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We investigate magnetic resonance in a superparamagnet, and derive the dynamic susceptibility 
of an ensemble of randomly oriented single-domain anisotropic ferromagnetic particles. We show 
that as the temperature rises, the orientational fluctuations of the magnetic moment 
simultaneously weaken the inhomogeneous broadening of the FMR line arising from the 
distribution in the directions of anisotropy axes of the particles and create an even stronger 
homogeneous (superparamagnetic) broadening. A particular result of the combined action of 
these effects is the nonmonotonic temperature dependence of the FMR linewidth in dispersed 
ferromagnets, which is well known in experiments. 

INTRODUCTION 

Continuing interest in the study of the physical proper- 
ties of ultradispersed ferromagnets and ferrites by ferromag- 
netic resonance (FMR) is fueled by the appearance of en- 
tirely new media belonging to this class: glasses and zeolites 
that incorporate transition metals, '~~ magnetic  liquid^,^ 
heterogeneous metal polymers,4 biogenic magnetite,5 etc. 
However, theoretical interpretation of the FMR spectra ob- 
tained remains a complicated problem. 

In an ultradispersed ferromagnet, the characteristic 
size of a particle is 50 to 200 A. Even taken by itself, the 
smallness of the particle size causes peculiarities in the mag- 
netic behavior. First of all, it is well-known6*' that a ferro- 
magnetic microcrystal with a volume V -  10- l 8  cm3 has no 
domain structure, i.e., it is uniformly magnetized and pos- 
sesses a constant magnetic moment p = M, V, where M, is 
the magnetization of the material that makes up the particle. 
Secondly, for V -  cm3 and M, - lo3 G the random 
magnetic field induced by thermal fluctuations, whose am- 
plitude Hf should equal k, T/p in order of magnitude, 
reaches room temperature values Hf > 10' Oe, and conse- 
quently becomes commensurate with the field Ha for the 
magnetic anisotropy of the material. It is this orientational 
diffusion of the vector p under the action of Hf that causes, 
among other things, the superparamagnetism of dispersed 
ferromagnets. 

The theoretical study of FMR taking into account the 
superparamagnetic effects, is the subject of this paper. In 
Ref. 8, equations were obtained that describe the motion of 
the magnetic moment of a single-domain particle at finite 
temperatures, and the temperature and frequency depen- 
dences of the natural FMR parameters were studied for par- 
ticles with the "easy axis" type of anisotropy. In Ref. 9, the 
dynamic susceptibility of an isotropic superparamagnet was 
calculated; in Refs. 10, 1 1 ,  FMR was investigated in an an- 
isotropic particle placed in a constant external field H$ H a .  

It is this latter problem that is closest in its formulation 
to the situation encountered in experiment. Actually, the 
overwhelming majority of data published to date on FMR in 
dispersed ferromagnets (see, e.g., Refs. 1,2,4,10,12-15) 
were obtained from measurements in a magnetizing field H 
at a fixed resonant excitation frequency w/2.rr- 10 GHz, 
which corresponds to H - 3 -  lo3 Oe. Thus, the condition 

H ) H a  is fulfilled for any dispersed ferromagnet in which 
the anisotropy field is a few hundred oersteds. 

The goal of this paper is to apply the theoretical results 
of Refs. 9 and 1 1  to FMR in solid dispersed ferromagnets. 
Calculating the dynamic susceptibility using these results 
requires averaging not only over the statistical ensemble of 
particles with a given direction of the anisotropy axis, but 
also over the orientational texture of the sample, i.e., over 
the angular distribution of the anisotropy axes in such a par- 
ticle. In what follows, we show that this second stage of aver- 
aging changes the observed dynamic susceptibility in a non- 
trivial way, and in particular allows us to obtain a 
temperature and field dependence of the FMR parameters 
that is qualitatively close to what is observed in experiment. 
Specifically, the discussion will center around the following 
phenomena: an increase in asymmetry of the absorption line 
as the temperature drops, a decrease in the linewidth AH as 
T increases, and an increase or decrease of the resonant field 
H,,, as the temperature changes, depending on the sign of 
the magnetic anisotropy constant of the dispersed particles. 

