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The study of nonlinear dispersing waves in a magnetized plasma is a vital topic in theoretical 
physics. Its importance is due for the most part to the variety of its physical application, 
noteworthy among which are interplanetary shock waves and nonlinear Alfven waves in solar 
wind. 

The use of exact analytic methods to solve problems of 
dispersive magnetohydrodynamics was restricted until re- 
cently to several classical equations, such as the Korteweg- 
de Vries (KdV) equation and its modification (mKdV) or 
the nonlinear Schrodinger equation (NSE). These equa- 
tions can be derived using the standard procedures of ex- 
panding in powers of the nonlinearity ( KdV and mKdV) or 
the method of multiscale expansion of the NSE from exact 
systems of equations describing the dynamics of a magne- 
tized plasma. 

Whereas, however, wave propagation at relatively large 
angles to the magnetic field is well enough described by sin- 
gle-wave equations (KdV for magnetosonic waves and 
mKdV for Alfven waves), the quasilongitudinal state turns 
out to be degenerate (Ref. 1, Sec. 69): in the limit of ideal 
magnetohydrodynamics, the two linear waves move with 
near-Alfven velocities and differ only in polarization. Joint 
propagation of such waves under conditions of weak nonlin- 
earity and dispersion (which lift the degeneracy) are de- 
scribed by a nonlinear Schrodinger equation with a deriva- 
tive (DNSE). 

A DNSE describing degenerate Alfven waves was first 
derived2 by using kinetic theory. A simpler derivation of 
DNSE from the equations of two-fluid dispersive magneto- 
hydrodynamics, with electron inertia neglected, was pro- 
posed la te~- .~  It should also be noted that the DNSE describes 
not only dispersing quasilongitudinal MHD waves, but can 
also be derived as a universal equation for the envelope if the 
quadratic response of the medium is not uniform (see the 
Appendix ) . 

The DNSE is an equation that can be exactly integrated 
by the inverse-scattering-problem method (ISPM) . The 
corresponding inverse scattering transformations were ob- 
tained in Refs. 4 and 5 for DNSE with decreasing as well as 
do nondecreasing initial conditions at infinity. 

In addition to the ISPM, Whitham's averaging method6 
is being used of late to investigate nonlinear equations with 
dispersion. Integration of Whitham's modulation systems 
yields in a number of cases more effective results than the 
ISPM. The most interesting case of this kind is that a nondis- 
sipative shock wave (NSW) in the form of an expanding 
region filled with nonlinear small-scale undamped oscilla- 
tions. This problem was first considered by Gurevich and 
Pitaevskii (GP) in Ref. 7, where an exact solution was ob- 
tained for self-similar decay of an initial discontinuity in 
KdV hydrodynamics. An analogous solution for NSE was 
obtained in Ref. 8. 

An important property of Whitham-modulation sys- 
tems for KdV and NSE is the presence of a diagonal (Rie- 
mann) f ~ r m . ~ , ' ~  An effective theory for the integration of 
such systems exists at present1'-l6 and is made essentially 
feasible by a generalization of the classical hodograph meth- 
od to include the multidimensional case (in the space of in- 
variants). 

A modulation DNSE system in Riemann form was ob- 
tained in Ref. 17 and was found to be identical with the NSE 
modulation system (this was not noted in the cited refer- 
ence). This makes many NSE results for DNSE; a difference 
occurs only in the stage of recalculation to physical variables 
and interpretation of the resultant equations. 

There are, however, important differences due primar- 
ily to the presence of a wide instability region in the DNSE 
system. The modulation system in this region is elliptic.18 
The present paper is devoted to an investigation of the stable 
(hyperbolic) region in which the DNSE has properties indi- 
cative also of other dispersion-hydrodynamic systems. The 
general analysis presented in Sec. 1 shows that in contrast to 
the NSE, which describes two identical waves having posi- 
tive dispersion and propagation in opposite directions, 
DNSE hydrodynamics contains two opposite-dispersion 
waves propagating in the same direction, with the wave with 
the positive dispersion propagates ahead of the negative. 
Comparison with formal limiting cases, in which DNSE 
goes over into KdV and mKdV, makes it possible to identify 
the waves as magnetosonic and Alfven, respectively. 

The nondispersive limit in DNSE hydrodynamics is 
equivalent to ideal Euler hydrodynamics with y = 2. Both 
Riemann invariants are positive, ensuring that the system 
has modulation stability and real physical variables (trans- 
verse-magnetic-field energy density and polarization angle). 

