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When a gas of two-level atoms in a biharmonic field is sounded by a probe wave parametric 
resonances lead to the appearance of an additional complicated and subtle structure in the 
constant component of the probe-wave absorption coefficient. The absorption coefficient (in the 
steady-state regime) acquires an oscillating component, the amplitude of which also possesses a 
complicated behavior in a narrow neighborhood of the parametric resonance. 

1. INTRODUCTION 

Various aspects of the dynamics of a two-level atom 
placed in an external quasiresonance field consisting of sev- 
eral harmonics have recently been intensively discussed in 
the literature (see, e.g., Refs. 1-12). The greatest interest in 
this regard has been stimulated by the discovery and study of 
situations in which sharp singularities (peaks or dips) ap- 
pear in the absorption spectrum of such a system. This inter- 
est is due to the possible use of such phenomena for purposes 
of frequency stabilization and frequency transfer over a 
band, and in spectroscopic  application^.'^.'^ An attractive 
feature of the systems under consideration is the possibility 
of purposeful controlled variation or choice of the external- 
field parameters, and thereby of the position and shape of the 
irregularities in the absorption spectrum. In this paper we 
shall discuss from this point of view the parametric reso- 
nances that arise in the absorption spectrum of a two-level 
atom under the action of external radiation. 

We shall consider a gas of atoms under the action of an 
external field containing two components-primary and 
secondary; the amplitude of the primary wave is assumed to 
be considerably greater than that of the secondary. We use a 
linear approximation in the probe wave, i.e., its amplitude is 
assumed to be much smaller than the amplitude of the sec- 
ondary wave. It is well known that under the action of mono- 
chromatic quasiresonance radiation the populations of the 
levels of an atom oscillate. We are interested in the question 
as to how the probe-wave-absorption coefficient changes if 
the secondary wave falls into resonance with the Rabi oscil- 
lations induced by the primary wave. As shown in Ref. 7, 
with neglect of relaxation and pumping for a single two-level 
atom placed in a bichromatic external field, parametric reso- 
nance leads to splitting of the Rabi spectrum of the system. 
For an analogous phenomenon to be possible for a gas of 
two-level atoms it is necessary that certain conditions on the 
parameters of the system be fulfilled. First, the relaxation 
constants should be sufficiently small in comparison with 
the frequency difference D between the components of the 
bichromatic field. Second, the amplitude of the primary har- 
monic of the bichromatic field should be a quantity of order 
D. Below we shall make the meaning of these restrictions 
more precise. 

adopted for simplification of the subsequent formulas), and 
wave vectors k, ,  k,, k,, respectively. We shall discuss the 
situation when the primary and secondary waves propagate 
in one direction, and the probe wave propagates in the oppo- 
site direction. We shall assume that the thermal velocity u,  
of the atoms, the frequency detuning D = R, - R, ,  and the 
effective relaxation constant yo of the atom satisfy the re- 
striction ID Iu , / c 4  yo, where c is the velocity of light. Then, 
with sufficient accuracy, we can assume that 
k ,  = k,  = - k, = k (Ref. 8) .  Next, to avoid unnecessary 
complication, we assume that the longitudinal-relaxation 
constants of the two levels are equal: y, = y, = y. We write 
out the system of Bloch equations that describes the dynam- 
ics of an atom in terms of the density matrix p =p(v,z) 
(Refs. 13 and 14): 

+A, cos (Qzt-kz) 

f A, cos (Qdfkz) I (p,i-prz)+A, 
d - pI2=- ( ~ ~ = + i ~ ) ~ , ~ - 2 i  [A, cos (Q,t-kz)+A, cos (Q2t--kz) 
dt 

+A3 cos (QStfkz) 1 ( ~ , z - ~ I I ) ,  

where v is the velocity of the atom, z is the spatial (one- 
dimensional) coordinate of the atom, w is the transition fre- 
quency, A is the pumping parameter, y,, is the transverse- 
relaxation constant, and the bar denotes complex 
conjugation. We make the replacements 

