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We examine the time and frequency behavior of correlation functions in the decay of a 
quasistationary state and show that it strongly depends on the ratio of the decay width 1/r and the 
level separation in the system. We also discuss the possibility of studying via experiments the 
correlations functions in superconducting quantum interference devices (SQUIDs). 

1. INTRODUCTION 

In recent years there has been extensive analysis of the 
decay of metastable states in superconducting quantum in- 
terference devices (SQUIDS).'-~ A notable achievement in 
this field has been the theoretical and experimental investi- 
gation of the interaction of a tunneling particle with the envi- 
ronment and the dissipative processes emerging in the parti- 
cle motion. At low temperatures the particle may move in a 
nondissipative manner, and the problems associated with 
this mode of motion stem from the usual questions discussed 
in connection with the decay of a quasistationary state in 
nuclear physi~s,4*5 one of which deals with the description of 
the transition from the mode occurring in the decay of a 
quasistationary state4 to the Fock-Krylov oscillation mode5 
in a two-well potential. 

An essential advantage of experiments conducted in 
studying the decay of a quasistationary state in SQUIDs over 
experiments involving other metastable systems (say, the 
decay of a radioactive nucleus) is that by simple variations of 
the electric parameters of the SQUIDs (resistance, capaci- 
tance, the time dependence of the electromagnetic field) we 
can achieve considerable variation in the extent of dissipa- 
tion, the effective particle mass, the potential in which the 
tunneling state moves, and other characteristics of the tran- 
sition. The simplicity of the system makes it possible to mea- 
sure not merely the dependence of the potential on the cur- 
rent but the derivatives of these two quantities, which 
markedly improves the possibilities of observation. Measur- 
ing the first derivative yields the probability density rather 
than the transition probability and measuring the second 
derivative provides even subtler transition of characteristics. 
This is accompanied by striking physical phenomena697 that 
still await theoretical analysis and interpretation. For in- 
stance, the authors of Ref. 6 report on the existence of a 
stochastic pattern in tunneling observations at certain pa- 
rameters. 

In this paper we consider the case of a highly asymme- 
tric two-well potential (Fig. I ) ,  where the level separation in 
the right well is considerably smaller than that in the left, 
analyze the decay probability amplitude for a state that ini- 
tially was in the left well and in the course of time spread over 
both wells, and calculate the temporal correlations of the 
probability amplitude. This also enables one to observe the 
transition from the Fock-Krylov oscillation mode5 to the 
Gamow mode of the decay of a quasistationary state4 In 
addition, we have calculated the behavior of the temporal 

correlation functions related to the dimensional quantiza- 
tion in the right well (Fig. 1 ) . We discuss the application of 
the results to experiments with SQUIDs6 when there is a 
transition from one experimental mode, the resonance 
mode, to another, the stochastic. 

2. STATEMENT OF THE PROBLEM: THE TRANSITION 
PROBABILITY AMPLITUDE; TEMPORAL CORRELATION 
FUNCTIONS 

Let us consider two potential wells separated by a bar- 
rier (Fig. l).The left well 1 contains a stationary level Eo, 
provided that we ignore all interactions with the right well 2. 
We assume that the right well is much larger than the left. As 
a result the level separation in the right well is much smaller 
than in the left. The wave function $(x,t) satisfies the Schro- 
dinger equation 

The initial state at t = 0 corresponds to a state in the left well 
with a wave function &(x)  and energy Eo: 

We are interested in the amplitude p ( t )  of the probability 
that this state at time t with the wave function 

lPo (3, t )  = $ o ( x ) e x ~ ( - E o t )  

will go over to the state with a wave function $(x,t) satisfy- 
ing Eq. ( 1 ) with the initial condition (2)  : 

FIG. 1 .  The two-well potential of the system; E, is the energy of the 
metastable state. 
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We expand $(x,t) in the normalized eigenfunctions $, (x)  
ofEq. (1): 

The coefficients C, are determined by the initial condition 
(2): 

C~ = &$o ( x )  $E' ( x )  (3)  

As a result the probability amplitudep(t) assumes the form 

We calculate C,, which is expressed in terms of ICl,(x) 
and $, (x) [see Eq. (3)  1. To this end we confine ourselves 
to the quasiclassical approximation, which to within an un- 
important phase factor completely describes the problem. If 
the wave functions $(x) has the form 

r 

$ ( ~ ) = A g ' ~ ( x h o s  ( J p ( x ) d x  - 5 )  
4 

D 

in the classically accessible region a  < x < b (Fig. 1 ) and the 
form 

X 

@ ( ~ ) = A ~ p - ' ~ ( x T c o s  ( j p ( x ) d x  - 5 )  
4 

C 

in the classically accessible region c < x < d, the coefficients 
A, and B, are related to A ,  and B, via the following matrix 
relation: 

2eD cos So 2eD sin So ) (:') 
(: )=( -'I2e-" sin So cas so ( 5  

An expression for the matrix elements can be obtained from 
the matching formulas, which are given in Ref. 8 in a form 
most convenient for applications (a  rigorous treatment car- 
ried out in Ref. 9) .  In Eq. (5), 

a b 

~ E ( x )  = [ 2rn (U ( x )  -Ex]". 