In Sec. 2 we use Whitham's method to average the 
DNSE over the period of the stationary wave, and express 
the modulation system in Riemann form. In Sec. 3 we obtain 
for the G P  problem solutions that describe self-similar Alf- 
ven and magnetosonic NSW. We show that a fourfold jump 
of the magnetic-field energy produces on the solition front of 
a magnetosonic NSW a singularity wherein phase conjuga- 
tion of the NSW sets in. Section 4 is devoted to a classifica- 
tion of various decays of the initial discontinuity in disper- 
sive DNSE dynamics. 

1. DNSE. DERIVATION AND ELEMENTARY PROPERTIES 

a)  The proposed brief formal derivation of DNSE for 
quasilongitudinal dispersive MHD waves is close to the one 
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described in Ref. 3. Consider the one-dimensional dynamics 
equations of a quasineutral two-fluid plasma in a constant 
magnetic field Bx : 

1 B,' 
a,p+rt.(p~,)=o, ;i,r.+v,d,u, + - ax(p + -) -0. (1)  

P 8n 

Here B, = (By ,B, ) and v, = (vy,vx ) are the transverse 
magnetic field and the hydrodynamic velocity, p is the hy- 
drodynamic density, P/pY is the adiabatic equation of state 
and is assumed to be the same for electrons and ions, mi is 
the ion mass, and ex is a unit vector in the direction of the x 
axis. 

The system ( 1 ) describes nonlinear dispersing waves in 
a magnetized plasma, with the electron inertia neglected. 
Allowance for the ion inertia in the generalized Ohm's law 
leads to a dispersion term in the equation for the transverse 
magnetic field. By changing to the Lagrangian independent 
coordinates (x,, t ) ,  wherex, is the coordinate of the particle 
at a fixed instant of time to, we can eliminate all the velocities 
from the system (1) (see, e.g., Ref. 19) and write instead 

Here N = p,/p andp, is the density in the unperturbed state; 
all the quantities are renormalized to their characteristic val- 
ues: the independent spatial and temporal variables are re- 
normalized to a;' and c,fl;' respectively, where 
ni = eBx /mc is the ion-cyclotron frequency and c, = B, / 
4?rp,) ' I 2  is the Alfven velocity; the magnetic field is renor- 
malized to a constant value Bx : 

the hydrodynamic pressure is renormalized to B f /4?r. 
Linearizing Eqs. (2) and (3)  with respect to N = 1 and 

b, = b,, we obtain a dispersion equation that describes six 
waves: fast and slow magnetosonic waves and an Alfven 
wave, all propagating in the positive and negative directions. 
It is known' that in the ideal MHD limit one magnetosonic 
wave moves in the case of longitudinal propagation with ve- 
locity c, a fast magnetosonic wave (if c, > c,, where 
c, = [ (aP/dp),, ] ' I 2  is the speed of sound, this is a fast mag- 
netosonic wave, and a slow one if c <c, ), and the waves 
differ only in polarization. To describe the dynamics of such 
a two-wave system, with allowance for weak nonlinearity 
and dispersion, it is necessary to change to a reference frame 
moving with Alfven (unity) velocity 7 = x, - t and intro- 
duce a "slow" time T = ~ t ,  where E is a small nonlinearity 
parameter. Representing the dependent variables as asymp- 
totic series in E: 

we obtain from (2)  the relation 

Eliminating N from (3)  and putting E = 1, we arrive at a 
nonlinear Schrodinger equation with a derivative 

where 

The f signs correspond here to left- and right-hand polar- 
ization. Clearly, in quasilongitudinal propagation the wave 
polarization is close to circular. From the foregoing conclu- 
sion, however, it is clear that DNSE describe also elliptically 
polarized waves propagating at an angle to the magnetic 
field. It is important only that the quantity 

~-.(b,I~-b,oZ, 

where b,, is the value of the field at infinity, be small enough. 

b) Dispersive-hydrodynamic representation and linear 
waves 

Consider, to be specific, a DNSE with b,, = 0 (change 
to a moving coordinate system), p = 1 (left-hand polariza- 
tion), and a > 0 (fast magnetosonic wave). The case a < 0 
reduces to the studied one by reversing the coordinate, 
7- - 7, while the case p = - 1 reduces to inversion of 
both the coordinate and the time 

