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By accounting for the gain term in the collision integral, the relaxation time (or T) approximation 
is avoided in calculating the surface impedance of a metallic half-space. The probability density 
per unit length that an electron will be scattered through an angle 8 is taken to be 
W(B) = (4nl) - ' ( 1 + a  cos 8), where Ja  1 < 1 and I  is the loss-related mean free path of the 
electron. The dependence on a  is derived for various values of the ratio 1 /S (S being the usual skin 
depth) for electrons reflected either specularly or diffusively from the boundary. 

I. The kinetic theory of the skin effect for electrons with 
the quadratic isotropic dispersion law') 

dates back as far as 1948 to Reuter and Sondheimer.' They 
based their analysis on the T approximation, in which the 
collision integral of the problem is described solely in terms 
of its loss term - f, /T ,  where f, is linear in the wave electric 
field and represents the nonequilibrium correction to the 
equilibrium electron distribution, the Fermi function f, . 
The electron gas was assumed to be degenerate, i.e., 

To justify the use of the T approximation the following argu- 
ments may be advanced. 

1. Under normal skin-effect conditions ( IgS) ,  both the 
surface impedance % of the metal and the electromagnetic 
field penetration depth are expressible in terms of the static 
conductivity 

dependent on the momentum-transfer mean free path I,, giv- 
en by 

n 2n 

(or gain) term in the collision integral is of no importance. 
This last circumstance arises from the fact that, as opposed 
to the static conductivity, the impedance 5 in this limit does 
not depend on the totality of the Fermi electrons but rather 
on those of them moving parallel to the sample surface z = 0 
[on which the plane electromagnetic wave E = E(z)e - '"'is 
incident]. Formally, this is because the function f, has a 
singularity at v, = 0 in the I- w limit. In the gain collision 
term this function enters through the integrand and hence its 
singularity-even if it survives-is of less importance than in 
the loss term. 

We note also that the theory of the anomalous skin ef- 
fect depends on the solution of the set of Maxwell's equa- 
tions, a id  hence requires a knowledge of a material equation 
of the form 

relating the current density j to the electric field E. The con- 
ductivity operator K ,  (z,zl) in this equation is constructed 
from the solution of the kinetic equation for the electron 
distribution function. If we allow the electric field to be non- 
uniform, E = E(z) ,  and take into account the electron/ 
boundary interaction, an effective solution to the relevant 

1 - = j ~ ( 6 )  ( l -cos 6 ) d 0 1 ,  dOT=sin @'dB' dgl ,  integro-differential kinetic equation is in fact impossible to 

l t r  o 0 obtain unless some simplifying assumptions concerning the 
(2') collision integral and the manner in which electrons are re- 

where W(8) represents the probability density per unit 
length that an electron will be scattered through an angle 8, 

cos 6=cos B cos @'+sin 6 sin 6' cos(cp-cp'). (3 

The spherical angles 9 ,  p and 9 ', e, ' in this equation specify 
the propagation direction of the electron prior to and after 
the scattering event, respectively. 

Equation (2)  is in fact equivalent to the r approxima- 
tion, that is, to replacing the true collision integral by the 
quantity -f, /r,,, with T,, = l,,/v,. This replacement, 
however, is only valid under normal skin effect conditions 
where the angular electron distribution depends solely on 
the direction of the electric field E, i.e., 
f, a (Ev) = Ev sin 9 cos p, see the discussion below. 

2. In the extreme anomalous skin effect limit ( I $ S  or, 
strictly speaking I- w ) the surface impedance expression 
does not contain the carrier lifetime at all and the integral 

- 
fleeted by the surface are made. Accordingly, Reuter and 
Sondheimer consider only loss terms in the collision integral 
and restrict their analysis to the limiting cases of electrons 
suffering either specular or diffusive reflection. The point to 
bear in mind, however, is that for arbitrary 1 /S values, the 
results of Ref. 1 hold strictly for W(8) = const only. 

Because the gain term is unimportant in the extreme 
anomalous limit ( [>a) ,  it has proven possible to generalize 
the theory in some respects so as to consider, for example, a 
complex dispersion law for the conduction electrons; to elu- 
cidate the role of the surface as a scatterer of electrons; or to 
incorporate the effects of a steady magnetic field (refer to the 
books by Lifshitz, Azbel', and Kaganov2 and by Abriko- 
S O V , ~  where a bibliography of original work is also given; for 
a review, see Ref. 4). 

In the literature, quite a number of formulas have been 
developed for the impedance 5 and other metal properties, 
supposedly valid for arbitrary I /S values (see Ref. 5, for ex- 
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ample). These formulas, however, have been mostly derived 
within the T approximation and it has already been men- 
tioned-and will be made clear below-that their accuracy 
is therefore questionable. 

