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The effect of Aharonov-Bohm ( AB) and Aharonov-Casher ( AC) fields on a Hubbard chain 
with repulsion is studied theoretically. The dependence of the ground-state energy on the filling of 
the band is found. In particular, for half filling of the band there is no dependence of the energy on 
the AB phase while the response to the AC field is a maximum. This is analogous to the energy of a 
one-dimensional antiferromagnet with spin 1/2 under conditions such that the AC phase 
changes. 

In 1984 Aharonov and Casher' showed that the interac- 
tion of a magnetic moment with the electric field of a uni- 
formly charged filament has a topological character and 
leads to the appearance of a universal phase when the parti- 
cle possessing the magnetic moment passes around a closed 
contour containing the filament. In essence, in ( 2  + 1 )-di- 
mensional space-time the Aharonov-Casher ( AC) effect is 
the exact (dual) analog of the Aharonov-Bohm (AB) ef- 
fect. The phase advance under the conditions of the AB and 
AC experiments has the form 

Here, is the magnetic flux, = hc/e is the quantum of 
flux, e is the particle charge, F = 4377 is the flux of the elec- 
tric field through the contour of the trajectory (7 is the lin- 
ear charge density on the filament), Fo = hc/p, is the 
"quantum" of electric flux, and p, is the projection of the 
magnetic moment along the direction of the filament. The 
formulas ( 1 ) display the complete equivalence of the effects 
under the replacements Q t t F  and et tp ,  . 

In condensed media the AB effect is manifested in the 
form of flux oscillations of various characteristics of meso- 
scopic multiply connected samples (see, e.g., Ref. 2).  This 
type of oscillation (but this time with change of the charge 
on the filament) should also be expected under the condi- 
tions of the AC "solid experiment." In Ref. 3 this problem 
was studied for the example of mesoscopic metallic rings. 
From a general point of view, magnetic materials are more 
natural for the investigation of AC oscillations. Topological 
quantum oscillations in small magnetic rings were first con- 
sidered in Ref. 4, in which the oscillating part of the free 
energy of a one-dimensional integer-spin antiferromagnet 
was calculated and a phenomenological Lagrangian was 
proposed for the description of oscillations in ferromagnetic 
rings with a topologically nontrivial magnetic structure. 

In the present paper we continue the study of AC oscil- 
lations in magnetic systems, using as the initial model the 
exactly solvable one-dimensional Hubbard model. For our 
purposes an obvious advantage of this model is the fact that 
in it the microscopic introduction of interaction with an elec- 
tromagnetic field is easy since the initial Hamiltonian is con- 
structed from electron operators. On the other hand, in the 
limit of strong repulsion on the sites, the Hubbard model 
with half filling describes, as is well known, a Heisenberg 
antiferromagnet with spin S = 1/2. This gives the possibility 
of using a microscopic approach to study the response of an 

antiferromagnet chain to the AC field (F). In view of this, it 
seems to us that it is interesting to compare the coherence 
properties of mesoscopic rings of integer and half-integer 
spins. 

The nonforce topological interaction of an electron spin 
with the electric field of a charged filament can be taken into 
account easily if on the wave function of the electrons on the 
ring we impose quasiperiodic boundary conditions 

In Eq. (2)  the subscript o = + 1 labels the projection of the 
electron spin along the quantization axis. In the conditions 
of the AC experiment it is natural to choose as this axis the 
direction of the charged filament (perpendicular to the 
plane of the ring). This situation is easily realized physically 
by switching on a weak (orienting) magnetic field parallel to 
the filament. In this case the sum and difference of the phases 
a,, are none other than the AB (c) phase and AC (s) 
phase: 

We note that for free electrons the magnetic moment in the 
definition of the AC phase coincides with the Bohr magne- 
ton pB , and, therefore, for (e.g. ) a metallic ring, the period 
of the AC oscillations is equal to Fo = hc/pB (Ref. 3). 

Since the quasiperiodic boundary conditions are equiv- 
alent to the presence of a phase advance a,/N, ( N ,  is the 
number of sites in the chain) accompanying transitions of 
electrons between sites that depends on the projection of the 
electron spin, the Hamiltonian of the Hubbard model takes 
the form 

where a,: (aj,, ) is the creation (annihilation) operator for 
an electron with spin projection oon  site j; nj,, = aj:aj,,; 4U 
is the Hubbard-repulsion energy ( U >  0)  on a site, and, in 
the chosen units, the hopping integral t = 1. 

