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The asymptote of higher orders of the l/n expansion in quantum mechanical problems is found. It 
is shown that the coefficients dk' of the l/n expansion grow factorially like k ! akas k-+ rn . The 
parameter a as a function of the coupling constant is studied. The derived analytic expressions 
agree with numerical calculations. As examples, the Yukawa, HulthCn and V funnel potentials 
are considered, as well as the Stark effect in the hydrogen atom and the molecular ion H$ . 

1. The l/n expansion occupies a special place among 
new quantum mechanical methods (see, e.g., Refs. 1-14). It 
is highly effective for highly excited (Rydberg) states of 
atoms and molecules, including effects in strong external 
 field^.^,^-' In what follows we consider a version of this 
method suggested in Ref. 4, which can be applied both to a 
discrete spectrum and to quasistationary states (reson- 
ances). The energy values, which are complex in the latter 
case (En, = E, - i r /2) ,  are represented as a series in pow- 
ers of a "small parameter" l/n: 

2. ASYMPTOTES OF HIGHER ORDERS OF THE 1 /n  
EXPANSION (NUMERICAL CALCULATIONS) 

Using recurrence relations (see Refs. 8 and 14), we 
have calculated 30 to 50 coefficients dk',  checked that they 
follow the asymptote (2) ,  and found the parameters of the 
latter. The calculations have been performed for the follow- 
ing problems: the V-funnel potential 

V(r) =-r-'+gr, g>O, (3)  

its generalization 

e ( ~ )  e ( ~ )  V (7) =-r-'+ (g11V) rv, 
E G E ' - ~ & ~ = E ( O '  f - f . . . + - + . . . , ( I )  

(3a) 
n nk the screened Coulomb potential 

where n = n, -t- I + 1 is the principal quantum number, I is 
the orbital angular momentum, E = 2n2Enl is the reduced 
energy of the level E" = n2rn1, and k is the order of the l/n 
expansion. 

The behavior of the coefficients dk' for k )  1, apart 
from being interesting from the point of view of theory, is 
important when the energy is calculated to high accuracy on 
the basis of the expansion ( 1 ) . As is known, the divergence 
of the perturbation theory (PT) series is due to the instabil- 
ity of the vacuum state when the sign of the coupling con- 
stant g is reversed (the so called Dyson phenomenon first 
considered in quantum electrodynamics'* and later for the 
anharmonic os~illator, '~- '~ Stark,'9-21 and Seeman22 effects 
and other quantum mechanical problems23-25). It has turned 
out that the asymptote of higher PT orders has, as a rule, the 
form 

V(r)=-r - ' f  (x). x=pr (4 )  

p is the characteristic screening radius and 
f i  = m = e = I ) ,  and the Stark effect in the hydrogen atom 
and its spherical model [which corresponds to the change 
g- - g in Eq. ( 3 ) 1. These examples embrace a wide class of 
potentials encountered in physics, including the short-range 
Yukawa and HulthCn potentials, the potential with confine- 
ment (3)  often used in quantum chromodynamics, and po- 
tentials with a barrier. 

In all cases, it has turned out that a = 1, i.e., the asymp- 
tote is factorial. The dependence of the number a in Eq. (2) 
on the problem parameters is of interest. For the potentials 
(4)  the suitable parameters is Y = n2p (see Ref. 4); in the 
case (3) p = ='I2, and in the case (3a) p = g'/(N+ ') and 
f(x) = 1 - N -'xNf '. Finally, for the Stark effect ,, = n 2 g 1 / 2 = ~ 1 / 2  - , where is the constant electric field, and 
F is the "reduced" electric (we use here atomic 

c1 C L  
E , = ( k a ) !  a k k 6 ( c . + - - + - +  . . . ) .  k - -a ,  (2)  units). 

k  k2 The l/n expansion is about a classical equilibrium point 

where a > 0, fl, a, etc., are the constants which can be calcu- 
lated. 

When we pass from PT to the l/n expansion ( I ) ,  in- 
stead of g, we now have an expansion parameter l/n which 
does not enter in the Hamiltonian explicitly. Contrary to 
higher PT orders, the coefficients dk) are complex functions 
ofg. Therefore Dyson's arguments should be altered, as will 
be done below. 

x,(v) in an effective potential which includes centrifugal 
energy. At sufficiently small Y this point and all the coeffi- 
cients dk) ( Y )  are real. When the parameter Y increases, for a 
certain value Y = Y* we have a collision of two classical solu- 
tions: stable (x,) and unstable equilibrium points. The fre- 
quency w of small-amplitude oscillations near the point x, 
vanishes (thus indicating the loss of stability): 

The values of Y, and x, = x,( v, ) are found from the equa- 
tions 
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As far as calculations are concerned, it is worth noting that 

where the function Y(X)  is given by the first of Eqs. (7),  
p (x )  = - 2xZv'/v, and all the values are taken at x = x, . 