To our knowledge, so far three attempts"' have been 
made to calculate the temperature-dependent correction to 
the surface impedance near the extreme anomalous limit. 
All three closely parallel each other in using T-type approxi- 
mations when treating the collision integral and a specular 
reflection model for electrons incident on the boundary. As 
for the bulk electrons, these are either assumed to interact 
with each other,6 or with phonons,' or else with local vibra- 
tion modes.' 

The skin-effect in metals is one of the fundamental 
problems in physical kinetics, and its rigorous and self-con- 
sistent solution for even a simple model would be highly 
desirable. For arbitrary values of the I / S  ratio, it has been 
remarked earlier that the T approximation may be justified 
by assuming the probability density W(6) to be independent 
of the scattering angle. As a consequence, only the s-wave 
electron scattering from isotropic impurities is eligible for 
consideration. 

11. The present study is motivated by the desire to avoid 
the T approximation and to be able, at the same time, to solve 
the surface impedance problem exactly within the frame- 
work of the model used. Accordingly, the theory of the skin 
effect is constructed under the assumptions that electrons 
are scattered elastically and that the probability density W 
is fully determined by the angle between the electron mo- 
menta prior to and after the scattering event [cf. Eqs. (2') 
and (3)  ] so that the collision integral takes the form 

Furthermore, the requirement for an exact solution to exist 
restricts the functions W(6) to those for which 

which is equivalent to assuming that only the s-scattering 
and p-scattering (described by the respective constants W, 
and a)  are of importance. Replacing the arbitrary function 
W( T) by (5 )-which excludes small-angle scattering-is of 
course the single most restrictive assumption we make in this 
study. 

With the collision integral as given by (4) ,  the Boltz- 
mann equation may be conveniently written as 

=E (2) cos cp sin t3, (6)  

where the quantities x(z,n) and I are defined by 

n p s i n  9 sin cp, n.=cos 9, (7) 

and 

with f, denoting the nonequilibrium correction to the Fermi 
function f, . The quantity E(z) in (6) represents the x com- 
ponent ofthe electric field E in the metal, and it is assumed 
that an x-polarized electromagnetic wave of frequency w is 
incident on the surface of the metal.2' The field component 
E(z) is given by 

and the current density j(z) , remembering the assumed de- 
generacy of the electron gas, is 

From (6)  and ( 3 )  it is easy to show that 

where the function x(z,S) satisfies 

cos @ 
ax(z,e) 1 

az + --ix(z, 8) 

which is simpler than (6)  and in which 
2n 

v ( 6 ,  6') = W(cos 8 cos @'+sin @ sin 8' cos 9') cos cp' @'. 
0 

(13) 
From ( 10) and ( 1 1 ) , the current density becomes 

In view of the assumption (5)  the kernel (13) of the 
integro-differential Eq. ( 12) is degenerate, 

and using this together with ( 14) reduces ( 12) to 

cos 6 
a ~ t z , w  1 

+ - ~ ( ~ , 6 ) = S ( z ) s i n 6 ,  
az 1 

with 

The transition from the integro-differential kinetic 
equation ( 12) to the differential equation ( 16) is, of course, 
the most important consequence of the assumption (5).  
From this point on the problem will require no further sim- 
plifications. 

It is now necessary to supplement ( 16) with appropri- 
ate boundary conditions. In the limit z- 00, the boundary 
conditions to apply in the skin-effect context are naturally 
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The second of these ensures that the electrons in the bulk of 
the metal are in equilibrium, the restriction on the angles 
reflecting the fact that, for z- UJ and 098<?~/2 ,  ,y(z,8) = 0 
in view of (16). On the metal surface (z = O), the boundary 
conditions are of course surface dependent and there exist a 
vast literature on their derivation for surface types of practi- 
cal interest (see, for example, Ref. 9, where references to the 
original work may also be found). Following previous 
work,' and concentrating as we are on the role of the gain 
term of the collision integral, the boundary conditions will 
be restricted to those proposed by Fuchs,1° 

where the parameter Q measures the proportion of electrons 
reflected specularly from the boundary (O(Q9 1 ). Follow- 
ing the same practice, we will consider only the two ex- 
tremes, Q = 1 (pure specular reflection) and Q = 0 (pure 
diffusive reflection). 

Using ( 14) together with ( 16)-( 19), we show in the 
usual way that the current density j(z) and the function 
S(z ) ,  Eq. ( 17), are related by 

z+z' dz' 
( ) = { K ( )  Q ) }  0 ,  (20) 

0 

where 

*IZ sing t+ 
R(u) = I I - exP (- b) d6 .  

0 cose cos 6 

Eliminating S(z)  and j(z) from (9) ,  ( 17), and (20) 
and changing to the dimensionless length 6 = z/l now re- 
sults in the following integro-differential equation: 

m 

111. We shall first consider the specular reflection limit, 
Q = 1. In this case Eq. (22) may be given a much simpler 
form if we continue the function E(6)  ( l >  0) evenly onto 
the negative half-axis by demanding that 

For c> 0 and Q = 1 Eq. (22) becomes 

which, by the evenness of K({) and E(g) ,  is valid for all 
negative 6's as well. Introducing the notation 

m 

I3 ( x )  = E (E)  ezxEdt  (24) 
- rn 

for the Fourier transform of a function and applying this 
transform to (23) we obtain 

where 

and 

Note that the function z ( x )  is expressible in terms of ele- 
mentary functions, 

with the logarithm of the fraction uniquely determined by 
the condition 

Because of this condition, the function K (x) undergoes 
discontinuities on the half-axes ( - ~ U J  , - i )  and (i,ioo ). 