1. DYNAMICS OFTHE MAGNETIC MOMENT OF A 
SUPERPARAMAGNETIC PARTICLE 

In investigating the motion of the magnetic moment p 
of a single-domain particle at temperatures that are nonzero 
but not too close to the Curie point, it is natural to assume 
p = M, V  = const. 

This allows us to study only the rotation of the magnetic 
moment, which we write in the form p = pe, where e2 = 1. 
In a statistical ensemble, the macroscopic (observed) mag- 
netic moment of a particle should be defined as the average 
of the "microscopic" vector p: 

where W(e,t) is an orientational distribution function which 
satisfies the kinetic equation8 

awlat+(3 ( Q W ) )  =o. (2 )  
A 

Here, J = [eV] is the infinitesimal rotation operator, and 
V = d /de is the gradient evaluated at the surface of the unit 
sphere. The angular velocity il of the unit vector e is split up 
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into a regular (field-induced) and diffusive (fluctuation) 
part: R = Kt, + fly The expression for the regular compo- 
nent follows from the Landau-Lifshitz equation7 

where y is the gyromagnetic ratio, a is the dimensionless 
relaxation time, and H, = - dU/dp = - ( l/p)VU is the 
magnetic field defined by the orientation-dependent portion 
U(e) of the total energy of the particle. Writing (3) in the 
form of aAkin%matic relation e = fl,e and introducing the 
operator P = J + ( l /a)V,  we obtain 

We find the rate of random motion Kt,. (see Ref. 8) by replac- 
ing the regular field H, by the random field 
Hf = - (k, T /p )  Vln Win (4).  From this the total rate of 
rotation of the magnetic moment is 

Q=- ( a y / p ) i ) ( ~ + k , ~ ~  In W ) .  (5 

Substituting (5)  into ( I )  leads to a kinetic equation in the 
form 

where we introduce the notation r = p / k y k ,  T for the 
characteristic orientational diffusion time of the magnetic 
moment. 

Under steady-state conditions, for which the magnetic 
field is H = const(t), the solution to Eq. (6) corresponding 
to equilibrium is a Gibbs distribution 

W.=Zo-' exp ( - U o / k B T ) ,  2, = 1 exp ( - u , / ~ ~ T )  de, 

with U, = - p(eH) .  Switching on a variable field h ( t )  per- 
turbs the thermodynamic equilibrium and causes the mag- 
netic moment to move, which is described by the kinetic 
equation (6)  with U = U, - p (eh) . The quantity of interest 
in magnetic resonance is the nonequilibrium portion of the 
macroscopic magnetic moment 

Here angle brackets without labels correspond to statistical 
averaging with the function W(t) from (6), whereas the 
label 0 denotes averaging with respect to the equilibrium 
distribution (7).  The equation of motion of the vector m is 
obtained after multiplying (6) on the left by p e  and integrat- 
ing over angles: 

the parentheses in Eq. ( 9 )  indicate that each operator acts 
only on the function standing alongside it. 

We note that Eq. (9) is an unclosed system of equations 
with respect to the quantities mi a ( e l )  to be found whenever 
the energy function U(e) differs from a constant, since mo- 
ments of higher order appear on its right side in addition to 
( e , ) ,  e.g., (eiek ), etc. The problem of decoupling a system of 
nonstationary moment equations does not have an exact so- 
lution, which is a source of considerable difficulty even in 
calculating the linear response. In what follows, we will use 

the closure procedure (the so-called effective-field method) 
first applied to the study of superparamagnet dynamics in 
Refs. 8,9, and 16. The mathematical nature of the effective- 
field approximation identifies it as one of the variants of the 
well-known Galerkin method. 

Let us write the solution to the kinetic equation (6) in 
the form 

W a  expI - UolkBT+ ( a e )  1, (10) 

where we assume that the vector parameter (the effective 
field) a ,  -ph /kB T g  1 to be determined is independent of e. 
Linearization and normalization of the function ( 10) leads 
to a form 

The spherical harmonics Y, ,  appear in Eq. ( 1 1 ) because we 
have chosen to represent vectors in terms of their spherical 
components (k  = 0, * 1 ) here and in what follows. In par- 
ticular, we have for the unit vector e 

where dl? = sin3 d19 d p  is the element of solid angle. 
We close the equations of motion of the magnetic mo- 

ment (9)  using the effective-field approximation. Substitut- 
ing (1 1) into (8)  gives a linear relation between the vectors 
m and a: 

Taking the average on the right side of (9)  over the distribu- 
tion function ( 11 ), linearizing the result with respect to the 
small parameter ph /k, T, and then eliminating a  using 
( 12), we are led to the equation 

where the matrix coefficients 

contain averages only with respect to the equilibrium distri- 
bution. 