We introduce the normalization 

Equation (4)  takes then the form (we reintroduce for conve- 
nience x and t in place of T and 7 

The change of variables 

b=w'I1 e x p  (i€t), u=a,0 

reduces Eq. (5) to a dispersion-hydrodynamic system [cf. 
Ref. 8):  

The variable w has here the meaning of the energy density of 
the transverse magnetic field, while the quantity u is indica- 
tive of the change of the polarization angle 6 along the wave 
( u > 0 in the investigated case of left-hand polarization). An 
important property that distinguishes (6) from NSE-hydro- 
dynamicss is the non-invariance to the Galileo transforma- 
tion: 

x+z -c t .  u-+u+c. 

The linear waves of the system (6)  are characterized by the 
dispersion relation 
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where w is the frequency and k the wave number. Relation 
(7) can be equated to the NSE8 dispersion relation by the 
substitutions 

There is, however, an important difference between the lin- 
ear waves in the NSE and DNSE cases. The f signs in the 
NSE dispersion relation simply correspond to different wave 
propagation directions relative to a uniform flow with veloc- 
ity v,, (which can always be assumed to be zero by virtue of 
the Galilean invariance). These waves have identical prop- 
erties (in particular, a dispersion of the same-positive- 
sign). In fact, the NSE 

is invariant to the transformation x- - x. The DNSE, on 
the other hand, has no such invariance, so that waves corre- 
sponding to opposite signs in the dispersion relation (7)  are 
not equivalent and have dispersions of opposite sign. 

C) Nonlinear nondispersive limit 

The dispersion term with the highest-order derivative 
can be neglected in the second equation of (6) in the case of 
sufficiently smooth large-scale motions. The corresponding 
ideal hydrodynamics is equivalent to Euler hydrodynamics 
with density 

p= (w-u) rr,. 

velocity 

and equation of state 

It will be more convenient to continue using the invariant 
Riemann representation of the hydrodynamic equations: 

a,r,+ 1-, ( r )  a,r,=O. (8) 

where the relations between the invariants r ,  and the char- 
acteristic velocities V ,  ( r )  are 

Evidently, the structure of Eqs. (8)  depends on the relation 
between w and u. If w < u the invariants and the velocities are 
complex, and the system (8)  is elliptic and describes the case 
of modulation instability.18 Here we confine ourselves to the 
study of a steady (hyperbolic) case. The hyperbolicity con- 
dition is 

It follows then from (9) that in the investigated region we 
have r+ ) r -20 ,  V + )  V - 2 0 ;  i.e., both waves propagate in 
the positive direction. We present now expressions for the 
physical variables w and u in terms of the Riemann invariant 
which we shall need below: 

d) Nonlinear small-amplitude weakly disperslve waves 

Formal asymptotic expansions in the small parameter S 
near the hydrodynamic simple wave with r = const, viz., 

lead, when substituted in (6), to a KdV equation with posi- 
tive dispersion: 

which describes fast magnetosonic waves. 
The expansions 

w'"=w,'"+da, (T. 9)+62a, ( T ,  g) + . . . . 
u=6u, (7. t ) + d 2 u Z ( ~ .  t )+ . . . . 

E=~(x-C-t), c - = V - ( W = W ~ ,  u=O)=&, r = b 3 t  

near a simple wave with r+ = const yield the mKdV equa- 
tion 

which describe approximately nonlinear dispersive Alfven 
waves. l8 

The KdV and mKdV approximations are physically 
suitable in the case of elliptic polarization 
(6"- b,/b,,, a) 1 ) , i.e., for the propagation of dispersive 
MHD waves at an angle to the magnetic field. The MNSE 
provides in this case a more correct description of waves of 
sufficient amplitude (the restrictions will be formulated be- 
low) .IEs3 For quasilongitudinal propagation (circular polar- 
ization of MHD waves), however, an adequate description is 
possible only with the aid of DNSE. The approximations 
( 1 1 ) and ( 12) are nonetheless useful also in this case, since 
they have been thoroughly studied, making possible a quali- 
tative analysis and an indication of the possible effects. 