Application of the inversion procedure 
m 

now yields an explicit expression for the field E(6)-and for 
E(0)  as a special case-and noting that 

we find that the impedance = E(O)/H(O) is given by 

In this expression the parameter a enters only through 
p ( x )  and since la1 < 1 holds and the function z ( x )  mono- 
tonically decreases with its argument, it follows that, while 
the magnitude of the impedance is of course a-dependent, 
qualitatively neither the impedance go=, nor the electric 
field distribution in the metal is affected by the introduction 
of the gain term into the collision integral. 

Applying Fourier transforms to equations (9)  and 
( 17), we find that the Fourier componentj of the current 
and that of the field, z, are related by 

7 ( x )  =op ( x ) B ( x ) .  

Setting x = 0 and noting that z ( 0 )  = 1 from (26), we find, 
in agreement with Eqs. (2)  and ( 5 ) ,  that the static conduc- 
tivity is 

or (referring to footnote 1 ) 

In the extreme cases 1 /S 1 or I /S % 1, the impedance is 
calculated by noting that 
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For I<S, the integral (28) is dominated by the residue 
at the point 

where the denominator of the integrand vanishes. Using the 
first of equations (3 1 ) we find that 

where 

represents the impedance as calculated for the normal skin- 
effect conditions, swith the quantities a,, and I,, defined by 
(29) and (30). It should be emphasized that the penetration 
depth 6 in the correction term contains the conductivity a 
rather than a,,! 

For I)S, the integral (28) is dominated by the large 
values of x, and using the second of equations ( 3 1 ) yields 

where 

is the surface impedance expression as calculated in the ex- 
treme anomalous limit (1/6- a) for electrons reflected 
specularly from the sample boundary. 

IV. We now turn to consider the case of diffusive reflec- 
tion, Q = 0. The formulas we present below are derived in 
the Appendix to this paper, which may be omitted by those 
taking no interest in the details. 

Equation (22) now takes the form 

and is amenable to solution by the Wiener-Hopf method. ' l  

Writing 

to define the Fourier transform of a function, we find expli- 
citly that 

The functions H + (x )  and G + (x )  in (36) may be calculat- 
ed by the following algorithm: Let 

F (x)  =x2- [ (a/3) ~ ~ + 2 i l ~ / 6 ~ ]  R (x). (37) 

and let x, be the (only) zero the function F (x )  has in the 
first quadrant. Further, 

and 

(39) 
where the (positive) numbers E > 0 and E ,  > E are sufficient- 
ly small that their choice does not affect the integrals above 
(which means that integrands in question have no singulari- 
ties in the strip /Im j I < E' ). 

Now if we let f = 0 in E( j )  as calculated from ( 3 6 ) ,  a 
trivial identity will result. We may proceed, however, by em- 
ploying the device used by Reuter and Sondheimer,' to ob- 
tain 

E' (0) = lim [ ixE (0) -x2E(x) 1, 
x+im 

which leads to the impedance expression of the form 

where 

We thus see that to calculate the impedance ge= , re- 
quires the evaluation of one of the integrals ( 38) for x = f,. 

In the a - 0  limit, it is shown in the Appendix that Eq. 
(41 reduces to 

m 

which retrieves the Reuter-Sondheimer result. ' 
In what follows, approximate impedance expressions 

for the limiting cases 146  and I s 6  are given. 
For l < 6  and a of order unity (or, more precisely, for 

I /Sa< l ) ,  we have 

1 
t * = O =  term [ 1 + 7 01 ( a ) ] .  (44) 

The function Q in the last equation is defined by 

l + i  
@ (a )  - 

(a/3) (1-a/3)"' 

1 
x J " * 1 n .  : 

I- (a/3) K- (x) 
ln(x+i), (45) 

(2nt) ,, x2 1-(a/3)K+(x) 

where the integration contour C' starts and terminates at the 
point x = - i and encloses the segment ( - i,i) and all the 
zeros of the functions 

While the functions K + (x )  are both defined by the same 
equation (27) definingx(x), they differ from one another 
in that in calculating 

1+ix 
In - 

I - i x  
different branches of the logarithmic function are taken, so 
that the branch with the imaginary part varying from 0 to 27.r 
[from - 27.r to 0] defines the function K + ( x )  [ K -  ( x )  1. 