R=2-Ih (pzz-pit) , 
p12=Ri2+ exp [-i(Q,t-kz) ]+R12- exp [-i(S13t+kz) 1 ,  

pzl=Rz,+ exp [i (Slit-kz)] +R,,- exp [i (Q,t+kz)]. (2) 

Below we shall use the notation 

Here, we assume that 
2. FORMULATION OFTHE PROBLEM 

O < ~ 9 1 ,  r, A,,  A,, a,, a,. x ,  h=0(1) (4)  
Let the primary wave, secondary wave, and probe wave 

have frequencies R, ,  R,, R, amplitudes A, ,  A,, A ,  (which (we note here that relative quantities do not depend on the 
are assumed to be positive-an unimportant restriction choice of the order of the parameter A ) .  These relations 
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make specific our choice of the range of parameters of the 
system. The choice of the relative orders of E and the thermal 
velocity will be discussed below. 

We shall calculate volume-averaged characteristics of 
the medium. As shown in Ref. 2, more precise allowance for 
the spatial structure of the solutions does not lead to appre- 
ciable distortion of the results. Using ( 1 )-(4), the rotating- 
wave approximation, and the dilatation T = Dt, we arrive at 
the system of equations 

We assume that a, <E,  i.e., we consider an approximation 
linear in the probe wave. In the framework of this approxi- 
mation the last equation of the system (5)  [for the function 
R , (v) ] is decoupled. Below it will be shown that the func- 
tion R ( v )  in the steady-state regime has the structure 

R ( v )  =Bi ( v )  +2B- ( v )  cos [z+8 ( v )  1 ,  
where the quantities B, (v), B,(v), and 8 ( v )  are real, and 
B,(v) is nonzero in the case of parametric resonance. The 
experimentally measured quantity is the probe-wave-ab- 
sorption coefficient 

(the integration here, and below when the limits are not indi- 
cated, is from - UJ to UJ ). Using the equation for the func- 
tion R (v), we obtain 

where 

Thus, to determine the probe-wave-absorption spec- 
trum it is sufficient to construct the steady-state solution of 
the first three equations (5)  under the assumption that 
a, = 0. We write these equations in a form that explicitly 
includes the small parameter E:  

where 

1 -ill.! ~ s p  ( i ~ )  i a2  cxp ( - - i ~ )  

Q,  (7) = (-ia, esp  (-ir) -I- 
ia, esp(ir)  o -r 

General perturbation-theory methods for constructing 
solutions of systems with periodic coefficients and a small 
parameter are described in Refs. 15 and 16. As follows from 
the results described there, the presence or absence of para- 
metric resonances has an important bearing on the construc- 
tion of the asymptotic forms of the solutions of such systems. 
The presence of parametric resonances considerably distorts 
the form of the solution. Below we shall construct only the 
leading term of the asymptotic expansion of the steady-state 
solution of the system (7) ,  i.e., we shall study first-order 
parametric resonances. 

Remark I. In Eqs. (3)  and henceforth it is assumed that 
D > 0. If, however, R, < a,, the formulas must be modified 
appropriately. 

Remark 2. In our formulation of the problem there are 
two quantities that can be used to introduce a time (or fre- 
quency) scale-the relaxation time of the atom, and the fre- 
quency difference between the primary and secondary 
waves. In the framework of the approach being developed 
here the second possibility appears to be the more natural, 
and we shall use it. In papers in which the absorption spec- 
trum of an atom in a monochromatic field has been studied 
(see, e.g., Ref. 17; further references can be found in Refs. 13 
and 14) the first quantity has usually been used to introduce 
the time scale, and the second has simply been absent. In the 
terms used in these papers, the assumptions adopted here are 
equivalent to assuming that the primary component of the 
external field is strong while the amplitude of the secondary 
component takes average values. 