For Y > Y, the equilibrium point becomes complex, as 
well as the coefficients E','(Y). Evidently, such a solution 
has no physical meaning in classical mechanics, but in quan- 
tum mechanics it does allow us to find (in the framework of 
the l/n expansion) both E, and the width I? of the Breit- 
Wigner resonances of energy E = E, - iT/2. 

Let us discuss the results of our calculations. In Table I 
we list the coefficients of the l/n expansion taken with oppo- 
site sign for the problem of the Stark effect in the hydrogen 
atom.') For definiteness we have chosen the states with 
n, = n, = 0 and m = n - 1, where n,, n,, and m are parabol- 
ic quantum numbers. This table illustrates the behavior of 
l/n expansion coefficients typical also of other quantum me- 
chanical problems. For F <  F, = 212. 3 - = 0.208 1 all coef- 
ficients E',' are real; for F >  F,, i.e., after the collision of 
classical solutions, they acquire an imaginary part. With in- 
creasing k, these coefficients first decrease (to k = k,- 3- 
5 ) ,  and fork > k, they begin to grow. Such a behavior of E',' 

determines the advantage of the l/n expansion in compari- 
son, for example, with PT series (2a), where the factorial 
growth of higher orders, E,, begins, as a rule, directly from 
k =  1. 

Figure 1 shows the dependence of la1 on the ratio Y/Y, 

for the Stark effect in hydrogen, its spherical model, and the 

FIG. 1. The asymptote parameter a(v) as a function of v/v, . The curves 
1, 2, and 3 relate to the Stark effect, its spherical model, and V funnel 
potential, respectively. In the last case v, = 2.3 - 3'2 and the values of a 
are multiplied by 100. 

V-funnel potential. For vzv ,  the asymptote parameter 
a+ oo, bringing about a drastic growth in dk ' ,  SO that the 
expansion ( 1 ) ceases to be valid (this has been noted al- 
ready, when the first attempts of summing the l/n expansion 
have been made;4v5 the cause is clear from Fig. 1 ). The V- 

TABLE I. The highest orders of l/n expansion for Schottky effect. 

Note. The table contains the coefficients - dk' for the states (O,O,n - 1) in the hydrogen atom, k is the order of the l/n expansion, F =  n 4 1 ,  
fi = m = e = 1 (the electric field unit is I,, = 5.142. lo9 V/cm). In the parentheses the order of magnitude is indicated, i.e., (m) = 10". For example, 
1.148( - 2) = 0.01 148. 
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funnel potential (3)  has only discrete spectrum (for 
0 <g < w ), therefore no collision of classical solutions oc- 
curs here. According to this, the parameter a remains finite 
for all v (see curve 3 ) . 

Similar calculations have been performed for the 
Yukawa If(x) = e-" in (4 ) ]  and Hulthtn 
Lf(x) =x/(ex - I ) ,  see Fig. 21 potentials. Note that in 
these two cases the asymptote of E ' ~ '  (v) has, along with (2),  
oscillating terms corresponding to the singularities in the 
complex plane of the Bore1 variable z [see (A3)]. These 
terms are important for large k = 20-30, which makes the 
numerical calculation of the parameter a much more com- 
plicated (the details are discussed in Appendix A). 

3. The behavior of the asymptote parameter a = a (v )  
for small v and v- v, can be found analytically. In the first 
case2) 

where k> l ,  and fk are the expansion coefficients of the 
screening function 

The asymptotes of the l/n expansion coefficients are deter- 
mined here by the nearest singularity of the function f(x)  in 
the complex plane. If this singularity is at a finite distance b 
from zero, then 

Thus, even for small v(v, [when the potential (4)  is 
close to the Coulomb potential for which the series ( 1 ) is cut 
off at the first term] the coefficients of the l/n expansion 
grow factorially. For example, for the Hulthtn potential we 
have 