It is obvious that Eq. (11) is the simplest type of ap- 
proximation for the distribution function that is linear in the 
perturbations. If we use a multiparameter function to solve 
Eq. (6),  e.g., 

where all the aj, are -ph /k, T, then a closure procedure 
analogous to ( 12) and ( 14) leads to Y(Y + 2) matrix equa- 
tions for the coefficients aj, . There is interest in the problem 
of choosing the minimum value of vmi, :hat provides a cor- 
rect description of FMR in a single-domain particle. Com- 
paring the results of Refs. 8 and 9 shows that the necessary 
order of approximation depends on the symmetry of the 
magnetizing field H, = - dU/dp, which determines the 
equilibrium orientation of the magnetic moment. Thus, in 
studying FMR in an external field H, = H (i.e., dipole sym- 
metry), it is permissible to retain only terms with Y = 1 in 
the sum ( 15 ) (see Refs. 9 and 1 1 ) . For the case of natural 
FMR i.e., a magnetically uniaxial particle with H = 0 and 
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hence a field H, with quadrupole symmetry, it is necessary 
(see Ref. 8) to save terms with both v = 1 and 2 in (15) in 
order to obtain the correct description. In their numerical 
solution to this problem, the authors of Ref. 17 also included 
higher harmonics ( ~ ( 2 0 ) .  However, they observed that 
broadening the basis in this way led only to a quantitative 
refinement of their results compared to those found analyti- 
cally in Ref. 8 for v,,, = 2. 

The considerations we have outlined here clarify the 
reason for choosing the approximation ( 1 1 ) and determine 
the range of applicability of Eq. ( 13) based on it. This equa- 
tion remains correct provided that the anisotropy field of the 
particle Ha is small compared to the magnetizing field H, 
which is the case we will discuss in this paper. 

2. FREE OSCILLATIONS OF THE MAGNETIC MOMENT 

Let us use Eq. ( 13) to determine the resonance frequen- 
cy and damping rate for the precession of the magnetic mo- 
ment of a single-domain particle, i.e., we set h = 0 and com- 
pute the eigenvalues of the matrix A,, from ( 14) .  We choose 
the z-axis of the coordinate system in the direction of the 
magnetizing field H, and introduce the notation x = cos6, 
where 9 is the polar angle of the vector e. In order to find the 
matrix elements, we make use of the identity 

where u,v are arbitrary angular functions. For the diagonal 
components of the matrices Nkp and Rkp we find from ( 12) 
and ( 14) that 

N,~N, ,=(x~~, - ' (x>,~ ,  IV*ZN*~, *,=1/2(l-(x2)o), 

(16) 
R,=Ro,=1-~x2~o, R,=R,,, ,,='/,[1+(x2>,T (2ila)(x),]. 

Let us first investigate the case of a magnetically iso- 
tropic particle when the equilibrium distribution function 
W, from (7)  contains only a contribution associated with 
the magnetizing field: 

Because of the uniaxial symmetry of W, (x),  the matrices 
Nkp and Rkp are found to be diagonal, and their nonzero 
elements 

No=dLl/dg, N,=L,/$ Ro=2L,/E, &=I-L,/gTiL,/a 

(17) 

are expressed in a simple way in terms of the Langevin func- 
tion; 

For the eigenvalues of A,, = Akakq we obtain from ( 14) and 
(17) 

Substituting (18) into (13) for h = 0, we find the frequency 
of free precession w, and relaxation time r1 for the compo- 

nent of the magnetic moment perpendicular to H: 

Equation ( 19) reproduces the results of Ref. 9. This equa- 
tion implies that the precession frequency of an isotropic 
superparamagnet always remains the same as in the bulk 
crystal, while the relaxation time decreases without bound 
as the argument of the Langevin function 6 decreases, i.e., 
with increasing temperature or decreasing particle size. In 
what follows it is convenient to write the relaxation time in 
the form r1 = (a, yH) - ', introducing an effective damping 
rate for the precession 