For x < a  the wave function decreases exponentially, so we 
have B, = 0. Similarly, the wave function decreases expon- 
entially for x > dl which implies 

d 

A2 cos S+B2 sin S=O. where S = p(x)&. 
C 

Substituting A, = 2eD cos So and B, = - + e - sin So, we 
arrive at a dispersion equation determining the energy levels 
of the system: 

cos So ( E )  cos S ( E )  =A2 sin So ( E )  sin S ( E ) ,  A=i/2e-D. 
( 6 )  

Here the wave function of the initial state is $o (x)  
I: 

n 
$. ( x )  = ~ ~ p - l h ( x ) c o s (  j p ( x ) h  - -) 

4 (7 )  
a 

Its normalization is determined, as by 

where wo(Eo) is the frequency of motion of a particle with 
energy Eo in the left well. The wave function $, (x) of the 
two-well system in the classically accessible regions is given 
by the following formula: 

2 

n 
$E(x )=A  ( ~ ) p - " '  cos ( j p ( r ) d x  - -) 4 , o<x<b, 

a 

(9) 
d 

where Q( E) is determined by the matrix in (5),  

Q ( E )  =A-' cos So (E)s in  S ( E )  +A sin So ( E )  cos S ( E )  

Like (8) ,  the quantity A '(E) has the form 

Usually the matrix element between two wave functions is 
calculated as the Fourier coefficients of the respective classi- 
cal q~antity.'. '~ When calculating C(E) in Eq. (3),  there is 
no need to evaluate the Fourier coefficients since we are far 
from other levels in the left well and we can simply put 
E = E,,. As a result we can employ the same approximation 
as we did in (8)and (10): 

Substituting (8)  and (10) into (11) yields 

C ( E )  =oo-'(E) roo- ' (E)+QZ(E)  o-'(E) I-'. (12) 

Using the dispersion equation (6), we can transform the 
expression for Q ( E )  into 

Q2 ( E )  = (A-'+ AZ)cos2 SO ( E O )  +Az. 

Since cos So( Eo) = 0, we can write 

In view of its smallness, the second term inside the parenthe- 
ses on the right-hand side can be ignored. As a result Q(E) 
we obtain 

The quantity C(E) can be represented in the form 

where T = ?r/w (Eo) is the half-period of the motion of a 
particle in the right well with energy Eo. This is the final 
expression, and we will operate with it in calculating the 
probability amplitude p ( t )  of Eq. (4).  
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In what follows we also consider the correlation func- 
tion of two probability amplitudes as a function of the time 
delay between them: 

Substituting into this formula (4)  for probability amplitudes 
and employing the fact that 

exp{i(E-E1)t')-I 
lim I= &(E-E'), 
+ i(E-Ef)t' 

we arrive at a formula for a temporal correlation function 
K(t)  similar to (4): 

3. THE FOCK-KRYLOV THEOREM AND THE DECAY OF A 
QUASISTATIONARY STATE 

The correlation function K( t )  given by formula ( 14) 
with the coefficients C(E),  Eq. ( 13), ofthe energy spectrum 
(6) of the total system is evaluated by summing via Poisson's 
formula as was done in Ref. 11 for the probability amplitude 
p(t)  given by Eq. (4). 

Bearing in mind that 

we can transform the dispersion equation (6)  into 
tan S(E) = - TSE, whose solution SE, satisfies the condi- 
tion 

Note that stepping outside the scope of the quasiclassical 
approximation only changes S(Eo) by a constant of -r/4, 
which, as we will see shortly, leads only to an unimportant 
phase shift. 

We represent K( t )  as 

9.- dn (C.)' exp (2nikn+i6Ent). 
-m 

We now go from the integration variable n to SE. Here 
dn/ci(SE) is determined by condition ( 15 ) : 

As a result, for Q, we get 

m 

exp (2nink-l-ixt)dx m , ( , ) = L  J 
n - =  I+u+(Tx)~  ' 

The probability amplitude p ( t )  given by (4)  is also ex- 
pressed in terms of @, (a) : 

Substituting n specified by ( IS), we can represent <Pk (CT) as 
follows: 

1 
= - exp[2ikS(Eo) I exp (2ik arctg zCirt.) 

dx 
n 

-OD I+a+xB ' 
(20) 

with tk = ( t  + 2kT)/r. Since 

exp(i arctan x) = ( 4 . + i ~ ) / ( l + ~ ~ ) ' ~ ~ ,  

the integral in (20) can be written as 

l+ix ' dz 
S~(O)= J (- ) exp (ixt,)- 

- m 
I-ix l+o+x2 ' 

This integral can easily be evaluated by the theory of resi- 
dues since the integrand contains only three poles: 
+ id= and i sgn k. We assume that t satisfies the in- 

equalities 0 < t < 2T. In this case the sign of t, coincides with 
the sign of k. Hence, for k>O the integration contour must be 
closed in the upper half-plane, with only one singular point, 
iJl+o, lying inside the contour. As a result for k>O and 
t>O we have 

