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We calculate the radiative forces acting on (monopole and dipole) point sources when they move 
uniformly in a rotating fluid or an inhomogeneous plasma. These forces are caused by the 
emission of Rossby waves (in a fluid) or drift waves (in a plasma) through the Cherenkov 
mechanism. We show that owing to the anisotropic nature ofboth types of waves apart from the 
strong wave resistance force directed opposite to the velocity of the motion there exists also a force 
which is normal to the velocity of the source. On the basis of the results we give an interpretation 
of the properties of the well known Larichev-Reznik solution which describes stationary dipole 
vortices which can move without radiative losses in a well defined range of velocities. We 
discovered that the westward motion of such vortices in a nonuniformly rotating fluid is unstable 
under small changes in the angle at which the trajectory is inclined, whereas eastward motion is 
stable. A similar effect occurs for vortices in a plasma. 

1. INTRODUCTION where 

It is well known that a fast moving source in any medi- az a= A = - + -  
um in which some kind of wave can exist can emit those dxZ 8y2 

waves through the Cherenkov mechanism, subject to satis- is the two-dimensional Laplace operator, P > 0 is a constant 
faction of the resonance condition1 coefficient, U and Vare the components of the source veloc- 

ity W, and the expression for the function f (x,y) depends on 
W cos y= V,. ( 1 ) the nature of the source. If the source is a monopole, we have 

where Wis the absolute magnitude of the source velocity, V, 
the phase velocity of the wave, and y the angle between the 
directions of the motion of the source and that of the wave. It 
is clear from this formula that if the velocity of the source in 
an isotropic medium exceeds the wave speed, emission takes 
place in a cone with an apex angle which is the smaller the 
higher the velocity of the source. 

The Cherenkov emission of waves in anisotropic media 
has a number of interesting features, part of which are con- 
sidered in what follows by using as example Rossby waves in 
a nonuniformly rotating fluid (in the Bplane approxima- 
tion2). It turns out, in particular, that when the source 
moves along a parallel, emission is possible only when its 
velocity is directed westwards. Thanks to the well known 
analogy between Rossby waves and drift waves in a p l a ~ m a , ~  
the results obtained here refer also to the plasma case. More- 
over, it has been shown in Ref. 4 that in rotating gravitating 
astrophysical systems (galaxies) there exist wave processes 
the nature of which is the same as those occurring for Rossby 
waves or drift waves in a plasma. Hence, the conclusions of 
our paper also relate to those astrophysical objects. 

2. EMISSION OF WAVES IN A BAROTROPIC MODEL 

We consider a point source moving uniformly in a 
straight line at an angle a to the x-axis, which is directed 
eastwards along a parallel, in a nonuniformly rotating fluid 
in the &plane (Fig. 1). The basic equation describing the 
wave field, which is expressed in terms of a current function 
$(x,y,t ) ,  in the linear approximation then has the following 
form:' 

aAJ,  I p= d f ( x - U t . ~ - V t )  
at dx a t  

( 2 )  

where r, is its intensity; for a dipole source with its moment 
perpendicular to the velocity vector of the source we have 

One sees easily that the solution $, of Eq. (2)  for a 
dipole source can be obtained from the corresponding solu- 
tion $, for the monopole source; these solutions are con- 
nected with one another by the relation 

This fact will be used by us in what follows. 
A moving source emits Rossby waves with different 

wave vectors 

FIG. 1. A wave packet emitted by a moving source propagates with a 
group velocity v, at an angle 19 to the x-axis, whereas the phase velocity of 
the waves is directed at an angle q, to the x-axis. The meaning of the 
vectors p and p' is explained in Sec. 3 of the text. 
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and frequencies w which are connected with one another by 
the well known dispersion relation (see, e.g., Ref. 2): 

Pk* p cos cp 
6) = - ------ = - - 

kX2+lt,' k ,  

Here g, is the angle between the wave vector of the emitted 
wave and the x axis. This relation together with the Cheren- 
kov resonance condition ( 1 ) in which we have y = e, - a ,  
determine the connection between the direction and the ab- 
solute magnitude of the wave vector of the emitted waves: 