As is well known,5 the Schrodinger problem for the 
Hamiltonian of a Hubbard chain can be solved exactly by 
means of the Bethe ansatz. We are interested in that part of 
the ground-state energy which depends on the topological 
phases. In the conditions of the AB experiment, when the 
phase advance associated with hopping does not depend on 
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the spin projection, this problem was solved in Ref. 6. The 
principal assertion of Ref. 6 is that for half filling ( N  = N, , 
where N is the number of electrons in the chain), and also 
for empty and completely filled bands, the energy of the 
ground state of the model ( 3 ) ,  to within exponentially small 
corrections [on the order of exp( - N, ) 1, does not depend 
on the flux. A nonzero response to an AB field arises for 
partial filling of the band. In this case, for a large Hubbard- 
repulsion constant U )  1, it was found in Ref. 6 that the main 
contribution to the flux-induced diamagnetic moment of the 
ring (to the current) is made by practically free electrons. 

This conclusion is in complete agreement with general 
ideas about AB oscillations in pure metals and dielectrics 
(see, e.g., Refs. 7 and 8). In fact, for half filling the Hubbard 
model describes a dielectric in which all charge excitations 
have a gap A (Ref. 5). The amplitude of the AB oscillations 
in dielectrics always contains an exponential factor (of order 
exp( - L /{), where { = iiu,/A is the characteristic coher- 
ence length and L is the length of the ring7). Therefore, in 
the approximation of Ref. 6, which makes it possible to take 
only corrections of order l/Na into account, the phenome- 
non of oscillations is absent. (We note that the contribution 
of the AB phase to the ground-state energy has also been 
found recently through numerical ana lys i~ .~ . '~)  The same is 
true, of course, for an empty ( N  = 0) or completely filled 
( N  = 2N, ) band. For other than half filling the Hubbard 
model with repulsion describes a metal; the spectrum of the 
charge carriers if gaple~s,~ and their contribution to the AB 
oscillations becomes decisive. 

Unlike the spectrum of charge excitations, the spec- 
trum of spin excitations of the Hubbard chain with repulsion 
in the absence of a magnetic field remains gapless even for 
half filling." In particular, for N = No and U -  co the Hub- 
bard model with repulsion describes an isotropic (S = 1/2) 
Heisenberg antiferromagnet. It may be expected, therefore, 
that the maximum response to an AC field will occur pre- 
cisely when the band is half-filled. 

The system of equations of the Bethe ansatz for the ra- 
pidities (spin quantum numbers) (P = 1, ..., M) and 
quasimomenta (charge quantum numbers) k, ti = 1, . . ., N) 
for a Hubbard chain with quasiperiodic boundary condi- 
tions has the form (this system was first obtained in Ref. 12) 

(sin kj-he+iU) 
exp (iN.kj.-ia,) = I ,=, (sin ki-hB-iU) ' 

The energy of the system is equal to 

In the conditions of the AB (or AC) experiment the 
phases a, (a, ) must be regarded as variable external param- 
eters. Equation (4)  is periodic in the fluxes of the magnetic 
and electric fields, with periods @, = hc/e and Fo = hc/p,  , 
respectively. In Eq. (5) only the AC phase appears explicit- 
ly, and the smallest period, as is easily seen, is smaller by a 

factor of two: Fs = F0/2. It is physically obvious that the 
spectrum as a whole and the various thermodynamic charac- 
teristics should oscillate as the fluxes change. As follows 
from Eqs. (4) and (5),  in the general case (for arbitrary 
filling and arbitrary magnitude of the coupling constant U) 
the smallest common period of the AC oscillations is equal 
to F,. We show below, however, that the anomalous period- 
icity (F, ) also arises in the Hubbard model in the limit of 
strong repulsion ( U )  1 ) for half filling, when the model de- 
scribes a Heisenberg antiferromagnet with spin S = 1/2. 
This periodicity (which is, of course, a manifestation of the 
gauge invariance in multiply connected spaces) makes it 
possible, when obtaining the dependence of the ground-state 
energy on the fluxes, to replace the phases a ,  and 2a, by 
their fractional parts (to the nearest integer) 

{ a ) )  2a$-+((2as)). 