2. STATIONARY WAVES AND THE WHITHAM EQUATION 

The DNSE has solutions in the form of stationary 
waves f(x - Ut), where U is the phase velocity and is con- 
stant. Stationary DNSE are described by the ordinary differ- 
ential equation 

where A, B, and Care integration constants. Equation (13) 
describes the motion of a "particle" with velocity dw/dgin a 
potential - Q ( w ) / 2  (Fig.. 1 ). The variable u is connected 
with w in a stationary wave by the expression 
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in a magnetosonic wave and FIG. 1. The potential Q( W) in the stationary MNSE wave. 

It is convenient to introduce in lieu of the constants A, B, C, 
and U the roots of the polynomial Q(w): 

Comparing with ( 14), we have 

in an Alfven one. 
Here n, (v,m) is a complete elliptic integral of the third 

kind and the functions U(wi ) and C(w, ) are specified by 
( 17), where c must be chosen to be positive to ensure positive 
values of u [see ( 15) ] for small values of w. 

Under quasistationary conditions, the slow evolution of 
the parameters wi is described by Whitham's modulation 
equations, which can be obtained by averaging (22) of the 
conservation laws of the system (6)  .6*21 Just as for the NSE, 
in the present case they can be represented in the diagonal 
(Riemann) form1' 

In the hyperbolic region all the roots are real (Fig. 1) and 
Eq. ( 13) has two solutions20 

It is remarkable that the characteristic DNSE velocities co- 
incide with those obtained in Ref. 10 for NSE and are given 

Vi(r) =U(r)+l .V, (r ) .  

where 

and sn(a{,m) is the elliptic sine. 
Equation ( 18) describes a magnetosonic wave (positive 

dispersion) oscillating between the roots w, and w,, while 
( 19) describes an Alfven wave (w,< w <  w,, negative disper- 
sion). The wave number k is given in both cases by 

A,,=r,-rJ, rn '=A12~ . ,G /413A2G.  LL (m)  =E (rn)/Ii(tn), 
where K(m) is a complete elliptic integral of the first kind. 

Having defined the averaging over the period of the sta- 
tionary wave as 

E (m)  is a complete elliptic integral of the second kind. It is 
important that the modulation equations have the same 
form in both averagings (i.e., for the magnetosonic and Alf- 
ven waves). The connection between the Riemann invar- 
iants and the parameters w, of the stationary wave, however, 
is different, namely 
) . l= l / . ( l l . l  +lC2 . + ~ L . ~ ~ ~ - I " & ~ ~ ~ ) ' ,  r 2 = ~ / G ( l ' ~ ( ' ~ + ~ Z ' ~ - l ~ 3 ' ~ + l " G ' ~ ) 2 ,  

(29) 
r3=I/. ((c,', - I D ~ ' ~ + ~ c , " ~ + I O , " ~ ) ~ ,  r ~ = 1 / G ( - ~ ~ t " ~ + ~ ~ 2 ' 1 ' + ~ ~ 3  ' 1+~~4 'b)2  

where the integration is over the periodicity interval of the 
corresponding function [i.e., between w, and w, in a magne- 
tosonic (m) wave and between w, and w ,  in an Alfven (a )  
wave], we obtain the mean values 
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for the magnetosonic wave and 

for the Alfven wave. 
We present also the inverse expression for the param- 

eters of a stationary wave in terms of Riemann invariants: 
wI=1,l4 ( r l " . + l . ~ h f r 3 ' b - r ~ ) 2 ,  iu2=I/( (rl":+rZ"~-r3i!~+r,,~~ 12. 

(31) 
~ l / & ( , . , ~ ! 2 ~ r 2 ~ / : + , . 3 ' / ~ + , . 4 ~ l ~ ) 2 ~  -l /&(-, . l '12+r21~.+,.31!:+,.&1.~:)2, 

3 - c -  

It is easy to verify that the two families of Whitham's charac- 
teristics are joined together at the singular points of the 
paired coalescence of the invariants (corresponding to co- 
alescence of the corresponding roots wi ). For the remaining 
two invariants, the equations are identical with Eqs. (8)  of 
ideal hydrodynamics (see Ref. 8 ) : 

For r, = r3 we have 

and for r3 = r, 

The oscillations vanish in this case in the following manner: 
their amplitude vanishes at m = 0 and they are transformed 
at m = 1 into individual solitons the distance between which 
tends to infinity [k(m - 1 ) -01, viz., into solitons which are 
negative in a magnetosonic wave and positive in an Alfven 
wave. 