3. THE PARAMETRIC-RESONANCE CONDITION 

We shall describe briefly the approach to the construc- 
tion of the solution of the system (7). First we shall solve the 
homogeneous system, i.e., we shall seek the matrix N( r )  
that is the solution of the problem 

where I is the unit matrix. We introduce the matrix U: 

Then U-'Q0U = E = diag{e,,e,,e,}, where e ,  = 0, e, = iF, 
and e, = - iF, and for the matrix L = U -IN we obtain the 
system 
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To construct the solution of the system (9)  we apply the 
many-scales method.15 We introduce the "slow" time 
r, = ET and seek the solution of (9) in the form 

L (T, rl) = exp (ET)   lo(^, T,) f EL' (7, -!-...I. ( 10) 

Substituting (10) into (9),  we find a recursive system of 
equations for successive terms of the expansion ( 10). We 
write out the first two equations: 

From the first equation it follows that LO(r ,r l )  = LO(rl) .  
We now consider the second equation. Its right-hand side 
should not contain secular terms. From this condition we 
obtain an equation for the matrix Lo(r ,  ) : 

Here, (...) denotes the discarding of terms oscillating with 
frequencies of order unity, i.e., the application of the proce- 
dure for averaging over r. In the general case this procedure 
leads to a diagonal matrix. However, there exist relations 
between the parameters (parametric resonances) that lead 
to the presence of off-diagonal terms. The elements of the 
matrix M  contain exponentials with exponents 0, ir, and 
-ir.  Also, G,, = M , ,  exp[ir(e, -e , )] ,  s, r =  1,2,3. 

Therefore, generally speaking, the following parametric 
resonances are possible: 

which is the condition under which (for atoms with a given 
velocity) the Rabi frequency coincides asymptotically with 
the frequency difference between the primary and the sec- 
ondary component of the external field, and 

which corresponds to the situation in which the frequency 
difference between the primary and secondary components 
agrees asymptotically with the frequency difference between 
the Rabi harmonics. However, as follows from the structure 
of the matrix M ( r ) ,  in the leading term of the asymptotic 
expansion of the solution the resonance ( 12b) is absent. 

Remark 3. In Ref. 7 a description was given (in some- 
what different notation) of the parametric resonance ( 12a). 
In Ref. 7 the velocity distribution of the atoms was not taken 
into account, and therefore the formulas given here for the 
position of the parametric resonances differ somewhat from 
those obtained in Ref. 7. In the framework of the procedure 
based on the Schrodinger equation7 the parametric reson- 
ances ( 12b) were again absent. 

The argument of the left-hand side of the relation ( 12a) 
!s the velocity of the atom, which can be arbitrary. Depend- 
ing on whether or not there exist groups of atoms whose 
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velocities satisfy the relation ( 12a), three different situa- 
tions are possible. 

1) 1 -21/2a1 =q<O,q=O(l) . Inthiscasethereisno 
group of atoms that satisfy the parametric-resonance condi- 
tions. The matrix ( G  ) is diagonal for all velocities, and the 
calculation ofL0(r1) is trivial. In this case the solution of the 
system (8 )  for any velocity of the atom in the leading term 
does not differ from the solution in the absence of the second- 
ary field, i.e., the secondary field A,  has an influence only in 
the nonleading terms of the asymptotic form of the solution. 
For the principal term of the expansion in E of the function 
R ( u )  we obtain 

This result coincides (after relabelings and discarding of the 
nonleading terms) with Eq. (2.105) of the book by Nay- 
feh.13 The next terms of the expansion of R(u) in the small 
parameter contain oscillating terms. We note here the fact 
that the field broadening leads to the result that the Bennet 
dip (the decrease of R ( v )  in the neighborhood of the point 
a = 0 )  hasawidthoforder O(1). 

2) 2lI2a1 = 1 + SE, S = O(1). Thereexistsonegroup of 
atoms whose velocity satisfies the condition ( 12a). These 
atoms are parametrized by the expression 

where v>S. The number of such atoms is then proportional 
to &'I2. We shall call this situation a parametric resonance of 
type I. 

3) 1-2112a,=q>0,  q = 0 ( 1 ) .  There exist two 
groups of atoms whose velocities satisfy the condition ( 12a). 
Their velocities are parametrized by the relation 

The plus sign in the expression for ql corresponds to one 
group of atoms, and the minus sign to the other. The number 
of atoms in both groups is of order E. We shall call this case a 
parametric resonance of type 11. 