Hence it follows that the direction of the wave vector of the 
emitted waves can lie in the range of angles 

determined by the conditions w > 0 and k > 0. 
In the frame of reference fixed to the moving source the 

wave field is clearly time-independent and its spatial distri- 
bution in the far field has, in polar coordinates (r,8), the 
form 

$(r.  0 )  -D(0)exp(iIir1-)/r"~, ( 7 )  

where k,  (8) is the radial wave number and D(6) is a func- 
tion characterizing the distribution in angle 6 of the field 
inten~ity.~ Far from the source at distances r )  k - ' the prop- 
agation of the wave packets occurs in the radial direction 
with the group velocity 

The angle 8 at which the group velocity is directed to the x- 
axis is connected with the angles a and g, through the rela- 
tion, following from Eqs. (5)  and (8) :  

( V )  sin a cos cp+cos ( 9 -a )  sin (2rp) 
tgg=-= 

V )  cos a cos rpfcos ( 9 - a )  cos (2rp) 
. (9) 

This relation enables us to write the radial wave number k, 
in the form 

'" 2cos rp  cos (cp-a) 
cOss I [o(rp,a)ls * =[ - w cos (cp-a) (10) 

where 

@ (v. a )  =cosz cp+cos2 ( 9 -U)  

+2 cos cp cos (cp-a) cos (2rp-a). 

We introduce the momentum density for a wave with 
wavevector k in the far zone using the conventional defini- 
tion 

where N is the quasiparticle number per unit volume, or 

wave action density, andp the fluid density. If we know the 
quasiparticle-number flux-density distribution 

over different directions of the wave vector k, we can find the 
momentum flux through a cylindrical surface of unit height 
emitted by the source in unit time: 

The emitted momentum flux determines the radiative reac- 
tion force: 

Korotaevs has earlier found the longitudinal (with respect 
to the velocity) component of this force (the wave resistance 
force) for a monopole vortex source: 

where 

Hence it follows that the quasiparticle number flux density is 
equal to 

S,( cp) =prmz/4ar. (13) 

We note in passing a fact which, in our opinion, is far from 
trivial: the quasiparticle number flux density turns out to be 
independent of the direction of the wave vector for the Cher- 
enkov emission of Rossby waves by a monopole vortex 
source in the anisotropic medium considered. 

Using Eq. ( 13 ) we can also find the transverse compo- 
nent of the radiative reaction force acting on a monopole 
source: 

Both components of the force acting on the monopole 
can be expressed in terms of elliptic integrals of the first and 
second order, K ( x )  and E ( x )  (we have already noted that 
the expression for PI, was first found in Ref. 5): 

[-cos cp ccs (rp-a) ]'"tg(q-a)drp 
nlz  

= -  prm' ( - ' ) "sin a ~ (  i i n  5) . 
4n W 2 (16) 
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We note that the radiation force decreases with increas- 
ing source velocity, a W - ' I 2 .  We show in Fig. 2 the compo- 
nents of the radiative reaction force as functions of the angle 
a. There is no longitudinal component-wave resistance 
force-for eastward motion (for a = 0).  Indeed, such a 
source does not excite Rossby waves since their wavevector 
cannot have an easterly component according to the disper- 
sion relation (4).  When the angle a increases, the longitudi- 
nal force increases monotonically, reaching a maximum in 
the westerly direction (a = a). 

The transverse force reaches a maximum for a motion 
close to the meridional direction (a -- 106") and tends to in- 
cline the trajectory of the source in the easterly direction. If, 
however, the source moves in a latitudinal direction along 
the x-axis eastward or westward, there is no transverse ra- 
diative force, owing to the symmetry of the emitted waves to 
the left and to the right from the axis of the motion. How- 
ever, it appears immediately however little the direction of 
the source velocity is inclined to the meridian. When moving 
eastward at a small angle a to the parallel there arises a 
restoring transverse force 

whereas westward motion at a small angle S = a - a to the 
latitude leads to the appearance of a defecting force 

As a result of this, westward motion of the source is unstable: 
the presence of a small meridional velocity component 
causes its further increase with time, nonlinearly (but not 
exponentially). 