In the limit a - 0  Eq. (45) exhibits an indeterminacy 
which is easily evaluated by noting that 
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1- (a/3) K- (x) a 
In 1 - -[ K+ (x) -K- (XI I +O (a2) 

I-(al3)K+(x) 3 

and using the exact result 

K+ ( x )  -K- (x) = - 
2 

to give 

We thus see that the right-hand side of (44) reproduces the 
corresponding result of Dingle,' and since this latter was 
derived for a = 0, 1  / S <  1, it follows that (44) holds under 
these assumptions as well rather than being restricted to the 
condition I  / S a  < 1. 

The values of the function @ ( a )  are listed in Table I. 
For I )  S ,  

where 

dependence on a .  In the specular reflection limit, both the 
surface impedance and the bulk field distribution are deter- 
mined by the conductivity 

which although wavevector-dependent, represents a very 
natural generalization of the collisional conductivity formu- 
la (29). In the diffusive reflection case, it is seen from equa- 
tions (41 ) through (46) that the parameter a is in fact total- 
ly unpredictable as to its precise location in the impedance 
expression. 

Finally, the discussion above seems to have demonstrat- 
ed that, for arbitrary 1 /S values, augmenting Eq. ( 5 )  to ob- 
tain a more realistic form of the collision integral makes it 
virtually impossible to derive an analytical expression for the 
surface impedance of the metal. 

One of the authors (M. I. K.) is grateful to the Interna- 
tional Laboratory of Low Temperatures and Large Magnet- 
ic Fields (Wroclaw, Poland) for a most pleasant stay, during 
which part of this work was done, and the other (E. Ch.) is 
grateful to the Committee on the Scientific Research in Po- 
land (project No. 209449 10 l ). 

APPENDIX: SOLUTION OFTHE INTEGRO-DIFFERENTIAL 
m 

1 1 s+i- is EQUATION (34) 
o+=-I [arctg--(ln-+-)-L]d~, 

1 
n s-I s2-I ns 1. Let us consider the function 

and 

For a = 0, Eq. (46) is consistent with the corresponding 
result of Dingle.' 

V. Equations (28) and (41), together with (32), (44) 
for I 4 6  or (33), (46) for I )&,  constitute the solution to the 
problem. As argued earlier, the theory of the anomalous skin 
effect remains qualitatively unchanged by the inclusion of 
the gain term in the collision integral. In particular, in the 
limit 1  / S  -+ co surface impedance measurements are again in- 
dependent of bulk dissipation processes and as such may be 
usefully employed in spectroscopic applications. On the oth- 
er hand, the magnitude of the impedance depends strongly 
on the value of a (i.e., the gain term)-so much so that the 
correction terms in Eqs. (32), (33), and (44), (46) may 
vary severalfold as a is varied between - 1 and + 1. 

As we see it, the most important result of our study is 
that, for the Fuchs parameter Q fixed, the surface impedance 
of a metal is by no means a unique function of the mean free 
path I  (nor of the transport-related mean free path I , , )  but 
rather is controlled by the value of the parameter a ,  the spe- 
cific form of its a-dependence being different for 1  / S  < 1 and 
I / S >  1. 

Attention should also be paid to the far-from-trivial 
role of the reflection conditions in determining the relevant 

TABLE I. 

so defined after the unknown function E(6) has been contin- 
ued onto the entire real axis by setting E(6) = 0 for 6<0 .  
From the basic equation (34) it follows that the (unknown) 
function f - vanishes for all 9 > 0. The Fourier transform of 
( A  1 ) gives the equation 

where 

e ( x )  =iE (0) x-E' ( O ) ,  F (x) =x2- ( a ~ ~ / 3 + 2 i l ~ / f i ~ )  ff (x) 

(-43) 
and 

where the relevant branch of the logarithm is the one which 
is zero for 3t = 0. 

Following the Wiener-Hopf method as we do here, our 
first objective is to represent the prefactor of Z ( x )  in (A2) 
as a ratio of two functions, one analytic in the upper and the 
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other in the lower half-plane. The specific form of such fac- The function G(x)  may thus be represented as 
torization depends strongly on the behavior of F (x )  on the P(x) 
real axis, and so the next step in the argument is to examine G (x)=G+ (x) -0. (x) ( 6 1 1 1  xa-xo2 -1, (A91 
more closely some of the properties of the functions z ( x )  
and F (x )  . where we have defined 

From its two representations afforded by (A4), it is 
seen that the function z ( x )  is analytic everywhere in the 
complex x plane with cuts along ( - i w , - i)  and (i,i ccr ) 
and that everywhere in this region the estimate 

holds. Also, for all real x the function K(x)  is strictly posi- 
tive, with the implication that the function F ( x )  is analytic 
and has its imaginary part negative on this axis, and that its 
argument may be regarded as varying the range from - rr to 
0. It will be shown in Section 7 of this Appendix that F (x )  
has precisely two zeros, +_ x,, in the plane cut along 
( - iw , - i) and (i,ico ), the point x0 lying in the first quad- 
rant of the plane. The function 

has neither zeros nor singular points in the plane so cut. The 
definition (A3) implies the following representation: 