FIG. 2. The verification of Eq. ( 12) for v close to v, . The upper curve 
corresponds to the Hulthkn potential, and the lower to the Yukawa poten- 
tial. The ordinates are the values of ii = I ( 1 - v / v ,  ) 5'4a(v) 1. The param- 
eter a ( v )  was found numerically by using the higher orders of the l / n  
expansion. Theoretical values i i ( v ,  ) = A  are denoted by points. 

where B, are the Bernoulli numbers. Therefore 

(k is odd) which agrees with the Eq. (9).  
In the second case (v- v* ), passing from x = p r  to 5: 

x = x,( 1 + n - 'I2 c) and expanding all the quantities in the 
Schrodinger equation in the powers of 5, we find3) the an- 
harmonic oscillator equation in which the nonlinearity {" 
enters with a factor proportional to n - ("- 2'/2 (s>3). Thus, 
as n - w we have a weak-coupling regime. Using the well- 
known results for asymptote of the higher PT orders for the 
anharmonic ~sc i l l a to r , ' ~~ '~  we easily find that the corre- 
sponding contribution to the coefficient dk' is of order 
(k  - 1)!w - ("+ ')'("- 2) .  For finite w > 0 all these contribu- 
tions are, generally speaking, of the same order. If, however, 
the frequency w -0 [i.e., v- v, , see (5 ) 1, then the contribu- 
tion from the smallest value s = 3 prevails. Taking into ac- 
count the results of Ref. 18 for the cubic oscillator, we find 
that 

8"' ( v )  =const .k! akk-", k+oo, (11) 

where a (v)  has a power-law singularity for v = v, : 

Here C is the same coefficient as in Eq. (5) .  In Table I1 we 
have listed the values of the coefficients A and C, and also vc, 
and v, for some short-range potentials (including the 
Yukawa and Hulthtn potentials often used in nuclear phys- 
ics and the Tietz potential which is a good approximation for 
the Thomas-Fermi model in neutral atoms27v28 ) and also for 
the Stark effect in its spherical model (3).  The quantities v, , 
A and C were defined above. As for vc,, this value of the 
parameter v = n2p corresponds to do' = 0, i.e., to the in- 
stant when the levels with n % 1 and I- 1 merge into the con- 
t i n ~ u m . ~  

4. PARAMETERS OF THE E(~ASYMPTOTE 

We now find the expressions for an arbitrary potential, 
limiting ourselves for simplicity to the states with 
1 = n - 1 %I .  The quasi-classical momentum is4' 

where y = n - 'r and E"' ( v )  is the classical energy corre- 
sponding to a particle immobile at the point x, = vy,. The 
level width, to exponential accuracy, is 

I, 

r. n exp(--21 i p l d r ) =  erp( -2n~) .  -. 
This gives for A = l/n -0 energy jump the behavior which 
corresponds to the function E = Z,E'~'A with factorially 
growing coefficients. The E ' ~ )  asymptote for k- w is given 
by the dispersion relation in the variable A: 
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TABLE 11. 
-- - 

NO. 1 l lx )  1 'cr I v. I C 1 * I Notes 

e -= 
t(e=-i)-l 
exp (-z2/2) 
(1+z) -2 
ze-' 
z exp(-z2) 
l+zZ 

- 

Note. Here A and Care the coefficients in Eqs. ( 12) and ( 5 ) . 

Yukawa potential 
Hulthtn potential - 
Tietz potential - 
Gaussian 
Spherical model 
Stark effect 

Here we regard A as a continuous variable (which is natural 
for n) 1 ) and assume that the energy is analytic in A, after 
which the dispersion relations are derived in a standard 
manner [see, e.g., Ref. 17 devoted to the asymptote of higher 
PT orders for an anharmonic (gx4/4) oscillator]. 

Equation ( 14) yields the relation between the asymp- 
totes of the l/n-expansion coefficients and the widths of 
highly excited states: 

where 

0-'=2" [ U  ( r ) - u  (r.)  ]*dr=2Q ( v ) ,  (16) 
?I 

and yo and y, are the turning points (see Fig. 3 ) . This formu- 
la gives the parameter a (v)  for v < Y* and can be analytical- 
ly extended to the region Y >  Y,. Other asymptote param- 

where 

yo, l=y. [ lTh( l -v /v . ) '"+.  . . 1, 
~ ~ = y . [ l + 2 h ( i - ~ / v . ) ' " + .  . .], 

h= ['/~(i+~f"'/3f")'.,,.]-" 

(X  = pr = vy). Substituting ( 17) into ( 16) and calculating 
the integral, we find 

which, together with ( 18) and (5) ,  yields the formula ( 12). 
Thus, at the point of collision of classical solutions the 

parameter a (v)  has a power-law singularity whose exponent 
does not depend on the form of the potential V ( r ) .  As nu- 
merical calculations show (see Appendix C) ,  it retains the 
same value, - 5/4, also for the two-dimensional (the vari- 
ables 5 = r + z and 9 = r - z are parabolic coordinates) 
problem of the Stark effect in the hydrogen atom. 