As follows from Eq. (6) ,  to investigate the probe-wave- 
absorption spectrum it is necessary to construct the solution 
of Eqs. (7)  for all values of the velocity v. Then, for a given 
set of parameters of the system, one of the situations de- 
scribed above is realized. We should have the possibility of 
taking into account the contribution to the integral (6)  of 
each group of atoms, bearing in mind that we can select the 
parameters of the probe wave in such a way as to probe either 
group of atoms. In fact, the principal contribution to the 
time-independent part of the integral (6)  is given by the 
group of atoms with velocities in an interval with width of 
order E and with center at the point A,xP1. As follows from 
what has been said above, those groups of atoms that satisfy 
the parametric-resonance conditions have sizes of order 
O(E) or O(E"~) .  When the parameters of the probe field are 
tuned to a group of atoms satisfying the parametric-reso- 
nance condition these atoms make the principal contribu- 
tion to the time-independent part of the velocity integral 
(6) .  An analogous assertion is also valid for the part of the 
integral (6)  that oscillates with time. Thus, a parametric 
resonance (if it exists for the given choice of parameters) can 
appreciably distort the probe-wave-absorption spectrum. 
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4. ATOMS AT PARAMETRIC RESONANCE 

We shall consider the dynamics of atoms whose veloc- 
ities satisfy the parametric-resonance condition ( 12a). We 
need to construct the solution of the system ( 11 1 [and, with 
the aid of the latter, the solution of the system (8)  and, final- 
ly, (7) ] for such groups of atoms. Here we shall follow tht 
standard prescriptions: In the matrix G( r )  we replace the 
expressions exp [ + i (F(  v) - 1 )TI by exp [ + ivrl 1. After 
this it is easy to obtain 

We can reduce the system of equations ( 11 ) with the matrix 
GI to a system of equations with constant coefficients, and 
construct its solution. Then, for the leading term of the ex- 
pansion in E of the matrix N( r ) ,  we obtain 

N (r) =Uexp (Et)Z(z)  U,K (T) UI7'U-',  

Z( r )  = diag {I. e s p  ( - i v ~ ? ) ,  c s p  (ZVET)) .  (16) 

We shall give the expressions for U, and K for two particular 
cases: a )  for r = 1, and b) for 2 = a:.  In these situations 
the diagonal of the matrix GI (7,) is proportional to the unit 
matrix, the solution of the problem is simplified (in the gen- 
eral case the corresponding formulas are too unwieldy, al- 
though all the qualitative conclusions remain valid), and we 
obtain 

K(T) =diag{ esp (-T,ET). esp [ET (-rlLiH)],  

where r, = 1 for case a) ,  and I?, = (1 + 2 r ) / 3  for case b) .  
Here, N(0) = 1. We note that Z - ' ( r )  = Z( - r) and 
K -'(r) = K( - 7). 

It follows from (7 ) that 

We are interested in the steady-state solution W, ; therefore, 
the damping term outside the integral can be discarded, and 
in the integral we need be interested only in the value at the 
upper limit. Substituting (16), we find 

W,=UB (z)  U-IC. 
7 

r 0 (7) =exp (ET)Z(T) UIK(t) J I<(-X) ~TI- '%(-x)esp ( - ~ s ) d x .  

It is not difficult to convince oneself that the matrix O ( r )  
contains harmonics with exponents 0, + ir, and + 2ir. 
However, the harmonics with exponents + 2ir have ampli- 
tudes of lower order than those with exponents + ir. There- 

fore, they can be assigned to those terms of the expansion of 
the solution of the next order of smallness, and omitted. Fin- 
ally, we obtain the result for the function R(v)--the first 
component of the vector W, : 

R (v)  = S ( v )  +T ( v ) ,  
where 

We note some consequences of this relation. First, irre- 
spective of the velocity of the atom, the steady-state value 
oscillates with a frequency equal to unity (in the original 
quantities, this frequency is equal to D), whereas the Rabi 
frequency of each atom depends on the velocity. Similar 
facts are familiar (in another context) in the theory of para- 
metric resonance; see, e.g., Ref. 15, in which it is shown that 
near a parametric resonance the solution has only harmonics 
with frequencies that are multiples of the frequency of the 
periodic perturbation. Second, the phase of the oscillating 
component of the function R ( v )  depends on the velocity of 
the atom. Here it is necessary to specify precisely relative to 
what the phase shift is measured. As follows from our con- 
siderations, the reference origin is the moment at which the 
phases of the primary and secondary waves of the external 
radiation coincide. Furthermore, these relations contain the 
parameter Y that describes the fine tuning of the velocity of 
the atom to the parametric-resonance condition. 