We can also find the radiative reaction force for a dipole 
source, using Eq. ( 3  1. The quasiparticle number flux density 
S, is determined by the asymptotic behavior (7)  of the field 
in the far zone where 

Bearing in mind that when we evaluate derivatives in Eq. (3) 
we must differentiate only the rapidly oscillating part of the 
solution (7), we obtain for a dipole source 

Substituting ( 19) into Eq. ( 11 ) we obtain the logitudinal 
and transverse components of the radiative reaction force 
acting on a point dipole: 

x / ? t a  

4 cos2 cp cosS (cp-a) sin2 (2q-a) 

[(D (q,  a) l Z  do, 

where 

We did not succeed in expressing the components of the 
radiative force acting upon a dipole in terms of elementary or 
special functions, but the integrals in Eqs. (20) and (2  1 ) can 
easily be found numerically. In Fig. 3 we show F,, , ,  as func- 
tions of the angle a. As in the previous case of a monopole 
source, the longitudinal wave-resistance force increases 
monotonically with increasing a. The transverse force be- 
haves qualitatively as in the previous case; its maximum is 
reached for a=  158" while it vanishes for a = 0 and a be- 
cause of the canceling of the radiative forces to the left and 
the right of the source. Small deviations from these direc- 
tions again lead to restoring (if a 4 1 ) and defecting (if 
S 4 1 ) forces so that eastward motion is stable and westward 
motion unstable. 

We note also that when the velocity W of the dipole 
source increases the radiative force decreases a W - 3 1 2 .  The 
unbounded increase in the radiative forces as W-0 both for 
monopole and for dipole sources is explained by the fact that 

FIG. 2. The components of the radiative reaction force 
(a-in Cartesian, &in polar coordinates), acting on 
a point monopole, as functions of the angle a in a baro- 
tropic model: the solid line is the longitudinal 
component Fl l  and the dashed line the transverse com- 
ponent F, [Fo = ( p r Z , / 4 ~ )  ( B /  W)'I2 1. 
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FIG. 3. The components of the radiative reaction 
force (a: in Cartesian, b: in polar coordinates), act- 

, ,  I - -  I I ing on a point dipole, as functions of the angle a in a 
O , barotropic model: the solid line is the longitudinal 

component F,,  and the dashed line the transverse 
component F, [F,  = (pT:/4~) (B /  w ) ~ ' ~ ] .  

we have considered point models; taking into account the 
finite size of the source leads to more complex velocity de- 
pendence of the forces in the region of small W.6 

3. EMISSION OF WAVES IN A BAROCLlNlC MODEL 

A study of Cherenkov emission in the framework of a 
baroclinic model (such as a barotropic model with a free 
surface) reduces, in spite of the apparent complexity, to the 
barotropic case. Indeed, we can write down the basic equa- 
tion for the current function: 

where Ro is the so-called Rossby-Obukhov deformation ra- 
dius. 

We change to a frame of reference fixed to the moving 
source, using the change of variables 

We find then from (22) an equation for the emitted wave 
field: 

where we have introduced the vector 

and where x, is a unit vector in the direction of the x-axis. 
The equation for the baroclinic wave field, written in 

the form (23), has the same form as for the barotropic case. '' 
Therefore all solutions obtained in the previous section can 
be used for baroclinic waves, if we replace in the correspond- 
ing formulas the parameter 0 by 

p'={ [P sin aI2+[P cos a+W Ro-'I2)", 

and the angles a ,  p, and (3 by the effective angles 

taken in polar coordinates from the semiaxis determined by 
the vectorp ' (Fig. 1 ) . Figures 2 and 3 retain their shape if we 
understand by a ,  a ' .  However, in the original x and y coordi- 
nates the radiative forces look different as we must, when 
changing to those coordinates, take into account the relation 
between the angles a and a'. From the expression for P' 
follow the relations (cf. Ref. 5 )  

cos a+WIVR 
cos a' = 

[ (COS a+ W/VR)z+sinz a]'" ' 
sin a 

sin a' = 
[ (cos a+WIVR)Vsin2 a]"' ' 

Here VR = p/Ro2 is the Rossby velocity. 
The quantities a' and a behave differently as functions 

of the parameter W / V R  (Fig. 4). 
For W <  WR the effective angle a' changes monotoni- 

cally with increasing a-in this case the qualitative nature of 
the emission diagram and the a-dependence of the forces 
F I I ,  remain the same as for barotropic waves. However, the 
quantitative characteristics change in this case, especially 
the way the radiative force depends on the source velocity is 
no longer proportional to W - ' I2  but is more complicated. 