5. SUMMATION OF THE 1 /n EXPANSION 
eters (u, c,, ... ) are easily foundkith the help of ( 14), if the We have found thus that in quantum mechanics the 
pre-exponential factor in the formula for T, is known. In the asymptotes of higher orders of the expansion are, as a 
case of the Stark effect and spherical model ( 3 ) the function rule, factorial.5)  hi^ explains why in some cases (e.g., the 
Q(Y) is calculated analytically (see Appendix B). Stark ), in order to find the energy to an accuracy 

now the to v* Taking it necessary for the experiment, we have to calculate several 
account that as Y-Yo we P = w2y< 4 ( ~  YO)' + ' ' 9  tens of coefficients dk' and sum the series ( 1 ). At present 
where w is the dimensionless 0~cillation frequency, we get this procedure is developed well enough and does not pres- 

=o = 
FIG. 3. The effective potential U (in the qualitative form) 

ent any fundamental difficulties. 
In conclusion, let us consider the problem of summa- 

tion of the l/n expansion in the interval Y,, < Y < Y* . That 
this problem is not trivial is seen from the fact that all the 
coefficients dk' (v) are real, whereas the sum of the series 
( 1) is complex (since the level now belongs to continuum, 
having become a Breit-Wigner resonance). To sum the se- 
ries ( 1 ), we have used the method of PadC-Hermite approxi- 
mants (PHA) whose brief description is given in Refs. 6 and 
8. We have restricted ourselves to quadratic PHA, [L, M, 
N] (A)  -F(A), where A = l/n is the expansion parameter, 
and F ( A )  is found from the equation 

PL-QMF+RNF2=0, 

that is 

(20) 
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where PL (A ) , QM (A ) and RN (A)  are polynomials of degree 
L, M, and N, respectively, and whose coefficients are found ' 
from the relation 

P,(A) -QJr (h) E + R , ~  (?.)eZ=O (hL+"- i V + 2 ) ,  A-0 * (21 ) 

while~(A) is the formal power series ( 1 ). Substituting it into 
(21) we obtain a system of linear equations for the coeffi- 
cients of the polynomials mentioned above. Using a comput- 
er, we can easily find the numerical solution of this system. 

It is easy to understand that, since the coefficients E ' ~ '  

are real for all k = 0,1,2, .. ., the polynomials PL , QM and RN 
also have only real coefficients. As seen from (20), the PHA, 
unlike ordinary PA [L /M] (A), can have an imaginary part, 
therefore the summation of the l/n expansion by the PHA 
method is adequate for quasistationary states. 

This method has been applied to two problems: to the 
Yukawa potential and Stark effect. In the first case we have 
compared the calculated values of E, and I? with those from 
Ref. 25, and in the second case with the results of summing 
PT series in powers of electric field 8.6 The values of the 
quasistationary state energy found by independent methods 
agree well with each other. 

Consider, as an illustration, the Stark effect in the hy- 
drogen atom for the states (0, 0, n - 1 ) . In Table I we have 
listed the l/n expansion coefficients in the region of interest, 
F< F, = 0.208 1, i.e., before the collision of classical equilib- 
rium points (here F = n 4 8  ) . It is seen that dk' has fork 2 10 
a rapid growth which becomes especially noticeable as 
F-+ F, . The results of summing the series ( 1 ) for n = 3, 10, 
and 20 are given in Table 111, ,where the values of the Stark 
shift A&, and level width are also listed: 

(these values are denoted in Table I11 by l/n).  As a rule, we 
have used diagonal PHA [i.e., L = M = N in Eqs. (2 1 ) ] 
and N- 15. Thus, we have taken into account 30-40 orders 
of the l/n expansion, which ensures an energy-calculation 

accuracy of order 10-4-10- (in Table I11 we have given 
only the established figures of the PHA sequence). The ac- 
curacy of the l/n expansion drops at F z F ,  , which is quite 
understandable in light of the results above. As seen from 
Table 111, the values of E, and r found upon summing the 
l/n expansion agree fully with the results of independent 
 calculation^.^ Similar results have been found also for other 
states. 

