A (see Fig. 2a), and 2) fan- 
shaped diagrams describe the interference of amplitudes 
corresponding to the two alternative ways a photon can go 
around a loop along a self-intersecting trajectory (see Fig. 
2b). The unconnected diagrams (Fig. 1 ), which describe 
coherent scattering of light in the forward direction, do not 
contribute anything because of the random arrangement of 
the particles. As one can easily see, the summation of the 
connected diagrams reduces to the solution, for the two-pho- 
ton propagator, of the Bethe-Salpeter equation, whose ker- 
nel is the sum of the fan diagrams. 

The two-photon propagator K is defined in Fig. 3. Here 
we present equations for the interaction amplitude r ,  the 
photon mass operator Z, the single-photon propagator D, 
and the t-matrix for the scattering of a photon by an isolated 
particle. The idea of the solution of the system of equations 
in Fig. 3 consists of trying to guess the correct form of the 
single-photon propagator D by introducing an unknown pa- 
rameter and then determining this parameter from the con- 
dition that the system be self-consistent. The effective dielec- 
tric constant of the system of particles, which appears in the 
problem in an entirely natural manner, since R (A, plays the 
role of the unknown parameter. Thus the main problem re- 
duces to determining the dielectric constant from the condi- 
tion of self-consistency. The equation for K can be solved 
then, using the explicit form of r and D. 

The two-photon propagator K, in accordance with Fig. 
3, satisfies the equation 

and the interaction amplitude r satisfies the equation 

-- no r.,(r. rf. r. r') =-I 1.; (r, r') t o v a ' ( ~ 7 ) d a  
1 -f 

-I--J taTa(r, rl) 
1-f - 

XDlL (r+. r?)r .b~~(r~,  r', IS, r')DI,R'(r?L, rg)tsl:'(pl r4)drl dr2 drJ drl. 

(3) 

The photon propagator D satisfies Dyson's equation: 

where 

is the free-photon propagator in a gauge with zero scalar 
potential, Z is the photon mass operator defined by the 
expression 

-- - 
+ ~ ~ a 6 0 v ( r , r ' , ~ . ? ) ~ . a ( r 1 . r ) d r '  dr. 

and the relationship between the block 9 and r is given in 
Fig. 3. The equation for the t-matrix for scattering of a pho- 
ton by an isolated particle has the form 

Thus we assume that the photon propagator D in the 
system looks just like the propagator in a uniform effective 
medium characterized by longitudinal E,  and transverse 3, 
dielectric constants: 

Substituting the expression (7) for D into Eqs. (2)-(6) we 
obtain, from the condition of self-consistency, equations for 
Z, and Z, . 

3. SOLUTION OF THE EQUATIONS 

We start with Eq. (6)  for the t-matrix. First we rewrite 
it in the form 

where x = r - a, x' = r' - a, and 

FIG. 3. System of basic equations of the problem. ( 9 )  
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where & ( a )  = 1 - wi/w2 is the dielectric constant of the 
metal; 8 ( x )  is the unit step function; and, ZnS (r,rl) is the 
effective dielectric tensor of the medium 

ta8(r, r1)=ga8(r-r') = (2z)-3J (k, m)exp[-ik(r-r') J dk. 

and is connected with the longitudinal 2, and transverse F, 
dielectric constants by the relation1' 

Using the identity 

where Q(r)  = Irl - ' , it is easy to establish the explicit form 
of 2, (r,r' ), which we shall employ below: 

1 
+-€tV,V~'Q(r, r ' ) .  
4n 

( 1 0 )  

We require the t-matrix inside a particle. For this rea- 
son, for R <A we can drop in the propagator D in Eq. ( 8 )  the 
terms containing the small parameter wR / c  characterizing 
the retardation of the electromagnetic interaction, and we 
represent D in the form 

cZ 
Dae(r. r') = - - VaV@'Q(r, t'). 

e l m z  
( 1 1 )  

Now we seek the solution of Eq. ( 8 )  in the form 

tap (r, r') =Pa8(r, r') +0 (R-r)@(R-r') o2VGVB'F (r. r ' ) .  

