
Surface conductivity of a metal: no-T analysis 
M. I. Kaganov, G. Ya. Lyubarskii, and J. Czerwonko 

Kapitsa Institute for Physical Problems, Russian Academy of Sciences, Moscow; Physicotechnical Institute, 
Ukrainian Academy of Sciences, Khar 'kov; and Instytut Fizyki, Politechnika Wroclawaska, Poland 
(Submitted 2 April 1992) 
Zh. Eksp. Teor. Fiz. 102,1563-1570 (November 1992) 

By including ap-scattering gain term in the collision integral, the near-surface conductivity u(z)  
is calculated for electrons reflected diffusely from the surface z = 0 of a bulk metallic sample. The 
mean-conductivity correction for a plate of thickness D)  I, where I is the mean free path, and the 
asymptotic behavior of u(z) forz) I are evaluated. It is shown that the average probability for 
scattering from the boundary is influenced by the nature of the collisions in the bulk of the metal. 

Most of the studies on the electrical conductivity of thin 
metallic plates focus particular attention on the interaction 
between the electrons and the sample surface.'-5 When the 
plate is very thin as compared to the loss-related electron 
mean free path I ( D 4  1 ) then the scattering of electrons by 
surface roughnesses is the dominant dissipation mechanism. 
Even then, however, it has been shown6 that bulk collisions 
contribute to more than just the loss lifetime r = I /vF, thus 
rendering the .r approximation suspect. The thin-plate 
( D g l )  conductivity formulas of Ref. 6 were derived for ex- 
tremely degenerate electrons with an isotropic dispersion 
law under the assumptions ( i )  that the (bulk) electron scat- 
tering probability W(8) is an arbitrary function of the angle 
8, and (ii) that the scattering of an electron from the (inter- 
nal) surface of the sample is described by the Fuchs param- 
eter' generally dependent on the electron incidence angle. 
One important result of Ref. 6 is that 5, conductivity aver- 
aged over the thickness admits of no general formula of the 
tY Pe 

a=of(l/D), 

where u is the "usual" bulk conductivity as calculated for 
D /I+ oo , see below. Even for D 4 I, it is shown6 that the func- 
tion f depends on quantities associated with the gain (or 
inscattering) collision term inherently neglected in the rap-  
proximation. 

Recently,' our study of the surface impendance < of a 
metallic half-space revealed a very similar feature. It was 
found, namely that in contrast to normal skin-effect condi- 
tions, the mean-free-path dependence of is not obtainable 
by simply replacing I by the transport mean free path I,, . In 
the anomalous skin-effect regime, the surface impedance de- 
pends both on 1 and on some quantity related to the gain term 
of the collision integral. Notably, though, bulk collision 
characteristics are totally absent from the surface imped- 
ance expression in the extreme anomalous limit as I /S -. oo , 
where S = c / ( 2 ~ u w )  'I2, c the speed of light and, w the elec- 
tromagnetic wave frequency. 

The present analysis examines the propagation of near- 
surface direct current in a metal and follows Ref. 7 in assum- 
ing that the conduction-electron gas is degenerate and iso- 
tropic, and that, furthermore, 

Let the metal occupy a half-spacez > 0. From the condi- 
tion 

rot E=O 

it follows that 

E,=const, 

where a = x,y. To linear order in the electric field E, it is 
shown in Ref. 7 that the nonequilibrium part fl of the elec- 
tron distribution function may be written as 

where fF is the (equilibrium) Fermi function and x(z,I?) 
satisfies the equation 

In the above, I? and p are the spherical angles in the electron 
p space, the angle I? is measured from the z axis (alias the 
surface normal), and the x axis is directed along E. Using the 
S-function approximation for - (dfF/d&), the electric cur- 
rent density is found to be'' 

Now since the influence of the boundary is not felt in the 
sample interior (z) I), we may write 

which when combined with (3) and (4)  yields 

jm=orrE, 0,~=ol( l-u/3) .  (5) 

If we let 

~ ( 2 ,  6)=~m(+)+$(z. 6.1, 

x, (6 )  =El,, sin 8. L,~=l/(I-a/3). 