For W >  VR there is a change in the qualitative nature 
of the a-dependence of the radiative force which is formally 
connected with the nonmonotonic nature of the al(a) curve 
in this case (see Fig. 4). In particular, as a+ r (motion in 
westward direction) the effective angle al+O. Hence it fol- 
lows that the emission of Rossby waves with nubmer n van- 
ishes not only when the source moves to the east ( a  = 0) but 
also when it moves to the west. 

We show in Fig. 5 plots of Fli and Fl as functions of a 
for three values of the velocity of a monopole source. When 
W approaches the threshold velocity VR of the given mode 
the position of the maximum of the Fl force shifts to r and 
its value approaches 

FIG. 4. The effective angle a' as function of the true angle a for different 
source velociites: W / V ,  = 0.5 ( I ) ,  1 ( 2 ) ,  2 (3) .  
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FIG. 5. She components of the radiative force as 
functions of the true angle a for different velocities 
of a monopole source in a baroclinic model (a: in 
Cartesian, b: in polar coordinates): W/V, = 0.5 
( I ) ,  1 ( 2 ) , 2  (3) [F, = (pr2,/4?r)(B/VR )'I2]. 

The magnitude of the F, force is always eqyal to zero in the 
point n itself. ,When the velocity W increases further the 
position of the maximum of the function F, ( a )  moves away 
from the point rr in the direction of smaller values of a. We 
show in Fig. 6 the same quantities as functions of thesource 
velocity for three different angles. For a comparison we 
show by a dashed line on those figures the barotropic veloc~ 
ity-dependence of the forces 

It is clear from the figures that this dependence is asymptoti- 
cally satisfied in the W< VR region. For large source veloc- 
ities the components of the radiative force depend again on 
Waccording to a power law with an index which depends on 
the angle a. 

We show in Fig. 7 the a-dependence of FII,, for three 

values of the velocity W> VR for a dipole source (for 
W< VR the qualitative picture is the same as in the barotro- 
pic case (Fig. 3) and is not of special interest). Finally, we 
show in Fig. 8 the way the components of the radiative force 
depend on the velocity of a dipole source. Here attention is 
drawn to the very steep decrease of the forces when the 
source velocity increases. In the Wg VR region the curves 
approach the barotropic Fa W -312 law while in the W$ VR 
region again all curves reach a power law with an index de- 
pending on the angle a. 

The vanishing of the radiative forces as a + 0, rr explains 
the existence of exact solutions describing dipole vortices in 
theP-plane7 which can shift either eastwards with any veloc- 
ity or westwards with a velocity W> VR ." Indeed, only in 
those cases is khere a complete absence of radiative forces. 

When the source moves with an arbitrary velocity in a 
directioh differing from the latitudinal and also when it 
moves strictly westwards with a velocity W <  V, the emis- 
sion of Rossby waves leads to a nonstationary evolution of 
the vortex accompanied by the emission of Rossby waves. 

4. CONCLUSION 

The analysis given here of the radiative forces acting on 
moving sources in a nonuniformly rotating fluid in the f i  
plane approximation shows that owing to the anisotropy of 
the medium there appears, apart from the wave-resistance 
force, also a transverse force which does not conserve work 
and which therefore cannot be evaluated from energy con- 
siderations (that method of calculation is widespread: see, 
e.g., Refs. 5 and 6). The magnitude of the transverse force is 
comparable to the wave resistance force. Knowing both 
components of the radiative force makes it possible to calcu- 
late the trajectory of a freely moving source in the &plane 
and, especially, that of a monopole or dipole vortex. 

The equations of motion for a rigidly rotating vortex 
were given in Ref. 5, taking into account the Coriolis and 
Magnus (Zhukovskii, to use the terminology of Ref. 5) 
forces, but not the radiative force. That paper also obtained 
their approximate solutions. Subsequently a somewhat more 
complex model of the motion of a vortex with oscillations 
was considered in Ref. 6. As a result of this there avvears a 

* * 

variable component of the wave resistance force which, ac- 
FIG. 6. The components of the radiative force (a-FII, b-Fl ) as func- cording to Ref. 6, is proportional to the derivative of the tions of the velocity of a monopole source in a baroclinic model for three 
different angles: a = ~ / 4  (1  ), 3q/4 (21, 1 lq/12 (3). The dashed line wave resistance force for uniform motion. A feature of such a 
corresponds to a W-'I2 dependence [F, = (pI'2, /4a) (/3/ V, )'I2]. vortex motion is that the amplitude of its oscillations may 
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grow exponentially in the linear approximation (radiative 
instability). 