Now let us introduce 

F(x)  
G (x)  =ln -. , 

x2-XoL 

by choosing the logarithm branch which vanishes when 
x- + co. As 1x1 - W ,  it follows from (A6) that over the 
entire right half-plane G(x) approaches zero as ( 1 %  1 - ' ), 
whereas on the left half-plane its limit is a multiple of 2ri. 
The following simple argument shows that this limit is in 
fact zero: Since there are no branch points in G(x) ,  this is 
obviously a single-valued function in the cut x plane. Now as 
x is varied from + w to - w along the real axis, the argu- 
ment of the quantity (x2 - x: ) remains unchanged, where- 
as that of F ( x )  (as discussed earlier) changes by .rr at most. 
But then the imaginary part of G( - co ) does not exceed a 
in its absolute value and, since it is a multiple of 277, has to be 
zero. From the above it follows that in the cut complex plane 

We next turn to the factorization of F(x) .  By the 
Cauchy integral theorem, 

where the (arbitrary) contour L lies in the cut complex 
plane and encloses the point x. We may now employ the 
estimates (A8) and (A5) to deform L into a pair of straight 
lines, 

with the number E chosen at will from the interval 

The function G + (x )  [ G _ (x )  ] is analytical in the uncut 
half-plane Im x > - E [Im x < E ]  . Thus 

which completes the factorization procedure F(x) .  Equa- 
tion (A2) may now be given the form 

e (x) 
B(x) (x+~,)explG+ (XI I - -exp[G-(x) I 

x-xo 

in which (almost) all terms are analytic either in the upper 
or in the lower (cutless) half-plane. The only exception is 
the term 

exp [G- (x) I 
H ( ~ )  Z R ( ~ )  3 X-x0 e (x) ,  

but this too can be represented as a difference of two func- 
tions of this kind, 

H(x) =H+ (x) -H- (x) , (A121 

where 
-ic,+m 

j -H(E), ~mx>-e, ,  ~ < e , < & ,  H+ (x) = - 
2ni -ie,-.. k-x 

ie .+m 
(A131 

and the estimate (A5), together with the boundedness of 
K ( x )  and G- (x) ,  ensures the convergence of the integrals 
(A13) and the truth ofequation (A12). As shown in Section 
4 of this Appendix, the functions G- (x )  and G + ( x )  are 
not only bounded in their respective half-planes, but also 
tend to zero as 1x1 -. W ,  with their absolute values obeying 
the inequality 

Making use of (A12), equation (A1 1 ) may now be rewritten 
as 

e (x) 
+-exp[G-(x)'l+H-(x). 

x-xo 
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The left-hand and right-hand sides of this equation are ana- 
lytic in the half-planes Im x > - E and Im x < E,  respective- 
ly, and are seen to be equal on the real axis. As a conse- 
quence, either side represents an analytical continuation of 
the other into its respective half-plane or, equivalently, both 
of them are analytic everywhere in the uncut x plane. As 
( x  ( - w , either side increases no faster than the first power of 
1x1 in its respective half-plane and hence is described by 
some polynomial in (ax + b),  of degree at most unity. It is 
also important to note that as x- - ca , the right-hand side 
of the last equation is asymptotic to iE(0) and indeed is 
equal to iE(0) because of its being a polynomial of the kind 
just mentioned. With this in mind, the Fourier transform - 
E(x)  is found to be given by 

exp[-G+(x) I 
E(x)=  

x-xo 
{iE(O) -H+(x) 1. 

2. We next proceed to calculate the E(O)/E '(0) ratio. 
Following Reuter and Sondheimer, we begin by writing the 
identity 

m 

3 E" (g)elEnd~=-~2E(x) +ixE (0) -Ef  (0) 
0 

and taking the limit x - i ~  to obtain 

E' (O)= lim {-x2B(x) +ixE (0)). 
%-cia, 

Substituting (A15) for E ( x )  and noting that 

from the definition of the function G + (x) ,  we find that 

where, as before, 
- i 8 + a  

Now if 

then 

because 

lim (x[fl  ) -  1. 1 J x l ( l )  dt + - l m -  
X+im 2ni -ie-, g-x 

1 
=-- J f(~Y4+ lim - lf(E) dl 

2ni -i8-- x* im- fc -m E-x 

where the integral on the right vanishes as x + i ~ .  
If the function f ( x )  is taken to be 

the condition (A17) is easily shown to hold giving 

or, more explicitly, 
- i c + m  

By the definition Eq. (A3) of the function e (x) ,  

where 
- ( r+=  

3. Because of the function G - (x )  involved in the inte- 
grands in (A20), and because this function itself is of inte- 
gral form, the integrals A and B are rather difficult to evalu- 
ate and their behavior under various extreme conditions is 
difficult to analyze. For a = 0 the problem is much simpli- 
fied and Eq. (A19) reduces to 

- i s + =  

but even for a # O  it turns out that Eqs. (A20) may be ren- 
dered no less tractable. 