After substituting the expressions (9) ,  ( l o ) ,  and ( 1 1 ) into 
Eq. (8) we obtain the following equation for the function F: 

( 1 2 )  

We seek the solution of Eq. ( 12) in the form of an expansion 
in scalar spherical harmonics. In the dipole approximation 
we have 

taaa(r. r')=AO(R-Ia-rI)0(U-la-r'1 )026,p6(r-r'),  ( 1 3 )  

where 

Using the expression ( 13 ) , we rewrite Eq. ( 3 ) in the follow- 
ing form: 

where 

and t = R - Ir - F1/2. The substitution 

- - - - - mbm, (r, r', r, r ' )=15~ ,4~6  (r-r') 6 (r-r') cp(r-r) 

gives the following equation for the function @: 

d' 

ar, at-,' ar, a?,' @ (r, r1 ,Y,7)  

Since the particles are close-packed, the coordinates of the 
single-particle propagators in the equations for K, r, and Z 
are separated by a distance -R. This makes it possible to 
neglect retardation effects in these equations and, once 
again, to represent D in the form ( 1 1 ), as we already did in 
solving Eq. ( 8 )  [as far as Eq. ( 15 ) is concerned, this proce- 
dure can also be used for rarefied systems, since the propaga- 
tors D in Eq. ( 1 5 )  describe the propagation of a photon 
along a loop of a self-intersecting trajectory and their coordi- 
nates are always separated by the distance - R ]  . Taking this 
into account, integrating by parts in Eq. ( 15) ,  and using the 
identity AQ(r)  = - 4?rlrl- ' , we have 

- - - - 
rmbav(r, r'. r. r') =rabnv(r-r, rl-r', r-r') 

where y = 47-r/1Zl IwZ. After substituting 3 into Eq. ( 5 )  and 
switching to the momentum representation in Eq. ( 4 ) ,  we 
obtain for the Fourier transform of D the expression ( 7 ) ,  
where 2 ,  and El satisfy the system of equations 

whereg = f /( 1 -f) and A is defined by the expression ( 14) .  
Thus the problem of determining the effective dielectric 

constant has been solved and we can proceed to Eq. ( 2 )  for 
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FIG. 4. Frequency dependence of the real and imaginary parts of the effective dielectric constants of the system, the wave vector ( K  = k c / w , )  of a 
plasmon-polariton in the system, and the absorption cross section u,/rR per particle. The particle radius R = 300 A, w,R / c  = 0.53, and the packing 
factor f = 0.5 (a),  0.6 (b),  and 0.7 (c) .  

K. It is convenient to seek the solution of this equation in the 
form 

a& - - + L ( r ,  r  r  ) (18) 
are' aFVf 

Substituting the expression ( 18) into Eq. (2) and integrat- 
ing by parts gives 

d' - - 
L ( r .  r'. r, r ' )  

ara anr ai;, arVf 

- - q ( r - 7 )  rp (TI-3 D~~ ( r .  r ' ) ~ ~ '  (& 7) 
~ - y " ( r - T ' ) + ~ ' ~ ( r - F ) / [  1 - ~ ~ c + ? ( r - 7 ) ]  ' 

It is convenient to represent the final expression for K in the 
form 

Xexp ( - - ikr , )  exp[ is(r ,+r , -r , )  ]dk ds q ( r 2 ) ~ ~  ( T I )  
l -Y2q(r1)  

Figure 4 shows the frequency dependences of the dielec- 
tric constants Z, and Z,, calculated in accordance with Eqs. 
( 17), for different packing factors. The figure also shows the 
plasmon-polariton dispersion curve for a system described 
by the relation w = CK/&. 

It is easy to see that as the frequency decreases, renor- 

malization of the photon velocity is replaced by complete 
stopping of the photon-the group velocity d d d k  of the 
excitation becomes zero. The excitation then becomes ill- 
determined (Im k=Re k )  and, finally, the wave vector be- 
comes imaginary, in spite of the fact that the system under 
consideration consists of absolutely nonabsorbing particles. 
The latter fact is not surprising and is reminiscent of the 
behavior of the wave vector in a solid metal at frequencies 
below the classical plasma frequency, when the dielectric 
constant of the metal is negative. The fact that the wave 
vector of the excitation is imaginary in this case is associated, 
as is well known, not with the absorption of the wave, but 
rather with the reflection of the wave and its transformation 
into surface electromagnetic modes. The analogy observed 
in our case is apparently not accidental, since the packing 
density of the particles in the system is sufficiently high for 
some characteristic effects of a continuous metal to be repro- 
duced. 