3. NONDlSSlPATlVE SHOCK WAVES 

It is known7 that phase conjugation of a finite-ampli- 
tude large perturbation leads in dispersion hydrodynamics 
to formation of a nondissipative shock wave (NSW)-a re- 
gion that expands with time and is filled with small-scale 
undamped oscillations. These oscillations are quasistation- 
ary and are described by the modulation system (28). Out- 
side the NSW the flow is described by the Euler equations. 
We formulate now the general conditions for joining the Rie- 
mann invariants ri (i = l, ..., 4) of the Whitharn equations to 
the Euler invariants r at the boundariesx * ( t )  of the NSW 
(which are likewise to be determined-the GP conditions, 
see Refs. 7 and 8). 

For an Alfven NSW (Fig. 2a) we have: 
on the leading (soliton) edge x = x; ( t )  

r,=r,, rl(t.,+. t)=rL(x.,+. t ) ,  r4(xRf. t )= r - ( xa4 .  t ) *  (35) 

on the trailing edge x = x, ( t )  

r,=r,, rl(xa-. t )  =rT (x.;-. t ) ,  r2 (x:;-, t) = r -  (I:,-. t ) .  (36) 

FIG. 2. Plots of Riemann invariants and of the Alfven (a) and magneto- 
sonic (b) NSW. 

For a magnetosonic NSW (Fig. 2b) we have: 
on the leading (linear) edge x = x,f ( t )  

r2=rl, rs(x.+. t )=rr(xWi.  t).  r,(xMi, t )  =r.(x,+. 1 ) .  (37) 

on the trailing (soliton) edge x = x, (t) 

r2=r3, ri(.c,,-, t)=r-(x,,-. t) .  r'(.~,, . t)=r-(x,,-. t) .(38) 

The methods developed to date for analytic solution of the 
GP problem14-16 make it possible to obtain a solution that 
describes an NSW in DNSE hydrodynamics with arbitrary 
initial data (both monotonic and localized), but we confine 
ourselves in the present paper to a derivation of the simplest 
family of self-similar solutions. These solutions describe a 
simple centered NSW (Ref. 8) that joins homogeneous-flow 
regions in which the invariants r, are constant (but one of 
them takes on different values on the left- and right-hand 
boundaries of the NSW), corresponding to initial data in the 
form of a "step" that satisfies the relation of a hydrodynamic 
simple wave. The physical quantities-the energy density w 
and the change of the polarization angle u-undergo a con- 
stant jump on going through the NSW. This accords with the 
classical formulation of the shock-wave problem in the stan- 
dard hydrodynamics (Ref. 22, Sec. 101 ) . 
Alfven NSW 

Let 

where the superscripts (1) and ( r )  designate the regions on 
the left and on the right of the NSW, with r,, r,,, r,,, con- 
stants, r,,, > r,, > r,. 

The solution of Eqs. (28) with boundary conditions 
(35), (36), (39), and (40) is obvious: 

where P(T) is an arbitrary function. We confine ourselves 
hereafter to the self-similar case 

Equations (41), (25), (26), and (31) determine the 
variation of the mean values of ii~, and ii, in an Alfven NSW, 
and also its oscillator structure ( 19). The self-similar boun- 
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daries of the NSW are defined with the aid of (41 ), (33), and 
(35) as follows: 

Trailing edge (r, = r,) : 

Leading front ( r3 = r2) : 

Transition through a simple NSW, as shown by Gure- 
vich and Me~hcherkin,'~ is characterized by definite rela- 
tions between the hydrodynamic quantities on both sides of 
the shock wave. The GM relations are similar to the Ran- 
kine-Hugoniot conditions in standard dissipative hydro- 
dynamics. Let us obtain similar relations in our case for the 
physical variables w and u. Let their (constant) values be w, 
and ul on the left and w, and u, on the right. The condition 
(39) under which the invariant r+ is constant on going 
through the simple NSW and Eqs. ( 11) lead to the relation 

which means that the four quantities describing the flow on 
the left and on the right of the simple NSW are not indepen- 
dent. We express with the aid of (39)-(44), (33 ), and (9a) 
the width of the self-similar NSW in terms of three of them: 
the discontinuity w:'~ - w;" and the values of w, and u, on 
the leading front: 

Evidently, the NSW width increases with increase of the 
field discontinuity. The qualitative structure of the Alfven 
NSW is perfectly analogous to that investigated in Ref. 7 for 
the KdV equation (note that the mKdV, which describes 
approximately nonlinear Alfven waves, has, after averaging 
in the hyperbolic region, the same Riemann form as the KdV 
equation.', 

Magnetosonic NSW 

Consider now a simple NSW cooresponding to a con- 
stant invariant r-: 

where r,, > rO3 > r,, and the constants r,,, rO3, and rO4 are, 
generally speaking, not equal to those defined in (39) and 
(40). 