For Y > Y* the coefficients of the l/n expansion become 
complex and the calculation of the level width r is simpli- 
fied. Instead of (20) it is sufficient to use, for example, par- 
tial sums of the series ( 1 ) : 

In doing this, we can use fewer coefficients E"'. In this man- 
ner we have found the values of AE, and E: from Table I11 
belonging to the region F >  F, . Earlier the partial sums (23) 
were used in other quantum-mechanical problems.3-5*7 

The accuracy of the l/n expansion grows with the prin- 
cipal quantum number n, therefore this method is most suit- 
able for Rydberg (n)  1 ) states. 

6. THE 1 In EXPANSION AND THE PROBLEM OF TWO 
COULOMB CENTERS 

The nonrelativistic problem of two Coulomb centers 

is encountered in various branches of physics;29 the applica- 
tion of the l/n expansion to this problem has been consid- 
ered in Refs. 12, 30, and 3 1. In this case the coefficients dk' 
of the series ( 1) depend on the internuclear distance R. The 
first term &'O'(R) corresponds to the energy of a particle 
moving along a classical orbit, and is determined by the con- 
dition of equilibrium of the forces acting upon an electron in 
its rest system. We restrict ourselves to the symmetric case 

TABLE 111. The Stark shift and width of the states (O,O,n - 1 )  in a strong electric field. 

Note. The quantities AE, and E;,' are defined in ( 2 2 ) ;  atomic units are used. 
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Calculation Calculat~on 
method 

n=3 n=3 
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0q20 
0.25 
0.30 

Oq40 

0.50 

0.07 

0.10 
0.15 
0.18 
0.19 

1.2 ( -7)  
1,186 (-7) 
1,231 ( -4)  
8,145 ( -3)  
2,223(-2) 
2.817 (-2) 
2.820(-2) 

9,663(-3) 
9.6627 (-3) 
2,1020(-2) 
5,394(-2) 
7,691(-2) 
8,437 ( -2)  

8.434(-2) 

9 2 (-2) / 9:157 ( -2)  
0.1244 
0,1519 
0 1941 { 0:1942 

{::;ij9 

l l n  
PT 

I l n .  PT 
n 

17n 
PT 

n=iO n=20 

0.10 
0.15 
0.18 

OqZ0 
0.25 
0.30 
0.40 
0.50 

- 
3,469 ( -2)  
7,283 ( -2)  
0.1 170 
0.2143 
0,Z 114 
0.3169 
0.317 

1.15982(-2) 
2.77719(-2) 
4.32324 ( -2)  

j5.7258(-2) 
15,7258 ( -2 )  
9,3186 ( -2)  
0.12399 
0.17199 
0,20709 

1 ln  
PT 

l l n .  PT 
n 

i l n  
PT 
i l n  
PT 

1,2966(-2) 
3,1755(-2) 
5.0356(-2) 
6,4866 (-2) 

16.4881 ( -2)  
9.9766(-2) 
0.12967 
0.17637 
0.21044 

- 
i , l ( - 7 )  
2.069 (-4) 
2,971 ( -3)  
2.970(-3) 
2,3222(-2) 
5,3783(-2) 
0.12775 
0,20923 

l / n .  PT 
v 
H 

1 / n  
PT 

l l n .  PT 
* 
b 
n 

- 
7.379(-5) 
2,5162 ( -3)  
7.877 (-3) 
7,870(-3) 
3.2154(-2) 
6,5272 ( -2 )  
0.14340 
0.22859 

I l n ,  PT 
n 
)) 

PT ' In 
1ln. PT 

Y 
Y 

n 



Z, = Z2 = 1, which corresponds to the molecular hydrogen 
ion H: . For the states with m = n - 1, n - co the equations 
can be written in a parametric form 

w h e r e ~ < r < f , ~ = n ~ ~ , ~ = n - ~ ~ , a n d ~ ( ~ ) i s t h e t e r m  
energy. These equations give the dependence of the l/n ex- 
pansion coefficients on R and easily follow from the formu- 
las of Ref. 30. Here w,,, are the frequencies of normal elec- 
tron modes about the equilibrium point in the effective 
potential U(p,z), p = (x2 + y2) and the variable T has a 
simple geometric meaning: T = cos2 a where a is the angle at 
the vertex Z in the triangle (Z, Z, e) . 