We now turn to the case of particles that possess a non- 
zero magnetic anisotropy (due either to crystallography or 
an anisotropic shape), i.e., we consider an energy function of 
the form U = U, + U, . For the anisotropy contribution Ua 
it is convenient to use the representation" 

3 

where the Kj are anisotropy constants, b,  are numerical 
coefficients, and 6 ' and q, ' are angles the magnetic moment 
vector of the particle makes with the anisotropy axis. In the 
approximation of weak anisotropy, when we have 
I Ua / / p H <  1, the first-order corrections to the eigenvalues of 
Eq. ( 13) can be obtained if we use for the equilibrium distri- 
bution function the expression 

where W, is the "Langevin-like" distribution function from 
(7). Taking into account contributions linear in Kj does not 
alter the diagonal nature of the matrix Akp , since the calcula- 
tion of the decay rates A, reduces to finding the equilibrium 
moments (x), and (x2), with thedistribution function (22) 
and substituting them into Eq. (16) in place of (x), and 
(~"0 .  

Let us note that in calculating the moments (...), it is 
necessary to transform the angular coefficients Qj (e)  of the 
expansion (21) to the coordinate system in use, for which 
the polar axis is directed along the magnetizing field H. 
Since we require only the convolution of cP, (e)  with func- 
tions that do not contain any azimuthal dependence, it is 
sufficient for their calculation to use the integral relations 
obtained in Ref. 18: 

where F', (x)  is a Legendre polynomial of the argument 
x = cos 9, and Qj ((r) is the angular representation of Q, in 
the coordinate system bound to H. 

Averaging with the distribution function (22) gives the 
following expression for the eigenvalues of Eq. ( 13) : 
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where A p' and N iO' are defined by Eqs. ( 17) and ( 18 ) .  
Calculating the corrections AA and AN using Eq. ( 2 3 )  gives 

ORo= - (VIkBT) x~j@~(I') (x'P~)~, 

AR,= (V12kBT) ~ K , @ ~ ( I ' )  ( (~''2 (i/a)x)~,)., ( 2 5 )  

Substituting ( 2 5 )  into ( 2 4 )  gives 

which allows us to represent the eigenvalues in the form 

where Lj  r ( P j ) , ;  the explicit expression for Ro will not be 
given here due to its complexity. In deriving Eqs. ( 2 6 )  and 
( 2 7 )  we made use of the relation 

obtained by averaging the equations for the Legendre poly- 
nomials with the distribution function Wo from ( 7 ) .  

The free precession parameters of an anisotropic super- 
paramagnetic particle can be found by substituting ( 2 7 )  into 
the definition ( 1 9 ) .  Let us do this for the two best-known 
types of anisotropy, uniaxial (j = 2,K2 = K, ) and cubic 
ti= 4,K4 = K c ) .  In these cases the sums entering into ex- 
pressions ( 2 6 ) - ( 2 7 )  contain only one nonzero term: 

2 - K,,PL (cos 6)fi2,, 

- 'is ( 2 8 )  [ ) + (2) (Y,.(B. v )  +Y.,-. (6. d) 1 6 ~ ~ .  

Here the angle r = gives the position of the anisotro- h= (ho/2"') (cos ot, sin at. 0), 
py axis of the particle in a spherical system of coordinates whose direction of rotation coincides with the direction of 
with the polar axis the H' Using Eq' ( 2 8 )  9 we free precession of the magnetic moment. The comp~el form 
obtain from ( 2 7 )  the eigenfrequencies of oscillation of the of the description of h in terms of the spherical components 
magnetic moment: is especially simple: 

It follows from Eq. ( 2 7 )  that in small particles a thermal- 
fluctuation-induced "dressing" of the anisotropy constant 
of the form XI :,KJ (L , /L ,  ) takes place; as the temperature 
increases, for 6 < 1 the anisotropy "melts" according to the 
law XI cc ( I -  I. For crystallographic anisotropy this depend- 
ence was predicted from intuitive considerations in Ref, 10. 
However, for uniaxial anisotropy caused by the shape of a 
particle the authors of Ref. 10 obtained a different result: 
El zKJL, .  This is obviously an error, since according to the 
rigorously obtained expressions ( 2 5 ) - ( 2 9 )  the renormaliza- 
tion Xj zK, ( L , / L ,  ) should not depend on the specific na- 
ture of the anisotropy constants. 

h= (h ,  0, 0) , h=ho exp (iot). ( 3 0 )  

After substituting ( 3 0 )  into ( 13) and ( 14) we obtain the 
dynamic susceptibility of the particle in the form 

where R + and A+ are defined by expressions ( 2 6 )  and 
( 2 7 ) .  We note that the function x + (w) depends param- 
etrically on the angular coordinates of the anisotropy axis of 
the particle. 