It is not difficult to verify that as v-, + co (i.e., as we 
move away from the parametric-resonance condition) the 
constant term of this formula goes over into (13) and the 
oscillating term tends to zero. This corresponds to the 
above-mentioned absence of oscillating terms in the leading 
term of the expansion of R (v) in E away from the parametric 
resonance. 

Remark 4. In the case of a resonance of type I, as follows 
from ( 14), the quantity a is of order O(E"~) .  Therefore, the 
constant term in ( 17) is of order 0( 1 ). However, in the 
course of the calculations we discarded terms that could give 
a contribution of order O( 1 ) to the function R ( v )  . Thus, in 
this case the constant term in ( 17) can only be by way of an 
estimate. 

5. PROBE-WAVE-ABSORPTION SPECTRUM 

The study of the probe-wave-absorption spectrum rests 
on the relation (6).  Here, for a qualitative analysis, it is suffi- 
cient to bear the following facts in mind. First, we consider 
the leading term of the expansion in E of the asymptotic form 
of the function,y(R,). Second, the terms that appear in the 
curly brackets in the integrand in (6)  contain as factors nar- 
row (with width r ~ x - ' )  Lorentzian distributions with 
centers at the points up = A,x-' and up + x-', respectively. 
The neighborhoods of these points give the leading contribu- 
tion of the integral (6).  When up is varied, i.e., when the 
frequency R, of the probe wave is detuned away from the 
transition frequency, we probe different groups of atoms, 
since the leading contribution to the integral is given only by 
atoms in the &-neighborhood of the points up and up + x- ', 
respectively, for the constant and the oscillating component 
of the probe-wave-absorption coefficient. The numerators of 
the expressions in the curly brackets in (6)  are described by 
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the expression ( 13) outside the neighborhood of the para- 
metric resonance, while in the &'Iz-neighborhood of a reso- 
nance of type I, or in the &-neighborhood of a resonance of 
type 11, they are described by the relation ( 17). These neigh- 
borhoods have their center at the point v, = (q, - A,)/x 
(we set ql = 0 for a resonance of type I).  The first factor in 
the integrand in (6)  is the Doppler contour; for applicability 
of the Doppler limit (i.e., to permit the exponential evaluat- 
ed at the point vp to be taken outside the integral) it suffices 
to satisfy either the condition u,  = o(E'/') or the condition 
u,  = O(1). 

If the parameters of the system are chosen in such a way 
that there are no atoms satisfying the parametric-resonance 
condition ( 12), the function R ( v )  is specified by the relation 
( 13). We then obtain a well known result: The function 
x(R,)  describing the absorption spectrum is a Doppler con- 
tour with a Bennet dip in it.13.14 AS already noted above, the 
width of the dip is a quantity of order O( 1 ). The oscillating 
component in the leading term of the expansion in E of the 
absorption coefficient is absent. 

If, however, for the chosen parameters of the system, 
there are atoms satisfying the condition (12a), i.e., 
21/2a1 < 1, thex(R,) dependence becomes more complicat- 
ed. When vp and vp + x-' are varying outside the velocity 
intervals that satisfy the parametric-resonance condition, 
the functionx(R,) is again a Doppler contour with a Bennet 
dip in it, and there is no oscillating component in the leading 
term. We shall discuss the behavior ofx(R,) in the situation 
when up or up + x-' approaches v,. 

Suppose that the parameters of the system are such that 
there is a group of atoms satisfying the condition for a reso- 
nance of type I. Of course, for such a resonance it makes 
sense to consider only the particular case (a) ,  i.e., 
J?, =I?= l,sinceforcase(b)a: =d=O(&) . I twasnoted  
above that, using our results, for the constant component 
T(u) we obtain T(v) = 0( 1 ). At the same time, if we probe 
atoms off resonance, T(v) = O(E-I). Thus, a resonance of 
type I leads to a change of the order of magnitude of the 
constant component [the function t(R,)] of the probe- 
wave-absorption coefficient. 