Therefore, at zero temperature the response of the system to 
a topological perturbation (on the fluxes <P and F) will be 
depicted by a piecewise-linear function of the "sawtooth" 
type. Inclusion of a nonzero temperature should smooth the 
discontinuities at points corresponding to integer and half- 
integer parts of the periods of the AB and AC oscillations 
(extrema of the amplitude of the oscillations), and reduce 
the amplitude of the oscillations. This qualitative picture is 
easily reconstructed starting from general ideas about the 
destruction of the oscillations by temperature (see, e.g., 
Ref. 2). 

The system of equations (4) ,  (5)  can be solved analyti- 
cally in the thermodynamic limit N,, N, M S  1 for fixed fill- 
ing numbers v, = N /N, and v, = M /No. An explicit 
expression for the dependence of the ground-state energy on 
v, can be obtained for large U> 1 (the answer for the partic- 
ular case v, = 1 and vs = 1 /2 was obtained in Ref. 13 ) . Cal- 
culations analogous to those performed in Ref. 14 lead to the 
following expression for the shift in the energy of the ground 
state of a Hubbard chain with repulsion in zero magnetic 
field for vs = v, /2: 

4n sin (nv,) 
AE (v,)=. 

N, 

1 In 2 
- -( I. - Tv, oos (nv.) 

12 11 

According to (7),  for half filling (v, = 1 ) the dependence of 
the ground-state energy on the AB flux drops out, while the 
response to the AC field, on the contrary, becomes a maxi- 
mum: 
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FIG. 1. Oscillating charge-related part of the ground-state energy of a 
Hubbard chain with repulsion versus the electric field flux (the AC 
phase). 

In essence, Eq. (8)  describes the response of a one-dimen- 
sional Heisenberg antiferromagnet of half-integer spin (with 
exchange constant J =  1/2U) to the electric field of a 
charged filament. In this case the appearance of twice the 
Bohr magneton (2pB ) in the period of the AC oscillations 
(F,  = hc/2pB ) is physically justified. 

In fact, the magnetic moment 2pB in our case coincides 
with the magnetic moment of the elementary excitations 
(magnons) in an antiferromagnet. Although at zero tem- 
perature there are no real excitations in the system, the inter- 
action of the electromagnetic field with the zero-point fluc- 
tuations (virtual magnons) leads to "superconducting" 
oscillations in the spin subsystem. 

To conclude, we shall compare the AC oscillations in 
metals3 and antiferromagnets with integer4 and half-integer 
spins. In normal metals the magnetic moment of the elemen- 
tary excitations (conduction electrons) is equal to the Bohr 
magneton, and, therefore, the period of the oscillations is 
double the period in antiferromagnets with half-integer and 
integer spins. We note that for other than half filling the 
Hubbard model describes a metal. According to (7), the 
response of the "charge" sector to the AC field (for a fixed 
AB phase) oscillates with period F', , as in a normal metal, 
but with a rather specific form of oscillation amplitude. For 
illustration, Fig. 1 shows the dependence of the energy on 
the electric-field flux F i n  zero magnetic field (a = 0). 

Both in a mesoscopic metallic ring and in an antiferro- 
magnetic ring with half-integer spin at low temperatures 
( T-0) the amplitude of the oscillations is inversely propor- 
tional to the size of the system. We recall that such a weak 

dependence on the length is characteristic for one-dimen- 
sional systems with a gapless excitation spectrum. In one- 
dimensional antiferromagnetic chains with integer spin the 
magnon spectrum has a gap15 and, therefore, the amplitude 
of the AC oscillations is exponentially small in the thermo- 
dynamic limit. 

Analogous conclusions concerning the periods of the 
AB and AC oscillations can also be reached by studying the 
one-dimensional supersymmetric t - J model, which also 
admits an exact solution.16 

The "anomalous" periodicity discovered here for the 
AC oscillations in the Hubbard model with half filling (the 
doubling of the Bohr magneton in the "quantum" of electric- 
field flux) is, of course, normal from the point of view of 
magnetic systems, since the operators that change the mag- 
nitude of a site spin are quadratic in the electron second- 
quantization operators. This property, of course, is valid for 
spaces of any dimensionality. 
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