Explicit expressions were obtained3' for the first three 
orders of the l/n expansion; subsequent coefficients are 
more conveniently found by recurrence relations. A relevant 
algorithm realized on a computer has made it possible to 
calculate effectively tens of coefficients dk ' (R)  in the prob- 
lem of two Coulomb centers. Numerical.analysis shows that 
they grow factorially as k- CO, and the asymptote parameter 
a (R)  increases drastically for g-R, z 1.3 (see Fig. 8 in 
Ref. 30). We shall list below some of the analytic results. 

With the help of calculations similar to described above 
(see Sec. 4), we find 

The frequency o2 a f -0 as 7- 3 ,  and the corresponding 
classical orbit loses its stability. This happens for 
g = R, = 33/2.2-2 = 1.299. F O ~ ~ - + R ,  we have 

where E, = - 32/27, f = 1 - /R, , and as R -0: 

whence 

-'/,[ln(nZ/R)-(1 -In 211-', R+O, 
a ( R )  = 

- ('/.)"y* (l-fs/,of+ . . .), R+n2R.. (27) 

Thus, a (R)  < 0 for 0 < R < n2R,. This agrees with numeri- 
cal calculations3' which show that in this range of R the 
series ( 1 ) is oscillating and can be summed by PA. The PA 
convergence becomes worse when R reaches n2R,, since 
a (R ) -+ oo and the coefficients dk' (R ) increase drastically. 

A more detailed analysis shows3' that three classical 
trajectories merge at i? = R, . One of them, So, given by the 
equations above, is stable whereas the other two, S, and S2, 
are complex.   or g > R, the orbit So loses stability (w: < O), 
and S, and S2 become real and determine the l/n expansion 

coefficients (for R & 1 each of them corresponds to electron 
localization near one of the nuclei Z, or Z2). For E"' (R), 
a (R) ,  etc., we can find, in this case, formulas similar to (25) 
and (26). In particular, 

The variable c i s  related now to R by the equations 

where+<r<l  (notethatg =R, f o r r = f  andr-+lcorre- 
sponds to R - co ). The formulas (26) and (28) are derived 
on the basis of Eq. ( 16) with allowance for variable separa- 
tion in elliptic coordinates = ( r  + r )  and 
77 = (r,  - r2)/R for the problem of two Coulomb centers. 

It is seen from (28) that a ( R )  > 0 if > R, . This agrees 
fully with the numerical calculation3' of higher orders of the 
l/n expansion, according to which the coefficients E ' ~ '  < 0 
for > R, , and the series ( 1 ) ceases to be alternating. 

7. Let us list in conclusion the main results of the pres- 
ent paper. They are Eqs. ( 1 1 ) and ( 16) for the asymptotes of 
higher orders of the l/n expansion, and also the character of 
the power singularity ( 12) near the collision point v = v, of 
classical solutions. These results are valid for an arbitrary 
potential V(r) and agree with numerical calculations of the 
coefficients dk ' .  

Problems without spherical symmetry, i.e., the Stark 
effect in hydrogen and the problem of two Coulomb centers, 
have also been considered. For a certain value of the param- 
eter F = n 4 8  = F, or R = n2R, a collision (coalescence) 
of the classical orbits, stable and unstable, occurs. In the first 
case two orbits merge, while in the second case three. Corre- 
spondingly, the exponents of the power-law singularity of 
the parameter a are different, either - 5/4 or - 3/2 [see 
Eqs. (12) and (27) and Appendix C]. Explicit analytic ex- 
pressions for the asymptote parameter a have been obtained 
both for the V-funnel potential (3a) with N = 1 and 2 and 
for the problem of two Coulomb centers. 

The authors are sincerely grateful to V. D. Mur for a 
detailed discussion of the results and for helpful comments. 

APPENDIX A 

For the Yukawa and HulthCn potentials the asymptote 
of higher orders of the l/n expansion has a more complicat- 
ed form than (2)  : 

E ' ~ )  (v)  =k! {aAkeco[l+O(l/k)] 
+ Re(A k k B 1 ~ )  [ I +  O(1/k)]}=1c!{ahlieco ( A l l  

+athke~clcos(k~+cp)+. .'.), k+-, 

where a (v)  > 0 for vo < v < v* , and the parameters A and C 
are complex: A = a, exp (i0) and C = c, exp ( ip)  . 