then $(z,I?) satisfies the equation 

with the boundary-induced current-density perturbation in 
the right-hand side. Note that 
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l m  j lim q ( z )  =0. 
2- m 2 - m  

is determined for D) 1 by the integral 

Thus far, the boundary conditions to be satisfied by the 
electron distribution function at z = 0 have not yet been dis- 
cussed. While in the specular-reflection limit the near-sur- 
face conductivity does not differ from its bulk value, diffu- 
sive reflection naturally maximizes this difference.' We 
accordingly assume that the electrons are reflected diffusely, 
so that 

where 

In fact, 

x (0 .6)  =0 for cos OGO. (9) 

From Eqs. (6)  through (9) ,  

sin 6 [ 5 J [ j ( z ) - j m ]  - eap ( - *) dzl cos 8 1 cos 6 
the last approximation being valid if D) I. The correction is 
exponentially small [i.e., a e - "" ) 1. In writing ( 14), diffu- 
sive reflection from both sides of theplate have been assumed. 

C) For a values lying in the range la1 < 1 but otherwise 
arbitrary, Eq. ( 11 ) does not contain any small quantities 
capable of providing an approximate solution to the prob- 
lem.2' This is most readily shown by chaning to the dimen- 
sionless variable 

I .  Z 
-EL,, exp(-  - ) sin 6. cos 6>0. 

$(z.6)= 1 cos 6 

sin 6 1 e![j(z)-jmj- Icos61 

1 cor 6<O.  

and introducing a dimensionless function v(5) such that Using the definition (3 ) [see also (6)  1, an integral equation 
for the current density j(z) may no be derived. Noting that 
the electric field is independent of z, it is helpful to introduce 
the specific conductivity The function v(c) satisfies the equation 

o ( 2 )  = j  ( z )  IE. 

which satisfies the integral equation 

in which 

3 K(G) = - J (s-l-s) e-,"" ds, 
4 0 - 3 - - - a,, J sin.' fl exp ( - L) cia. 

0 
1 cos B 

and which does not contain any parameters other than a. 
Once ( 16) is solved, the mean conductivity follows as 

where we have defined 

3 sin36 
X(Z) =- 4 J---eap( , cos B - X ) d 6 .  

1 cos 6 
according to ( 14) and ( 15 ), and the asymptotic behavior of 
the current density j (z)  for z )  1 is found from There are several points which must now be made: 

a )  it is only because of the gain term present in the colli- 
sion integral that the above equation for u(z) is of integral 
form; for a = 0, 

.,I2 The steps of the derivation are outlined in the Appendix, and 
here we only quote the results. 

Let us introduce the notation 
(-f&-) do]. (13) 

b)  the correction to the thickness-averaged (or mean) 
conductivity 

for the integral in (17). The asymptotic form of v(5) for 
c) 1 is 
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C (z)  = 1 v (t j elwc d6 
0 

163 1-a/3 dx 
H ( a )  = -- e r p { L  J - arotg (D (x, a)}. of the required function u(E) is known: as implied by ( 17), 

3 (I-a/2)? n ,  z+l  the mean conductivity is determined by E(0). To obtain the 
(20) asymptotic form of v([) it is convenient to employ the inver- 

sion formula 
The function Q,(x,a) in (19) and (20) is given by - 

(21) As we will see, E(x) may be analytically continued to the 
lower half-dane with a branch cut ( - ico, - i), the point 
x = - i appearing as a branch point for E(x) . Let E(x + 0)  

If A ( a )  and B(a) may be obtained and u(% - 0) be the values of ;(%) on the right and left rims 
For a = O  they are both nonzero: A(0) = 1/3, of the cut, respectively. By deforming the integration con- 
B(0) = - 16~r/3. tour in (23) we then obtain 

DISCUSSION 

Because of the absence of any limiting cases to consider, 
the present formulation not only necessitates, not unexpect- 
edly, that some amount of numerical work be done [to calcu- 
late A ( a )  and B(a ) ,  to be specific], but also leads to results 
which, on the face of it, do not differ qualitatively from their 
7 approximation counterparts: For a = 0, for example, the 
ratio 

I J ( ~ )  = 3 [ F ( ~ + o )  - F ( ~ - o )  ~ e - ' ~ ~  dc.  
- i  

The asymptotic properties of this type of integral are known 
to be determined by the behavior of the pre-exponential near 
x =  - 1 .  