A few preliminary remarks should be made first. As 
already pointed out, the functions x ( x )  and F (x )  are both 
analytic in the complex x plane containing two cuts. 

With the second of the forms (A4), the function E ( x )  
admits of two different Laurent expansions in the ring 
1x1 > 1, 

where K + ( x )  and K - (x )  are identical to z ( x )  in the right 
and left half-planes, respectively. We also note that 

3n 1 1 
K+ (x)  -K- (x)= - (- + 7 ) ,  K+ (-x) = K -  ( x )  

2 x 
and, from (A 17), (A21') 
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and that the functions K ,  ( x )  continue analytically on the - 2 

a x+xo entire complex x plane with the cut along ( - i , i ) .  B = -  I. 
Defining 2ni - i m  axV3+2i1zi6z 

ax' Z2 
F , ( X ) = Y ~ - ( - + ~ ~ - ) R ~ ( X ) ,  3 6' 

we obtain two analytical continuations of F ( x )  onto the 
same region. The function G + ( x )  may also be analytically 
continued on the entire plane with a cut ( - i w  , - i ) ,  the 
edges of the cut including. To do this, it is sufficient to con- 
vert ( A 9 )  into 

which yields 

F- ( x )  G+ (x-O)=G- ( x )  + In- 
% 2 - ~ 0 2  ' 

if we denote by G+  ( x  - 0 )  and G+  ( x  + 0 )  the limiting 
values ofthe function G+  [ x ~ (  - i w ,  - i) I .  From (A221 ,  

exp [G+ ( x - 0 )  I - exp [ G ,  (x+O) 1 

and 

We turn our attention next to the A and B integrals. To 
get started, we displace their integration contours to the 
edges of the cut ( - ioo , - i )  to obtain 

1 
[ R  ( x - 0 )  -R (x+O) Iexp [G- ( x )  ] 

which is fully legitimate since the integrands in ( A 2 0 )  fall 
off faster than 1x1 - '  as 1x1 + Q,. 

With the aid of the identities ( A 2 3 )  and ( A 2 4 ) ,  the last 
two expressions become 

and it is now helpful to compare these with the respective 
integrals 

and 

where the contour CR includes the twice-traversed cut 
( - i ,  - iR ) and the circle 16 I = R ,  as shown in Fig. 1. From 
the estimate ( A 1 4 )  it immediately follows that for R -  oo 
the circle contributes vanishingly little into the integrals. On 
the other hand, the integrals ( A 2 6 )  and ( A 2 7 )  both become 
independent of R for R > I { , ,  I, where 

and we may then write 

a 
A = - - $  {exp [G+ ( E )  I - l ) d t ,  6ni ,n aEz/3+2i12/62 

Since G + (6 )  is analytic and single-valued inside CR , 
the integrals A and B both reduce to the sum of residues at 
the points x = +. l o ,  giving 

+G+(%-0)-G+ ( x i . 0 ) )  a x .  (A251  
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which when substituted into (A19) leads to 

With this result, we are now able to derive the asympto- 
tic behavior of G + (6) and in particular to obtain the bound 
(A14). Let us deform the contour Cin such a way as to have 
the point x = 6 outside of it while preserving all the other 
relevant properties of the contour. Adding the relevant resi- 
due then gives This may be given a somewhat simpler form by noting that 

and 

which implies that to give, finally, 

E(0)  1 l+SZ 
-=-- 
EJ(0) i to  1-Sz ' 

1 1- [u/3+ (2i12/6') (1/t2)] K -  (F;) 
G+(E)= -In 

2ni 1- [u/3+ (2iZ2/6') (1/E2) ] K+ (E) + O(E-'). 

For large 16 I we have where 

4. The calculation of the ratio E(O)/E '(0) thus reduces 
to evaluating the integral 

By the identity (A34), 

and the representation (A34') shows that, for 6 = c0, 
Let us transform the integral for G + ( f )  in (A10) into some 
closed-contour integral. This will be advantageous from a 
computational point of view and, most important, will sim- 
plify the analysis for the extreme cases a 4 1,148, or I$S. 

As the first step, the contour of integration in (A10) 
[or (A30) 1 is displaced to the edges of the cut ( - ioo , - i) 
to give 

- i 

Note. If a - 0, then go - oo and to the first nonvanishing 
approximation, 

1 x2- (2iZ2/6") K -  ( x )  ~ = - j ~ n  ln(x+t) a x .  
4nZ x2- (2i12/62) K+ (x) 

(A351 which may now be rewritten as 

Now for Sand E(0)/E1(O), by using (A28) and (A29) we 
obtain: 

or, referring to Fig. 1, as 

which is consistent with (A21 ) in view of the identity 
-#?+- 

I xZ- (2i12/62) K -  (x) 
I = -  j 1.7- dx .  