In a solid dispersed ferromagnet the direction of the 
anisotropy axes of the particles is fixed and determines the 
stable orientation of the texture. In order to describe the 
latter it is necessary to use the distribution function f ( r )  
normalized by the condition 

where n is the number of particles in a unit volume of the 
3. DYNAMIC SUSCEPTIBILITY OF AN ENSEMBLE OF material. The susceptibility of such an ensemble is obtained 
SUPERPARAMAGNETIC PARTICLES WITH A RANDOM by averaging the quantity ( 2 9 )  with respect to the distribu- 
DISTRIBUTION OF ANISOTROPY AXES tion of anisotropy axes: 

In order to calculate the response of a particle to a weak 
time-dependent field h it is necessary to use the inhomogen- 1+ = .f~+l(r) dr ( 3 2 )  
eous equation ( 1 3 ) .  As is well-known, the fundamental 
characteristic of FMR is the susceptibility x + with respect for an ideally oriented system, where f ( T )  = ns(r - r , ) ,  
to a circularly polarized field the averaging reduces to multiplying by n, so that 
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- x + = nx + (To ). In all the remaining cases it is necessary 
to calculate the angular integral (32) in order to find 2 + . 

Let us calculate the susceptibility for a case that is often 
encountered in practice: that of an isotropic Cf= const) dis- 
tribution of particle anisotropy axes. This orientational tex- 
ture is characteristic of dispersed ferromagnets that are fab- 
ricated without applying an external field, e.g., dispersively 
solidified alloys of the Cu-Co type, granular ferromagnetic 
films, magnetic liquids that are frozen or polymerized, etc. 

We note that in a system of randomly oriented particles 
the spread in resonant frequencies associated with the fact 
that the internal fields H, -K /M, of the particles point in 
different directions with respect to the magnetizing field is a 
maximum. The contribution to the resonance linewidth 
Am - yH, due to this spread is often much larger than the 
corresponding linewidth Aw -ayH of the FMR line of the 
particle material. This orientational "inhomogeneous" 
broadening plays an important role in forming the magnetic 
spectra of polycrystalline fe r r i t e~ .~  A theory of inhomogen- 
eous broadening-the "independent grain modelu-was 
constructed in Refs. 19 and 20 without taking into account 
fluctuations of the magnetic moments. Our approach gener- 
alizes this model to thk case of superparamagnetic particles. 

It is not difficult in principle to calculate the integral 
(32) from the function (29), although the result often turns 
out to be very cumbersome (see the explicit expressions for 
R + and R + ) . In particular, the integral can be performed 
analytically for the case of uniaxial anisotropy. Substitution 
of (26), (30), and (3  1 ) into (32) and integration over an- 
gles gives 

where the function arctan and the expressions within the 1/2 
power signs must be understood in the sense of analytic con- 
tinuations, because the coefficients 

are complex quantities. 
Equation (33) allows us to take various limits that lead 

to familiar expressions. Let us do this, e.g., for the imaginary 
part of the dynamic susceptibility f + = %'+ + if'; . 

1 ) For K, -+O we immediately obtain the result of Ref. 9 

where M = npL1 (g), w, = yH, and the effective damping 
rate is determined by Eq. (20). Since the parameter a, re- 
duces to a as {- w , the classical result for x + of an isotro- 
pic ferromagnet at low temperatures (or for large-volume 
particles) follows from ( 35). 