The appearance of two effective dielectric constants 2, 
and Z, is easy to understand. It  is well known1 that a differ- 
ence between Z, and 2, arises, even in a uniform and isotropic 
medium, when the nonuniformity and nonisotropic nature 
of the system, which are introduced into the problem by the 
wave vector k of the incident electromagnetic wave, are tak- 
en into account. The difference between Z, and 2, is - k L ,  
where L is the characteristic scale of the nonuniformity of 
the system. In the case of the propagation of a photon in a 
finely dispersed medium, such as ours, L - R (R is the radius 
of a particle), kR -R /A  4 1, and the difference Z, - Z, is 
insignificant. In the region of localization we have L - 1, -A. 
For this reason, Z, - 2, = 1-in accordance with the compu- 
tation. 

4. SCATTERING AND ABSORPTION OF LIGHT 

In this section we investigate the effect of localization 
on elastic scattering and absorption of light by close-packed 
metallic particles. 
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We start with elastic scattering. It is obvious that 

where V is the volume of the system. It is curious that the 
integrals in Eq. (20) are nonanalytic functions of the direc- 
tion of scattering. We now verify this by calculating as an 
example the contribution of the second term on the right- 
hand side of the expression ( 19) for K in (da /dnf ) .  Carry- 
ing out the trivial integration over r,, we have 

xexp[ik(r,-r,) ] dk. (21 

An obvious symmetrization puts the integral over the mo- 
menta in the expression (2 1 ) into the form 

The last expression is not defined at ki = - k f .  This corre- 
sponds to strictly backward scattering. In this case, when 
integrating over the momenta in the expression (21 ), it is 
convenient to use the formula 

(2n) -" hak&akv elkr dk=6 (r) [ 4  (na~6,+nal~,6fiv+nanv6fia) 
kc 

where n = r/r.  
As a result of such calculations the per-particle differ- 

ential elastic light-scattering cross section is found to be 

where a3= 18gl [3(&-2,)  - (E, - Z f ) ] / [ 3 ( ~ + 2 E , )  
+ 8(E, - E,  ] 1 2 .  The first integral in Eq. (22) for a < 1, just 

as the second integral for a < 2 - is 

3'I2a (st--s2) 
X arctg 

2 +a (s,+s,) 

Correspondingly, for a > 1 and a > 2 - 

and for a = 1 and a = 2 - both integrals are equal to 
4 (4 In 2 - 1/2). Here s,,, = [2 - a3 + 2(1 - a 3 ) ' I 2  ]'I3, 
y, = 2a cos 8 /3, y,,, = - 2a cos 8 + ~ / 3 ,  8 = arccos 2 
- a3/a3 for the first integral and slS2 
= [ 1 - a3 (1 - 2a3) l"] 'I3, y, = 2a cos 8/3, y2,3 
= - 2a cos 8 ~ / 3 ,  0 = arccos 1 - a3/a3 for the second 

integral. 
The second term on the right-hand side of the expres- 

sion (22) is the sum of fan diagrams and the third term is the 
sum of ladders, each step of which is a sum of fans. The fan 
diagrams, as we know, describe the interference of the prob- 
ability amplitudes corresponding to the two alternative ways 
a photon can go around a loop in a self-intersecting trajec- 
tory. The ladders describe the interference of the amplitudes 
corresponding to forward and backward passage of the same 
open chain of particles by the photon. Both interference pro- 
cesses are constructive: In the first case the change in phase 
of the waveSunction of the photon going around a loop is 
Aq, = $R.d 1 = 0 (Ref. 12) and in the second case the phases 
of both virtual photons are identical. The anomalous per- 
particle scattering of light of both polarizations, which is 
associated with the interference, under conditions of close 
packing is shown in Fig. 5, where we resolved the scattering 
phase function into a sum of three components: 1 ) Rayleigh 
scattering by an isolated particle, 2) contribution of fans, 
and 3 )  contribution of ladders whose steps are sums of fans. 
It is clear that the enhanced light scattering into the back 
hemisphere for the packing factors under consideration is 
determined by the fans (analysis of the expression (22) 
shows that as f-0 both ladders and fans make the same 
contribution to the scattering phase function). 

It is now clear that the physical reason for photon trap- 
ping in the system (see the preceding section) is precisely the 
anomalous scattering into the back hemisphere, owing to the 
interference phenomena associated with the loops in the 
photon trajectories. This anomalous scattering stimulates 
the formation of new loops in the trajectories, and so on. A 
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feedback mechanism arises in the system, and this is what 
leads to the autolocalization of the excitation and the trans- 
formation of the excitation into a standing electromagnetic 
wave. 