However, the conclusions of Refs. 5 and 6 are apparent- 
ly only qualitative in nature since estimates show that the 
radiative forces that have been neglected may not only be 
comparable with the above mentioned forces, but also may 
exceed them appreciably. To confirm this we compare the 
Coriolis force acting on a moving monopole vortex with the 
radiative force. We shall assume that the vortex is a cylinder 
of radius R, rotating with a constant angular velocity wo. We 
then have for the parameter I?, 

The magnitude of the Coriolis force is 

where R z 5 x  s-' is the Coriolis parameter which is 
equal to the product of the angular rotational frequency of 
the earth and the sine of the latitude. For the radiative force 
we have the estimate [see Eqs. ( 16) and ( 17) ] 

FIG. 8. The components of the radiative force (a-FI , b-F, ) as func- 
tions of the velocity of a dipole source in a baroclinic model for three 
different angles: a = ?r/4 (I) ,  3 ~ / 4  (2),  ll?r/12 ( 3 ) .  The dashed line 
corresponds to a W-312 dependence [F, = (pT2,/4?r) (P/VR ) 3 ' 2 ] .  

FIG. 7. The components of the radiative force (a-Fl,, 
b--F, ) as functions of the true angle a for different veloc- 
ities of a dipole source in a baroclinic model: W/ 
v, = 1.01 ( I ) ,  1.05 ( 2 ) ,  1.1 ( 3 )  
[F,  = (pr:/4r)(8/VR )312]. 

up to an angular factor of order unity (provided a is not too 
small). We choose the following values of the parameters, 
corresponding to actually observed vortices in the ~ c e a n : ~ . ~  
w o z  2 x lo-' s- I, R =: lo5 m ( 100 km), and we also put 
p - - 2 ~ 1 0 - "  m-Is-' (Ref. 2) .  Hence we find 
I?, =: 6.3 x lo5 m2 s- I. The ratio F,,,/Frad - 10. w3I2. AC- 

cording to available data5s6 the velocity of the vortices in the 
ocean is 1 to 15 cm.s-' so that F,,,/Frad lies within the 
limits to 5 x lo-'. The effect of other forces (such as 
the Magnus force) turns out to be even smaller. 

The results can be used, in particular, for an interpreta- 
tion and prediction of the motion of atmospheric cyclones 
and tropical hurricanes and also of synoptic vortices in the 
ocean. 

In conclusion we note that an attempt was made in 
Refs. 8 and 9 to use integral invariants to prove the stability 
of Larichev-Reznik dipole vortices. However, this attempt 
turned out to be unsuccessful since, as was shown in Ref. 10, 
the proof was based on an erroneous premise. The problem 
of the stability of dipole vortices remained up to this moment 
an open one. It follows from our results that the westward 
motion of Larichev-Reznik dipole vortices is unstable; un- 
der the action of small fluctuations the vortices will turn to 
the east losing during their motion part of their energy to the 
emission of Rossby waves. The trajectories along which they 
move can, when all forces are taken into account, be rather 
complicated; some results in that direction were obtained 
through direct numerical computer calculations in the 
framework of the nonlinear Charney-Obukhov equation2 
or, in plasma terminology, the Hasegawa-Mima equation3 
(see Ref. 11 ) . These results agree with the above-indicated 
qualitative considerations about the nature of the vortex mo- 
tion. 

"One must, however, bear in mind that the effective strength of a baro- 
clinic source (characterized in the barotropic case by the parameters T, 
or r, ) must be determined with allowance for the transverse structure 
of the baroclinic mode.5 We note also that the magnitude of the Rossby- 
Obukhov deformation radius Ro takes on different values for modes 
with different numbers n. 

''Barotropic vortices in a rotating fluid with a free surface and with a 
"solid cover" were considered in Ref. 7. 
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