2. The Fourier transform E(x) of u(<)  can be obtained 
by applying the standard Wiener-Hopf method with the re- 
sult that 

is again inversely proportional to the plate thickness D, and G(x) =H (z)esp(-G+(z) ). (24) 
the asymptotic behavior of u(z) for z) I is the same for all in 
a ;  as implied by (20), the a dependence only enters through where 

the factor B ( a )  . ,e -bw 

In our view, however, the results are important in that H ( Z ) = ( ~ X L ) - ~  1 ~ ~ X ~ I ( G - ( Z )  )Q(z) .  1m x > - F .  
they predict the surface scattering intensity to depend sub- - I L - a  5-% 
stantially on the nature of bulk collisions. Rewriting ( 17) as (25) 

we see that the second term in l/Tmay naturally be thought 
of as the surface scattering probability per unit length and 
that, importantly, it is quite a dependent. If thep-scattering 
contribution happens to depend on temperature T, this will 
add-through a-to the temperature dependence of 1/T. 

It should be emphasized that the a dependence of sur- 
face impedance parameters is virtually unpredictable and 
may hardly be "guesstimated" (see Ref. 7). It must be ad- 
mitted therefore that when posed for a specific metal, the 
problem can only be treated with approximate models and, 
most important, depends on numerical work for its solution. 
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The (positive) quantity E is sufficiently small that the strip 
I ImxI < E contains not even one zero of F(c) .  The function 
F(5) is defined by 

and E ( x )  is the Fourier transform of the integral kernel 
K G ) ,  

APPENDIX i 

3 I-sZ 
1. Both of the problems in the text are simply solved if ~ ( z )  =- j- ds. 

the Fourier transform 2 ,, 2+x2s2 
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3. The expression (24) for Z(x) is conveniently simpli- 
fied by performing the analytic continuation of E ( x ) ,  Q(x), 
F(x) ,  and G, (x) .    he function K(x )  as defined by (29) is 
analytic in the complex x plane with cuts ( - im, - i)  and 
(i,i w ). For x > 1 we have the Laurent expansion 

which converges in the ring 1x1 > 1 and defines in it an ana- 
lytic function K+ (x )  identical to x ( x )  for 

Ifx < - 1, z ( x )  is described by another Laurent expansion, 

The functions K+ (x) [K- ( x ) ]  may be analytically 
continued to the entire right [left] half-planes by setting 

From the definition of the functions K, (x)  we see that 

The last relationship enables K+ ( x )  and K- ( x )  to be ana- 
lytically continued to the complex x plane with a cut 
( - i,i). 

The functions 
a 

Fe(x)=l  --K,(x) 
3 

(34) 

are analytic in the same region as K, (x ) .  
The functions G, (x)  are analytic in the respective 

half-planes Imx > - E and Imx < E and may be analytically 
continued since 

G, (z )  -G- (z) =ln F ( x )  . (35) 

This analytically continues G+ (x )  [G- ( x )  ] to the lower 
[upper] half x plane with a cut ( - im, - i )  [i,ico 1, and we 
note that 

The way it is defined in (26), the function Q(x)  is ana- 
lytic in the x plane with a cut ( - i ~ ,  - i ) ,  and the differ- 
ence of the values of Q(x)  on both rims of the cut is 

With the results above, the integral (25) can be written 

following the same argument as in Ref. 7. 
From (32) it follows that 

which when combined with (32) automatically provides an 
analytical continuation of H ( x )  and E(x) to the x plane with 
acut  ( - im,  -i). 

4. We now evaluate ii(0). From (24) and (38 ), 

Now from (27) we have 

The last integral can be written in the form [see (21) ] 

1 at 
G+'(O) = -I - arctan @ ( t ,  a), 

Jl , t ?  

which when substituted in (40) yields ( 19). 
The asymptotic behavior of v ( g )  is obtained by first 

deforming the integration contour in (23) to give 

From (33), (35), and (36) we get 

Near x = - i we have 

Now 

Hence 

v (x-0) -5(x+O) = (x+i) B ( a ) ,  

where B ( a )  is given by (20) and (21) in accordance with 
the asymptotic equation in the text. 

"In the conventional notation, n is the electron density, p,  the Fermi 
momentu, e the electron charge. 

"See Ref. 7 where the presence of the skin depth 6  in the problem enables 
two limiting cases, I(6 and lS6 ,  to be considered. 
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