The phase function for scattering strictly backward 
merits a separate analysis. The slit and cog, which are pres- 
ent in Fig. 5 and which are characteristic for the scattering 
phase function forp- and s-polarized light, respectively, have 
a simple explanation. Figures 6 and 7  each show two loops of 
the photon trajectory, the first of which is characteristic for 
scattering strictly backward and the second is characteristic 
for scattering of a photon into the back hemisphere exclud- 
ing the strictly backward direction. 

In the case of the scattering ofp-polarized light with a 
dumbbell-shaped Rayleigh scattering phase function by an 
isolated particle, in the first case partial loss of radiation on 
the last particle of the loop occurs, while in the second case 
there are no such losses. This is the reason for the slit in thep- 
scattering phase function. The situation is different in the 
case of the scattering of s-polarized light with a spherically 
symmetric phase function, typical of an isolated particle. In 
the case of scattering strictly backwards along the axis of the 
loop (see Fig. 7 )  there is a narrow channel in which radi- 
ation scattered by each particle in a narrow cone near the 
axis of the loop accumulates. In the presence of any devi- 
ation, however small, from the direction of strictly backward 
scattering, the channel collapses. This is the reason for the 
appearance of a cog in the s phase function. 

We now calculate the absorption cross section. Within 
the theory of linear electromagnetic response the cross sec- 
tion for the absorption of a photon of frequency w is related 
with the imaginary part of the Fourier transform of the den- 
sity-density correlation function of the system 

where 
m, 

n,,.(i-.rt)=i J ( ~ p ( r .  T ) ~ . ( ~ ~ . o ) ) c ~ ~ ~ ~ T .  

1 

FIG. 5. Angular distribution of the intensity of p- and s-polarized light 
scattered by a particle in the system under conditions of strong localiza- 
tion Cf= 0.2, d o ,  = 1.4). The dashed curves are the Rayleigh scattering 
phase function and the solid curves are the contribution of the ladders (at 
the center) and the total phase function. 

FIG. 6.  Elucidation of the origin of the slit in the phase function for 
scattering of p-polarized light by a system of particles. 

p ( r , ~ )  is the Heisenberg electron-density operator, T is the 
time-ordering operator, and the averaging is performed over 
the ground state of the electron gas of the particles of the 
system. It is easy to rewrite the expression (23) in terms of 
the photon mass operator defined in Fig. 3: 

-!- J 2," (r, r ,)  D,.. (I,, r..) L..(fi. r f )  dr,  d h }  

Xexp [ -ik(r-r' ) ]dr dr' 

Simple calculations in the spirit of those recently performed 
give for the per-particle cross section the following expres- 
sion: 

Here terms - (wR / c ) ~ ,  associated with the retardation of 
electromagnetic interaction or with the escape of energy to 
infinity owing to the coupling of longitudinal and the trans- 
verse fields in a nonuniform system, have been dropped. The 
frequency dependence of the absorption cross section is pre- 
sented in Fig. 4. Recall that the particles under considera- 
tion are nonabsorbing and all absorption, which is very large 
according to the measures adopted, is due exclusively to the 
localization phenomenon. One feature of the frequency de- 
pendence of the absorption cross section is its double-hump 
character. The point is that at the point where dw/dk = 0 
and the plasmon-polariton in the system becomes a standing 
wave, the concept of photon motion around loops itself be- 
comes meaningless, i.e., the physical reason for localization 

FIG. 7. Elucidation of the origin of the cog in the phase function for 
scattering of s-polarized light by a system of particles. 

854 Sov. Phys. JETP 75 (5), November 1992 Maksirnenko et a/. 854 



FIG. 8. Light-absorption cross section per particle in 
the system and associated with strong localization as 
functions of the packing factor and the frequency of 
the incident radiation. 

vanishes. Correspondingly, at this location a dip appears in 
the absorption. The appreciably weakened character of the 
absorption at frequencies below the point dw/dk = 0 is asso- 
ciated with the indefiniteness of the plasmon-polariton in 
this region (Re k < Im k) .  