Numerical calculation of these parameters with the 
help of known coefficients dk' can be performed using the 
Borel transformation 

B ( z )  22. z. 
k-0 

kl 

The Borel transformant B(z) has at z = z, = a - ' the near- 
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est-to-zero singularity whose character is determined by the x.= ( ~ + 2 ) - ~ / ( ~ + " ,  ,,.= ( ~ + l )  ( N + ~ ) - ( N + Z V ( N + ~ .  
parameter 0 in (A1 ) : C=,[2 ( N i - 2 )  ]'I4, A=51,.2-"'*(N+2)7'. (B3) 

B ( 2 )  (2-zo) -($+I' (A3) The energy ~ " ' ( v )  decreases monotonically with v = nip 
[the second term of the asymptote ( A l )  corresponds to and at the collision point v = v, reaches the value 
complex conjugate singularities of the Bore1 transformant at E, = - [ 1 + ( N  ' + 2N) - '1. Equation (B2) yields 
the points z = 1/A and 1/A * I .  To find the parameters a and 
0, we have used integral approximants3' found from the 2 

N+2 N+2 
(B4) 

equation [cf. (20) 1 

whence 

(A41 The case N = 1 corresponds to the "spherical model" 
for the Stark effect in hydrogen. Note that the constants C 
and A in this case have the same values as in the case of the 
exponential potential (but different values of v, , see Table 
11). 

The function e, in ( 16) is given by 

1 cp (y , v )- -y -z-2y-~-2N-~VN+1 N-E(0) 

QL (t' 
Y (.I. (B5) 

X { f ( 0 ) -  J dt- PL(t) cap( J- d t ' ) )  * (A5) Since the classical energy E'O) corresponds to the minimum R L ( ~ )  RL ( t ' )  
of effective potential, q(y,v) has a multiple root y = yo 

where PL, QL, and RL are polynomials of degree L. It fol- (yo < y  < y, is the below-barrier region, in which e, > 0, see 

lows from (A5) that if QL (z)/R, (z) = p(z  - zo) - + ... Fig. 3 ) .  The integral in ( 16), which is, generally speaking, 

at z+zo, the function f(z) has a power-law singularity: elliptic for N = 1 and 2, can therefore be expressed through 

f(z) (zO - zO) - P .  Accordingly, zo = l/a is defined as the 
elementary functions. Omitting the details of the calcula- 
tions, we can write the final formulas. For N = 1 (spherical smallest, in absolute value, zero of the polynomial RL (z) 
model) we have 

with the exponent fl = p  - 1, where p = Res QL (z)/ 
RL (z) Using this method for the Yukawa potential, 
we have found that = - 1.50 + 0.01 (for v >  vcr ),which z3 - 

=-'=4[Z + - - a,, Z ]  
agrees with Eq. ( 1 1 ) . 3(1-z2) 

Owing to the second term of the asymptote ( A l ) ,  the 8/,,z5 ( I + ~ ~ / , Z ~ +  . , .), 2-0, 
coefficients dk' may start to oscillate with increase of k, i.e., 
the series ( 1 ) is not constant-sign.@ For v > vcr the first 7 (B6) ----+ 21n(1-z)+(-- 21n2)+.  . . . z-1, 
term begins to dominate in (A l ) ,  and the coefficients - 1  3,:-Z) 3 

~ ' ~ ' ( v )  with k )  1 become positive. A function with such 
coefficients has a finite imaginary part, as is readily seen by where z = [ ( 1 - 3xg )/( 1 - xg ) ] '/' rw. TO derive this 
considering the simplest example (the Euler series33 ) expression, we have used the relation 

w e("=-'ls (l-2/Jz2) (1-1/5z2) - 2  

F (2)  = K! ~ ~ = - z - ~ e - ~ ~ ~ r ( O ,  -i/z), 
k=O 

(A6) [see (B4) for N = 1 1. The v-dependence of z can be found 
directly from the equation 

where T(0,t) is the incomplete gamma function. which yields 
As shown in Sec. 5, summing the l/n expansion allows 

us to restore the imaginary part T of the level energy, begin- I - V ~ - - ~ / ~ V ~ + .  . . , V+O, 

ning already with v = vc, , though in the interval vc, < v < v, Z(V)={ [6(1-v/v.) 1"'. v+V.=2.3-". 