2) In the limit of particles made of a material with a 
vanishingly small (a -0) intrinsic FMR linewidth, only 
those particles for which the resonance condition (29) holds 
contribute to the observed susceptibility (32). Particles ori- 
ented with anisotropy axes transverse to the magnetizing 
field (9  = ~ / 2 )  have the lowest resonance frequency: 
w, = w, (1 - &L,/L, ), where E = K,/M,H. This quantity 
determines the left-hand edge of the absorption curve on the 
frequency axis. The right-hand edge of the function 2'; , i.e., 
the largest resonance frequency, is given in this case by 
w, = w, ( 1 +  EL, /Ll ), which corresponds to 9 = 0. 
Thus, the intrinsic inhomogeneous broadening of the ab- 
sorption line is 

Taking the limit a - 0 in Eq. (33), in that frequency interval 
we obtain 

It is clear from (37) that the absorption curves for particle 
ensembles with positive and negative anisotropies 
(E > O,E < 0)  are mapped into each other under reflection 
with respect to the axis o = cd,. At low temperatures 
({- w ) there follows from ( 37 ) the expression 

defined in the interval 1 - E < w/w, < 1 + 2 ~ .  Eq. (38), 
which is obtained from (33) in the limits a - 0  and 6- CO, 

corresponds to the results of Morrison and Karayianis19 for 
an ensemble of independent uniaxial weakly anisotropic fer- 
romagnetic grains. 

Figures 1 and 2 show the results of calculations of 2'; 
for finite values of a ,  E, and { when the particles have uniax- 
ial and cubic anisotropy. The situation here is typical of ex- 
periments in which the frequency 6.1 and amplitude ho of the 
AC field are fixed. The parameters that vary are the dimen- 
sionless intensity of the magnetizing field yH/w and the 
quantity lo = My Vw/yk, T, which is analogous to 6 and is 
determined by the particle size and temperature. Let us take 
a = lo-' for the FMR linewidth of the particle material, 
and choose the anisotropy parameter in the form 
E = Ky/M,w, where K is the uniaxial or cubic anisotropy 
constant respectively. 

Let us indicate the characteristic ranges of values of go 
and E, assuming that M, z 500 G and K - 10' erg/cm (mag- 
netite), and w = 25- 10IOrad/sec (i.e., a spectrometer wave- 
length of 3 cm. From this we find that when y = 2. lo7 
erg/Oe, to varies from - 1 (particles of diameter - 50 d;, 
temperature -400 K )  to - 100 (particle diameter - 150 d;, 
temperature - 100 K) .  For the same values of the magnetic 
characteristics we find I E I  ~ 0 . 1  for the anisotropy param- 
eter, independent of the particle size. These estimates give a 
feeling for how closely the spectral curves of Figs. 1 and 2 
correspond to an actual disperse ferromagnet. 

For convenience and clarity we present not only the 
family of absorption lines 2'; , but also their derivatives 
d2'; /dH. The latter are directly proportional to the signal 
recorded by the spectrometer, and are also convenient for 
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FIG. 1. Absorption line shape 2'; (left column) and df': /dH 
(right column) for an ensemble of particles with positive uniaxial 
anisotropy ( E  = 0.1) as functions of the Langevin parameter: 
g,, = 50 (a),  5 (b),  2 (c), and 1 (d); for all thecurves the precession 

20 t 
attenuation parameter a = 10- 

finding the exact width AH of the FMR line. The quantl,, 
AH is defined as the distance along the field axis between the 
two extrema (maximum and minimum) of the function 
dx'; /dH located on different sides of the point 
dx'; /dH= 0 that are farthest away from this point. We 
note that according to this definition the width of a symmet- 
ric Lorentzian line (35) is AH = 2a,~a/3'/~y. 

Figures 1 and 2 allow us to trace how the line shape 
changes as the temperature increases, i.e., as 5, decreases. A 
curve for 2'; that is initially asymmetric with clearly 
marked and steep edges and a width AH=: 3~w/y  gradually 
is transformed into a smooth symmetric Lorentzian curve. 
In this case the maximum absorption shifts to the point 
yH/w = 1, corresponding to magnetic resonance in an iso- 
tropic superparamagnet. The smoothing of the curve is easy 
to understand if we recall that as the temperature increases 
the inhomogeneous broadening of the line (36) decreases 
and the effective attenuation constant a, given in (20) in- 
creases, and that the latter determines the homogeneous 
broadening. To sum up, we are led to conclude that in a 
randomly oriented disperse ferromagnet the absorption 
linewidth turns out to be a nonmonotonic function of tem- 