The expression (24) is noteworthy in one other respect. 
The absorption cross section per particle depends on the par- 
ticle concentration (see Fig. 8) .  This is associated with the 
contribution oftwo- head, three-head, and so on diagrams in 
the photon mass operator. This is explained by the fact that 
the higher the particle concentration, the more loops form 
along the photon trajectory and therefore the stronger the 
localization. It is interesting (from the standpoint of practi- 
cal applications) that the f-dependence of a, has a maxi- 
mum, i.e., for each fixed wavelength there exists a packing 
for which external radiation is absorbed most effectively. 
The reason for the maximum is quite understandable, since 
for sufficiently large f localization effects vanish completely 
and the electrodynamic properties of the particle approach 
those of a continuous metal. Effects of this type should also 
be manifested in the breakdown of Bouguer's law, i.e., the 
light attenuation coefficient of a close-packed dispersed sys- 
tem should depend on the thickness of the sample (so-called 
mesoscopic effect). The physical reason for this is the same: 
the longer the optical path of the photon in the dispersed 
system, the more loops can form along the photon trajectory. 
Near localization thresholds the absorption cross section ex- 
hibits a characteristic nonanalytic behavior as functions of 
both f and w (see Fig. 8) : 

oa .c( j ' - j : '4 for f<y and o,=O for f>f', 

ua a (a'-o) ' I  for o<o' and o,=O for o>o' 

-as expected result of the scaling approach to the problem. 

5. CONCLUSION 

The aim of this paper was to elucidate the mechanism of 
strong localization of light in a dispersed medium. We estab- 
lished that this phenomenon is associated with the loops that 
form in photon trajectories. If a photon forms a loop, then 
the interference of the probability amplitudes corresponding 
to the two possible ways of going around this loop-clock- 
wise and counterclockwise-intensifies light scattering into 
the back hemisphere. This stimulates the formation of new 
loops in the trajectory, and so on. As a result the photon is 
trapped in a spatial region of characteristic size -A= I , ,  
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forming a standing electromagnetic wave. 
Loops are not always formed on the photon trajectory. 

In order for loops to form, the photon elastic scattering 
length I ,  must be of the same order of magnitude as the pho- 
ton wavelength A. In a system of close-packed ultradispersed 
metallic particles, with which we are concerned, I,  )A al- 
most always. The range of frequencies near the frequency of 
the dipole surface plasmon in an isolated particle, where I,  
decreases in a resonance fashion, is an exception. This reso- 
nance plays the role of a primer that initiates the localization 
process. 

Strong localization is manifested in experiment primar- 
ily as anomalous light attenuation by the system. This anom- 
alous attenuation is associated with the accumulation of 
electromagnetic radiation in the form of standing waves in 
the system. In addition, the light attenuation coefficient of a 
dispersed system starts to depend on the sample size, i.e., 
Bouguer's law breaks down. 

It is interesting that the phenomenon of strong localiza- 
tion of light, at first glance, already appears in the mean-field 
theory. Indeed, the standard mean-field theory is obtained 
from our calculations, if the calculations are limited to the 
single-site variant of the coherent-potential approximation, 
i.e., the multihead diagrams in the perturbation series for the 
photon mass operator Z are neglected. In this case 
E ,  = 2, = 2, and the equation for E can be easily derived from 
Eq. ( 17) and has the form 

This equation is reminiscent of Bargmann's well-known 
equation for the effective dielectric constant of a dispersed 
medium." if we set E = 1 - mi/w2, then in spite of the fact 
that a metallic particle in this case is absolutely nonabsorb- 
ing, it follows from Eq. (25) that in a definite region off and 
w the dielectric constant E will be complex, i.e., there arises 
some mysterious absorption or attenuation of radiation in 
the system. The reason for this, however, is quite prosaic and 
is totally unrelated to strong localization. Thus if we write 
the average amplitude of forward scattering of a photon as 

( r ( O )  )=e,, J csp ( - ik , r )  t,, (r,  r' )e,, exp  (iktrl)dr dr' 

+e , ,  3 C S P ( - i k , r ) t , , ( r .  r , ) D , , ( r , ,  r Z ) L T V ( r ~ , r t )  

Xexp ( i k , r l ) e , ,  dr dr , ,  dr, dr' ,  
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then after simple calculations we will see that ( Y ( 0 ) )  = 0. 
Therefore the optical theorem completely forbids any at- 
tenuation of light in the system and the nonzero absorption 
is related exclusively with the deficiencies of this approxima- 
tion. As we can see, different considerations must be invoked 
in order to explain the true reason for the absorption. We 
wish to say a few words about the validity of the approxima- 
tions which we employed. We neglected correlations in the 
spatial arrangement of the particles. Taking such correla- 
tions into account does not lead to qualitatively new phe- 
nomena pertaining to localization. Systems with long-range 
correlations, for example, fractal clusters, are an exception. 
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