A self-similar solution of Eqs. (28) with boundary con- 
ditions (37), (38), (46), and (47) is 

Equations (48), (23), (24), and (3 1 ) determine the behav- 
ior of pm and ii, in a magnetosonic NSW and its oscillatory 
structure (16). The coordinates of the NSW fronts [see 
(48), (32), and (33) 1 are defined as follows: 

Trailing edge (r2 = r,) : 

T , - = V ~ O . ~ ~ ,  rob, ro3, r o o .  (49) 

Leading front: 

The GM relatioqfor the variables w and u on going through 
a simple magnetosonic NSW is obtained from (46) and (9a) 
and takes the form 

fl 

u , K - - ~ r % =  (10,-u,)'~:- (~c~,-u.)"~. (51) 

The width of the magnetosonic NSW is 
A - T ~ = T ~ , ~ - T ~ - =  (IL~I"'-w,') (wl"f (w,-u)'") 

The qualitativestructure of the magnetosonic NSW is simi- 
lar to that investigated in Ref. 8 for NSE (KdV with positive 
dispersion), which describes qualitatively nonlinear magne- 
tosonic waves [see Eq. ( 12) 1, can be obtained by a limiting 
transition from NSU [see (8)  1. Just as in the case of an 
Alfven NSW, the width of a magnetosonic NSW increases 
with increase of the field-amplitude jump. The equations de- 
scribing NSW (both magnetosonic and Alfven) can be sub- 
stantially simplified by using the invariance of the GP prob- 
lem (28), (35)-(38) with respect to the linear 
transformation 

(recall that the initial equation has no such invariance), we 
can therefore assume without loss of generality that 

It follows from ( 5 1 ) then directly for a magnetosonic NSW 
that 

u1=1c,=O. 

If we put now w, = 1 (we measure w in units of w, ), we 
readily see that an NSW is characterized in the correspond- 
ing reference frame by a single quantity-the field-ampli- 
tude jump 

Assume that the width of the magnetosonic NSW is ex- 
pressed in terms of a, as follows: 

Phase conjugation of magnetosonic NSW 

Phase conjugation of NSW due to vanishing of the den- 
sity in the peak of the first soliton, was observedS in media 
with positive dispersion. A similar phenomenon is observed 
also in MNSW magnetosonic NSW dispersion hydrodyna- 
mics. It follows from ( 18 ), ( 3 1 ), and (48a) that 

Putting r,, = 0, we obtain with the aid of (5  1) and (9a) 

Evidently the field in the peak of the first soliton vanishes at 
a, = 2. It follows then from (15) that the quantity u that 
defines the rotation of the polarization vector becomes infi- 
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I and in the right 

1 c = w " ) ,  u=u") 

I I b  
where w""~' and u(~)(') are constants and w"'~'~')u'"~'~'. This 

I -  I is, of course, accompanied by discontinuities of the hydrody- 
I 1 namic invariants; r, = r z '  in the left half-space and 
I I 

r, = ry' in the right-hand side. According to Refs. 23 and 
7 s 8, a pair of either FSW or rarefaction waves moves out then 

in both directions from the initial discontinuity. A plateau 
FIG. 3. Plots of dynamic invariants in Alfven ( a )  and magnetosonic (b) region in which the flow is constant is produced between 
rarefaction waves. these waves: 

nite. Phase  of^^^ takes place thus at a , ,  2 and AS shown in Sec. 3, it can be assumed without loss of genera- 

the conditions for the existence of the single-phase regime lity that 

investigated in the present paper are therefore violated. , - - ( 1 ) = 0  ( t L ( l ) -  -0) 

Rarefaction waves 

Another type of wave encountered in dispersion hydro- 
dynamics is the rarefaction wave. We confine ourselves to a 
brief examination of the self-similar case. The flow in the 
region of a rarefaction wave is smooth and is described by 
Eqs. (8) and (9)  of ideal hydrodynamics. The invariants r+ 
and r- are constant in simple rarefaction waves and magne- 
tosonic waves, respectively (Fig. 3) .  The condition for pas- 
sage through a rarefaction wave are the same as (44) and 
(51) for a NSW. Finally, the self-similar solution is 

for a rarefaction wave and 

for a magnetosonic wave. 