all coefficients of the expansion ( 1) are real. On the other Hence 
hand, for v > v, the coefficients E ' ~ '  (v) become complex. In 
this case, to find the width F, it is sufficient to use the sim- 1-3v21n (v2/2) +O (v'ln v)  1, v+O, (B8) 
plest method of summation, e.g., partial sums of the l/n 
expansion (23 ) . and as v+v, we arrive at the formula (12) with the coeffi- 

c i e n t ~  = 5.3-1/4.2-17/4 - - 0.19967. For N = 2 we get 
APPENDIX B 

Consider the potential (3a) forg < 0, when it contains a I a-,=2 [38,, (1-~/zz2) (1-z2) -5 arctg 3'" z 
2 (l-zz)t'l - arth - 

barrier (N>  0). In this case p = ( - g)  ') , 2-+2 
f(x) = 1 + N - ' x ~ + ' ,  (B9) 

v = ~ ~ - x ~ ~ + ~ ,  ( ~ 1 )  where z = [ ( 1 - 4-4 ) / ( I  - x i  ) ] and xo(v) is found 
from (B 1 ). Note that the variable z again coincides with the 

N+2 [ 1-;_~;2, ] -" , ( ~ 2 )  frequency w of classical oscillations. Furthermore, 

6 v+@ 
where 6 = x,N+ I .  Hence n 

(B10) 
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and la( w ) 1 = +?r ; for y-v, = 0.4725 the formula (12) 
with A = 0.2476 is valid. The formulas for the V-funnel po- 
tential are obtained from the foregoing by the change 
g +  -g. We have 

~ = 2 ~ + 2 ~ ~ ,  o=[ (1+3~O~)/(l+xo2)]'b. 

Thereforez> 1 and tanhP'z = tanh-' ( l /z)  + ir/2,due to 
which the parameter a becomes complex (as mentioned 
above, this corresponds to oscillations of the l/n-expansion 
coefficients). In particular, as g-, w we have z- 3''2 and 

( a (  w ) 1 = 0.1578. 
For the spherical model we find the same limiting value 
a ( w ), as is easily verified with the help of (B6). 

APPENDIX C 

To verify numerically the expression ( 12), we consider 
the Stark effect. The asymptote parameter a can be repre- 
sented in the form 

(/3, /3' > 0).  It is convenient to introduce the variables 6 and 
7: 

I =  - lnla(F) I T = -  1 
1nIF-F.1 ' 

((22) 
In IF-F. ) ' 

we have then as F+F, 

Therefore the exponent /3 is determined by extrapola- 
tingg(r) to the point 7 = 0. The behavior ofg(r)  is shown in 
Fig. 4 up to r = 0.2 (or IF- F, Iz0.01). It is seen that it 
agrees with the value /3 = 1.25 which follows from (12). 
Thus, we have shown that the a (F )  singularity in the case of 

FIG. 4. Numerical calculation of the singularity exponentpin the case of 
the Stark effect: I - F< F, ; 2 - P> F, ; the dashed line is the extrapola- 
tion to T = 0. 

the Stark effect is the same as in the case of spherically sym- 
metric potentials. 

*S. I. Vavilov State Optical Institute. 
" Only the first digits of the l/n expansion coefficients are given, which is 

enough to draw a conclusion about their behavior with increasing k. The 
calculation of E ' ~ '  has been performed with a "fourfold" accuracy, as 
needed for the summation of the series ( 1 ) (see Sec. 5). 

" In Ref. 26 this formula has been derived using expansion of the reduced 
energy E in powers of v. Recurrence relations have been found24 for the 
coefficients of this expansion, which can be explicitly solved for v-0. 
Note that (8) corresponds to knotless (n = I + 1) states. 

3' The variable 6, unlike r and x, remains of order unity as n - m . 
4' Here we assume that the potential has the form (4). This form is suit- 

able for any spherically symmetric potential if no restrictions are im- 
posed on the screening function f(x) at zero and at infinity. 

" Owing to this, the series ( 1 ) diverge, and to calculate the energy E with 
high accuracy it is necessary to use the methods of summation of diver- 
gent series, such as the method of the Pad6 approximants (PA), etc. It is 
important that in many cases (e.g., for the V funnel ~ o t e n t i a l ~ . ' ~  ) the 
first two or three terms of the l/n expansion give the energy and wave 
functions to an accuracy acceptable in physics. 

6' Thus, for ~ ~ 0 . 5 3 2  < v,, (the Yukawa potential) we have 0 = ~ / 2  and 
la1 <a,, therefore the period of sign alternation in the sequence dk' 
equals two (which is confirmed by numerical calculations). 
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