%ti - , c -m x2- (2iZ2/6') K+ (x) 
The parameter R here is sufficiently large that the contour 
C, encloses all the zeros of the functions F -  ( x )  and 
F+ ( x )  and we also note that the logarithms in the integrand 
are uniquely determined by the conditions 

5. We consider the case 1 /S ,  1 next. Depending on their 
behavior in the I /S- CG limit, the zeros of F ,  ( x )  can be of 
either the first kind (that remain in some fixed bounded re- 
gion) or the second kind (that go to infinity). If x is a zero of 
the second kind, then 

The contour C, in (A33 ) may be replaced by any other 
contour C which lies in the x plane cut along ( - i,i); starts 
and terminates at the point x = - i and encloses all the ze- 
ros of the functions E-  ( x )  and F +  (x) .  Thus 

and the equation 

F*(x) =: 0 
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may be approximated by 

From this we see that the function F+ (x) has precisely 
three zeros of the second kind, whose approximate values are 

xj+-"hO,', j= l ,  2, 3, 

where 

A similar argument shows that F- (x) also has three zeros 
of the second kind, 

X ~ - = A ~ ; ,  

with 

More precisely 
an 4  

xj+=hej++B, nj-=hOj--p, p = - - - 
12 3n ' 

(A381 

To transform the integral (A34) for G + (go ) it is help- 
ful to note that its integrand is a single-valued function on 
any closed contour C, which encloses the points x; and x ,f ; 
does not enclose any other zeros of F- and F +  ; and lies as a 
whole in the x plane with a cut ( - i , i )  . The contour C, can 
be split off from C in the manner shown in Fig. 2. By apply- 
ing the same procedure to the remaining two pairs xi-, xj+ 
u=2 ,3 ) ,  wefind that 

where 

I j  = - F- ( x )  In ( x + i )  
$1.- 

2 , F + ( x )  x-zo 
d x ,  

1 1' =- 
F- ( x )  In ( x + i )  

In - 
(2ni)' F + ( x )  x - t o  

d x ,  

and the contour C' only encloses the zeros of the first kind 
(see Fig. 2). 

It is readily seen that 
t '+ 

and with the accuracy up to values of order of 6 j ', we ob- 
tain 

The above integrals are all expressible in terms of elementary 
functions giving 

We next turn to consider the integral I '. Since its integration 
variable is of order unity in absolute value, the integral is of 
the same order of magnitude as 6 ,-J I, and dropping the high- 
er-order terms we may write 

Precisely which branch of the logarithm 

should be taken here is totally immaterial because in view of 
the equation 

their interchange has no effect on the value of the integral. 
By the same argument 

The quantity I' may now be transformed into an integral 
along the positive axis. Consider the integral 

By deforming the integration contour we obtain 

Noting that the contour C, may be replaced by C' and that 
I 1 

a x = -  
FIG. 2. Contours C. ( i =  1.2.3) are obtained by s~littinn off from the 

4i ' 
- .  - 

contour C which oriiiiates and terminates at the point - i and encloses we find that 
all the zeros of the functions F ,  ( x ) .  Contour C, encloses only the zeros 
x,' , while contour C' encloses all the remaining zeros of F ,  ( x )  (marked 2 

Y=I' +-. 
by crosses). ingo (A41 1 
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The integral I may now be simplified by noting that the 1 l+ i  - 
functions - x K  - ( x )  and x K  + ( x )  are complex conjugate 6 (1-aI3)" 
so that and we are led to 

Im xK+ ( x )  
In(- a) =-2i arctg x~ (-im, - i ) .  E ( 0 )  6 ( 1 -a /3 )"  

Re xK+ ( x )  ' E'(O)=2 - l+ i  

Noting, further, that 

From ( A l O ) ,  

-I  

on the right edge of the ( - i m ,  - i )  cut, and setting 1 ax F - ( x )  
x = - it, we find that G + / ( O ) = -  I -1.-. 

2ni - i , x V +  ( x )  
3 1 l + t  

xK+ ( x )  = - 
4 ( I  ( - - i l l  lnl 1 + i n ] -  $. and so 

giving 

~ r n  x ~ +  ( x )  I = - - [ 1 n x + -  t+ l  
Re x K + ( x )  n t2-1 2t 1 

and 
m 

Equations ( A 3 9 )  through ( A 4 2 )  yield the quantity 
G +  (go) too(6G1) ,  and G + ( g o )  is: 

Consequently, 

and we also note that 

Equation ( 4 6 )  of the text is now obtained by merely substi- 
tuting the above equations into ( A 2 8 )  and ( A 2 9 )  and drop- 
ping the terms o ( a / [ ) .  

6. Turning to the limit 1 4 6  we confine our attention to 
the case where the stronger inequality 

also holds, thereby leaving out of account a small region of a 
values defined by 

1 a1 C1'lGZ. 

The inequality ( A 4 3 )  implies that 16, I 4 1 and hence 

which on substituting into ( A 2 7 ' )  yields 

The final result is conveniently written by defining 
-1  

l+ i  1  1- (a13) K- ( x )  
@ ( a ) =  - j ' ~ l n . .  