As regards the oscillating component S(v),  as follows 
from Eqs. ( 13 ) and ( 17) it changes in order of magnitude as 
the quantities vp + x-' characterizing the probe-wave fre- 
quency approach the velocities of the group of atoms that are 
in a type-I resonance: Outside this group of atoms S ( v )  is of 
order 0 (  1 ), while for these atoms it is of order O(E- ' /~) .  
Using simple arguments, we can calculate in leading order 
the oscillating component of the function x(R,)-the func- 
tion s(R,). Here we take into account that, as follows from 
( 14), in the given case the function S(v) is slowly varying in 
comparison with the Lorentzian contour: S ( v )  varies over 
intervals of order O(&'lZ), whereas the Lorentzian contour 
varies over intervals of order O(E), near the parametric-res- 
onance point. The closeness of vp f x-' to u, here implies 

In the original notation this relation can be written in the 
form 

It follows from this that in the integration over v near 

vp + x-' in the leading term we can assume the following 
relations to be valid: 

F = l ,  E=a12az, v=6+c2/2. 

Taking this into account, we obtain 

Thus, the oscillating component of the function x (R,) 
in the case of a parametric resonance of type I is of order 
o(E-"~). Its amplitude has a zero at f = 0 (i.e., for exact 
tuning to the parametric resonance) and two humps at non- 
zero values of f. Here the parameters S and f [which are 
quantities of order 0( 1 ) ] characterize the tunings of the 
external radiation and of the frequency of the probe radi- 
ation, respectively, to the parametric resonance. 

We now consider the case of a parametric resonance of 
type 11. When the corresponding conditions are fulfilled the 
function x(R, )  possesses complicated behavior when the 
quantities vp and vp + x-' pass through values in the E- 

neighborhood of the point v, . In this situation we can assume 
that the following relations are valid: 

To determine the behavior of the constant component t(S2,) 
of the absorption coefficient near the parametric resonance 
we assume that up = v, + ED%-', with P = 0 (  1 ). In the 
original quantities this implies that R, = 2w - R, 
- q,D - EPD. From (6)  and (17) it follows that 

The oscillating component of the absorption coefficient has 
singularities, associated with the presence of the parametric 
resonance, at R, = 2w - R,  - q,D & D - EPD, with 
/3 = 0( 1 ) . Using ( 6 )  and recognizing that in the given case 
o = q,, we find an expression for s(R,) : 

Here the choice of the signs in the integrand is opposite to the 
choice of the signs in a,, and the parameters q, and p de- 
scribe the tuning of the external radiation and the tuning of 
the probe wave to the parametric resonance. We note that 
the constant component and the amplitude of the oscillating 
component in the neighborhood of the parametric resonance 
are quantities of the same order. For specified primary-wave 
parameters and secondary-wave frequency, the parameter 
depends linearly on the relative amplitude a, of the second- 
ary wave. By varying a, (and, correspondingly, g), we can 
change the integrands, and thereby change the behavior of 
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t( 0,) and s(R,). For example, for relatively large values of 
the function V(Y) has a minimum at Y = 0. Fixing the 

parameters of the primary and secondary waves, and mea- 
suring the probe-wave frequency 0, (i.e., the parameter P ) ,  
we find the minimum of s(R,) at P = 0. Here, the relative 
magnitude of the minimum, i.e., its contrast, will be of order 
O(1). 