4. DECAY OF INITIAL DISCONTINUITIES 

Assume that the following discontinuities are produced 
at the initial instant t = 0 in the energy density w of the mag- 
netic field and in the polarization variable u: in the left half- 
space: 

(i.e., one can change to a coordinate frame moving to the left 
with velocity r?') and ry' = 4 [w is measured in units of 
w"', see ( 11 ) 1. Thus, 

w(') for sGO 
w ( x , o ) = { ~  for z > O *  

uCZ) for z<O 
u(x'o)={  0 for z>O.  

Using the conditions (44) and (5 1 ) for a transition through 
Alfven or magnetosonic simple waves (the magnetosonic 
moves in advance)-an NSW or a rarefaction wave, we ob- 
tain the values of w and u on the plateau: 

Next, starting from the condition w"' = 4 for phase conjuga- 
tion of NSW, we determine from (56) the range of param- 
eters at which the solution (55) of the initial problem exists 
without appearance of a phase-conjugation singularity: 

or, equivalently, r?' < 16. 
We now consider briefly possible cases of discontinuity 

FIG. 4. Decay of initial discontinuities 
a - ,.(2' > ,.(i), ,(2' >,.(I). + + ,  
b - ,.(2) <,.(I), ,.(2' > , . ( I ) .  + + ,  
c - ,.'2' > ,."', r'2' > ,.'". d - > ,.(l), - + + r  

r(:' > r ( i ) .  
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decay, as function of the relation between the quantities 
r ( 1 ) . ( 2 )  * .  

1. r-(2)>0,  r+(2)>4 ( u J ' ~ ) > w ( " ) > ~ )  

The decay of such a discontinuity produces two NSW. Plots 
of the invariants and of the average magnetic-field energy 
density in this situation are shown in Fig. 4a. The width of 
the plateau is 

The plateau vanishes if r(2' = 4. This is the particular solu- 
tion obtained in Ref. 17. Clearly, however, it does not de- 
scribe the general case of discontinuity decay. For r'!' > 4 
the plateau width is negative-two NSW are nonlinearly 
superimposed. A two-stream-solution region, not describ- 
able by the one-phase Whitham- theory, is then produced. 
Note that the possiblity of superposition of two NSW exists 
also in NSE hydrodynamics. 

An Alfven NSW and a magnetosonic rarefaction wave 
are produced (Fig. 4b). 

:3 r-l2J<0, rA'2'>d (ll , 'o '>l.  l L ~ ~ ) > f ~ ~ ~ ~  1 

A magnetosonic NSW and an Alfven rarefaction wave 
are produced (Fig. 4c). 

4. r-'Z)<,a ~-_( '~<4 (1uf2'<1r( "< 5 )  

Two rarefaction waves are produced (Fig. 4a). 
Note that in cases 3 and 4 the invariant r'!' is negative. 

This does not contradict the hyperbolicity condition, since 
we have changed over to a moving coordinate frame with 

, . ( l )  simulataneous shift ri, * - ri, + - - . 

APPENDIX 

MNSU as the universal equation for the envelope (informal 
derivation) 

Consider a nonlinear wave packet with a dispersion re- 
lation 

where $is the complex amplitude. We expand the function w 
near 1 $ I 2  = 0 and k = k,: 

d 2 0  d'o , + 1 2  ( ) i )  . . . ( ~ 2 )  
al$12al; , ali2 , 

Here w, = w(k,,O), and the subscript "0" denotes that the 
corresponding function is taken at the point 
(k  = ko,l$12 = 0). 

Using the formal correspondence 

we write down an equation corresponding to the expansion 
(A2) : 

where c, d, g, and h are parameters that depend on k,. 
Changing to the moving coordinate frame x-+x - c r  

and introducing a new variable defined as25 

where 

we obtain the MNSU 
i 

G , q f  a,(]cp /'cp) + - a,2cp=0. 
2 

The substitution 

cp=I". eup (iO). 

which leads to a system of the dispersive-hydrodynamic type 
( 6 ) ,  contains the following functions: I-intensity (enve- 
lope), x = ax 6-effective wave number of the carrier. 
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