( a / 3 )  (1-a/3)'" 2ni -<-xa I -  (aI3)  K+ ( x )  

to give 

+O ( go ) ,  1 ~ 6  ( a )  ". ( A 4 4  

Note that as a+O,  @ ( a )  tends to (3/16) ( 1 - i) and 
the right-hand side of the last equation becomes 

It is entirely straightforward to verify that in the small 
1 / S  limit the exact formula ( A 3 5 )  leads to precisely the 
same result for E ( O ) / E  '(0). The implication of this is that 
apart from being true when ( A 4 3 )  holds, Eq. ( A 4 4 )  is also 
valid when a = 0 and ( A 4 3 )  accordingly breaks down. 

7. In this section we show that the function F ( x )  has 
precisely two zeros, + x,, in the x plane cut along 
( - i m ,  - i )  and ( i , im  ). We denote by D the domain of 
definition of F ( x )  and we include the edges of the cuts in this 
domain. 

Referring to the analytical form o f F ( x ) ,  Eqs. ( A 3 )  and 
( A 4 ) ,  it is seen that this function is bounded in D and tends 
to zero as x + m . Let us show that the difference 

a - 
I - - K ( x )  

3 
(A451 

does not vanish in D. If x is either real or belongs to the 
segment ( - i , i ) ,  it follows from ( A 4 )  that z ( x )  is positive 
and less than 3 / 2  in magnitude and hence the difference 
( A 4 5 )  fails to vanish. Everywhere else in D, excluding for a 
moment the rims of the cuts ( A 4 5 )  is again nonzero because 
the imaginary part of F ( x )  is nonzero. And as for the rims, 
finally, here x = it (for t < - 1 or t > I ) ,  and R ( x )  is given 
by 

For 148, x,  may be represented as ( A46 

743 Sov. Phys. JETP 75 (4), October 1992 Kaganov et aL 743 



so that the imaginary part of K(x)  is again nonzero. 
It thus follows that for any bounded and closed subdo- 

main of D, a positive number must exist which bounds the 
absolute value of (A45) from below. Since (A45) tends to 
unity as 7t --r o ~ ,  the lower bound is 

showing that the function 

p ( x ) =  . 
K ( x )  

1- (a /3)R ( x )  

is bounded in D: 

If x is a zero of F(x) ,  then 

This implies that the zeros of F (x )  are all inside the circle 

and hence tend to zero as I  /a + 0, which enables them to be 
found (in this limit) by means of the iterative procedure 
defined by 

To a first nonvanishing approximation we obtain the result 

accurate to 1  3 / S 3 .  We have thus shown that, for I / S  values 
sufficiently small, the function F ( x )  has precisely two zeros 
in D, which we are free to denote as . x,. 

It remains to show that varying the parameter 1  / S  does 
not alter the number of zeros of F(x) .  Assuming the oppo- 
site we would be obliged to admit that as I / S  tends to some 
critical value, I , /S, ,  at least one of the zeros must either go 
to infinity or to one of the rims (that is, to the boundary of 
D)  . The former possibility is excluded in view of the estimate 
(A48). In what follows, the latter possibility is also ruled 
out. 

SupposeF(x) =Oat, say, x = i t  ( t >  1, a rgx  =?r/2). 
But then Re p ( x )  = 0 in view of (A47) and setting 

we find that 

3 K," 
-=K,+- 
a K ,  

From (A46), 

The function K, ( t )  varies in the range 

which follows from the strict inequalities 

Equation (A49) fails if a < 0 and we are therefore left 
with the case a > 0. Clearly, in this case (A49) is false unless 

which is equivalent to 

According to (A52), the left-hand side ofthis last inequality 
is greater than 

On the other hand, using (A5 1 ) gives 

in contradiction with (A53). 
Thus none of the zeros of the function F ( x )  can possi- 

bly reach the edges of the cuts, which means that whatever 
the value of I / S ,  the number of the zeros is the same and 
hence is 2. 

We note, finally, that for x E( - i,i) the imaginary part 
of the function F ( x )  is negative and hence cannot be zero, 
with the consequence that whatever the value of I / S ,  neither 
of the zeros f x, ever leaves its quadrant. 

" We employ the following common notation: p,v = p/m, E, m ,  and e are 
respectively the momentum, velocity, energy, mass, and charge of an 
electron; the subscript I: refers to the Fermi electrons; u = ne21 /pF is 
the conductivity; n the concentration of conduction electrons; I the 
mean free path; r = l / u F  the electron lifetime; 6 = c/(Zrucr)) is the 
ordinary skin-layer depth; o the frequency of the electromagnetic wave; 
c the speed of light. 
Since the wave frequency o is only moderately high ( o r &  I ) ,  we are 
justified in having dropped the term d,y/dt in ( 6 ) .  If U T  2 1 ,  1/1 should 
be replaced by 1/1- io /u ,  throughout. 
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