From the relations given above it is possible to find in 
explicit form the amplitude and phase of the oscillating com- 
ponent s (0 , )  of the absorption coefficient. However, even 
without this, it is possible to conclude that they will also be 
rather complicated functions both of the primary-wave and 
secondary-wave parameters and of the probe-wave frequen- 
cy 0, (i.e., of the parameter p) and will possess minima 
(maxima) with contrast of order O( 1 ) . This supplementary 
structure, associated with the presence of parametric reso- 
nances both for the constant component and for the oscillat- 
ing component, has a width of order 0(&'12) for resonances 
of type I and O(E) for resonances of type 11. Thus, paramet- 
ric resonances lead to the presence of sharp singularities in 
the probe-wave-absorption spectrum. We emphasize once 
again that away from the parametric resonance there is no 
oscillating component in the leading term in the expansion in 
E of the absorption coefficient, i.e., in the neighborhood of 
the parametric resonance a change (increase) is observed in 
the order of magnitude of the amplitude of the oscillating 
component. 

In order that the effects described above be manifested 
in experiment, it is necessary, as already mentioned, that 
certain conditions on the parameters of the atom and exter- 
nal field be fulfilled. Namely, the Rabi parameter A ,  of the 
primary wave and the detuning D between the frequencies 
of the primary and secondary waves should be considerably 
greater than the widths of the levels of the atom, while the 
Rabi parameter A, of the secondary wave should be of the 
same order as the widths of the levels. In addition, the condi- 
tion 2A, < D should be fulfilled. The choice of these param- 
eters (the intensities and frequencies of the components of 
the external field) is in the hands of the experimenter, and 
can be made in such a way that these conditions are fulfilled. 
Following Chapter 2 of Ref. 14, we shall consider as an ex- 
ample the 41S0-43P, transition of the 40Ca atom. The radia- 
tive width of the transition is equal to 410 Hz, which is much 
smaller than the Rabi parameter A, = 1 X lo6 Hz of the pri- 
mary wave for an intensity of the latter of 1 W/cm2. If the 
intensity of the secondary wave is of the order of W/ 
cm2, the value of its Rabi parameter is of the order of the 
width of the levels. By taking a detuning between the fre- 
quencies of the primary and secondary components that is 
greater than 2 x lo6 Hz we fulfill the conditions necessary 
for the appearance of parametric resonances. 

We note here that in the derivation of our formulas we 
assumed that a number of restrictive conditions on the pa- 
rameters of the system are fulfilled, e.g., that the widths of 
the two levels of the atom coincide. However, there are 
grounds to suppose that the effects described will also occur 
in a more general situation. 

6. CONCLUSION 

We shall summarize the results. For a gas of two-level 
atoms placed in an external field (consisting of a primary 
and a secondary wave) and probed by a probe wave we have 

written out the conditions for the existence of parametric 
resonances, which can be of two types. Parametric reso- 
nances lead to the appearance of a complicated and subtle 
structure for the constant component of the probe-wave-ab- 
sorption spectrum. This structure is observed upon variation 
of the probe-wave frequency within a range of order 
O[(yD)"2] about the value 2w - 0, (for a resonance of 
type I )  or within a range of order O(y)  about the value 
2w - 0, - q,D (for a resonance of type 11); here, y is the 
natural line width. We recall that the principal initial as- 
sumption was the condition D 9  y, which can be realized 
easily in experiment. In addition, the probe-wave-absorp- 
tion coefficient in the steady-state regime contains a compo- 
nent oscillating with frequency D. Away from the paramet- 
ric resonance its relative amplitude is a quantity of order 
O(1). As the probe-wave frequency passes through the 
neighborhoods of the values 2w - R,  - q,D f D the rela- 
tive amplitude of the oscillating component of the absorp- 
tion coefficient is a quantity of order O[ (D /y) 1'2] for a reso- 
nance of type I, and O( D / y )  for a resonance of type 11. This 
amplitude also possesses complicated behavior in an asymp- 
totically small neighborhood of the parametric resonance. 
The phase of the oscillating component is related to the ve- 
locity of the group of atoms being probed. Field broadening 
of these structures (the principal wave is not assumed to be 
small) is absent. By choosing the parameters of the system- 
in particular, the parameters of the primary and the second- 
ary wave, it is possible to change the dependence of the mea- 
sured quantities on the probe-wave frequency. These cir- 
cumstances make such systems promising in spectroscopic 
applications, and also in the creation of optical reference 
frequencies and in laser-frequency stabilization. 

The author is grateful to M. Z. Smirnov for valuable 
discussions. 
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