perature. For low temperatures AHis large due to the scatter 
in directions of the anisotropy fields of the particles (inho- 
mogeneous broadening); as the temperature increases the 
thermally induced tendency to make the magnet isotropic 
causes AH to decrease, but in the fluctuation region it once 
again begins to increase. This effect is illustrated in Figs. 3a 
and 3b, which show our numerical calculations of the de- 
pendence of AHon go ar 1/T for randomly oriented uniaxial 
and cubic magnets. In the same figures we compare the be- 
havior of this function with the following asymptotically ex- 
act solutions, shown as dashed curves: (y/w)A,H 
= 24~,/3'/~ for superparamagnetic broadening (as K -. 0) , 
(y/o) A, H =  EL, /L, for inhomogeneous broadening as 
a + O  for the case of uniaxial anisotropy, and (y/o) A,H 
= 10/3 &L,/Ll for inhomogeneous broadening as a - 0 in 

the case of cubic anisotropy. It is remarkable how rapidly the 
exact solution approaches the corresponding asymptotic 
curves on both sides of the minimum point, independent of 
the type of magnetic anisotropy. It  is clear from Fig. 3 that 
the position of this point can be estimated using the relations 
ASH = A, H and ASH = A,H. It is especially simple to ob- 
tain estimates for the case of uniaxial anisotropy. 
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FIG. 2. Absorption line shapez'; (left column) and d?'; /dH 
(right column) for an ensemble of particles with positive cubic 
anisotropy ( E  = 0.1) as functions of the Langevin parameter: 
(o = 50 (a),  10 (b),  2 (c),  and 1 (d);  for all the curves the 
precession attenuation parameter a = 10 - '. 

For definiteness, let us use the asymptotic forms (35)  4 o a  ASH = --- 3 o 
and (36)  to write the expressions for the superparamagnetic A,H =-- 

3" 7 go' el.. 
and inhomogeneous contributions to the linewidth of an en- 
semble of magnetically uniaxial-particles: Setting ASH = A,H, we obtain the relation 

which is in satisfactory agreement with the results of the 
and investigate these expressions when go < 1. An expansion numerical calculations. 
gives The results of including the effects of both superpara- 

IU roo o,r I 10 roo 
4, 
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FIG. 3. FMR linewidth of an ensemble of randomly oriented parti- 
cles as a function of their Langevin parameter lo a 1/T for the 
cases of uniaxial ( a )  and cubic (b) anisotropy when a = 
I E I  = 0.1. The solid curves are numerical calculations, the dashed 
curves show the asymptotic dependence of ASH ( I )  and A, H (2 in 
Fig. a), A,H (2 in Fig. b). 
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FIG. 4. Position of the maximum of the curve 2'; (resonance field) as a 
function of the Langevin parameter lo a 1/T for uniaxial (curve I) and 
cubic (curves 2) anisotropy when E = 0.1 (solid curves) and E = - 0.1 
(dashed curves). 

magnetic and inhomogeneous broadening on the value of the 
resonance field H,,, , which we determine based on the posi- 
tion of the point dj';  /dH = 0, i.e., that of the peak in the 
absorption curve, are illustrated in Fig. 4. It turns out that 
heating the sample can lead to either an increase or a de- 
crease in the resonance field, depending on the sign of the 
magnetic anisotropy constant of the particles. 

4. CONCLUSIONS 

In randomly oriented dispersed ferromagnets and fer- 
rites, superparamagnetism can weaken or entirely suppress 
the inhomogeneous broadening of the FMR line caused by 
the scatter in orientations of the anisotropy axis. 

In such systems the combined influence of the orienta- 
tional texture and the superparamagnetism can lead to a 
nonmonotonic temperature dependence of the FMR 
linewidth, of the sort that has been noted in a number of 

experiments when the latter is measured in a magnetizing 
field, i.e., AH(T) passes through a minimum for T - ( V / k ,  ) (KM,w/ay)  

The character of the temperature dependence of the res- 
onance field is connected in a simple way with the nature and 
sign of the magnetic anisotropy of the particles in the dis- 
persed ferromagnet: as the temperature decreases, H,,, in- 
creases for systems with K >  0 and decreases for the case 
K<O. 
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