For k < 0 and 0 < t < 2T the exponent in the exponential 
function in the integrand of (21 ) is negative and to evaluate 
the integral by the theory of residues the integration contour 
must be closed in the lower half-plane. The only singular 
point inside the contour, - i-, yields the following 
value for the integral with k< - 1 and O<t<2T: 

From Eqs. (22) and (22') it follows that at u = 0 the 
only function 6, that is not identically zero is 

Substituting ( 18), (20)-(22'), and (22") into ( 16), we find 
the following expression for the correlation function K ( t )  
when O < t  < 2T: 

The probability amplitude p ( t )  defined in (19) is deter- 
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mined by the only nonzero function 6,(t,0) [Eq. (22") 1 
and is given by the following formula: 

At t = 0 the correlation function K(t)  is a real quantity: 

In thelimit ass- w (T>>T), 

The quantity K(0)  determines how much time asymptoti- 
cally the system spends in the initial state corresponding to 
time t = 0. The limiting case considered here corresponds to 
a situation in which the system asymptotically is entirely in 
the initial state ICl, (x )  with energy Eo. This mode is described 
by the Fock-Krylov oscillation t h e ~ r e m , ~  where the wave 
function of the initial state, oscillating in time with a phase 
factor iEot, goes from this state, which is not an eigenstate for 
the total two-well system, to a coherent eigenstate of the 
same system whose energy differs from Eo by an exponen- 
tially small quantity of order - T- ' = woe - 2 D  / 4 ~ .  Here 
there is virtually no dynamics in the system and the metasta- 
ble state Eo does not decay. It must also be noted that in the 
case considered, in addition to the characteristic time T, 
there emerges a characteristic correlation-decay time 
r/p = [see Eq. (23) 1. This latter quantity corresponds 
to the establishment of correlations when coherent band mo- 
tion forms in the system. It differs markedly from T in both 
the exponential function and its coefficient. 

In the opposite limiting case a - O ( T <  T),  

In this limit the initial metastable state of the system decays 
via Eq. (24) with a half-decay time T given by the Gamow 
law,4 and the process takes a long time t compared to the 
half-decay time ( t  - 2T) T). In this situation the level sepa- 
ration in the right well, on the order of - 1/2T, is much 
smaller than the width 1/r of the metastable level in the left 
well. The value of K(0)  is exactly equal to the ratio of these 
two quantities and shows that in the process of decay the 
initial state spreads over all the levels in the right well that 
find themselves within the width 1/r of the metastable state 
Eo in the left well. In the limit T- w decay obeys the expo- 
nential Gamow law (24). 

4. DIMENSIONAL PHENOMENA IN THE DECAY OF A 
METASTABLE STATE 

Equation (23) determines the behavior ofK(t) of (14) 
at times t satisfying the inequalities O<t < 2T. Here we will 
consider the behavior of K(t)  andp(t) of (4) at large times. 
To this end we introduce the following quantity: 

rn 

The correlation function K(t)  of (16) and the transition- 
probability amplitudep( t )  of ( 19) are expressed in terms of 
this quantity in the following manner: 

K(t) = I f 1  (t, 0 )  -K, (t, a )  
P (t) =Kt (t, 0 ) .  

To obtain K, (t,O) we must calculate Gk (t,O): 

exp (ixt,) dx 

over time intervals t satisfying the inequalities 
2Tm<t<2T(m + 1), m =0,1,2 ,... . For k > l  thereisonly 
one pole in the integrand, x = - i. Since in the argument of 
the exponential function in the integrand of (27), we have 
tk > 0, the integration contour must be closed in the upper 
half-plane; consequently, the pole is not inside the contour. 
Hence, 6, (t,O) = 0 holds for k> 1. On the other hand, we 
have tk < 0 for k<  - (m f 1 ), which means that in this case 
the integration contour in (27) must be closed in the lower 
half-plane; consequently, the only pole of the integrand, 
x = i, does not lie inside the contour. Hence, &k (t,O) = 0 
holds for k< - (m + 1 ) , too. All this means that &, (t,O) is 
nonzero only fork satisfying the inequalities - m<k<O and 
has the form 

a,(t, O)=2ni Res f,O (i), 

wherefl (x )  is the integrand in (27). Summing 0 to - m 
from the resulting expression, which is a geometric series, we 

get 

K, (t, 0) =2i Res F0 (i), 

P (x)= [I-?+I] (I-r)-'(1+x2)-' exp ( i x t /~ ) ,  

r ( x ) = e x p [ - i 2 T x l z - 2 i S ( E o ) ]  ( I - ix ) / ( l f  ix). (28) 

Note that the unity in the expression in brackets in F O ( x )  
contributes nothing to the residue in the expression for 
K, (t,O) since that term has no singularity at point i. 

Reasoning along similar lines, we can calculate the val- 
ue of 6, (t,a) at a# 1 in intervals of values of t  satisfying the 
inequalities 2Tm < t < 2T(m + 1 ), m = 0, 1, 2, ... . In this 
case, Gk (t ,a) for k>O is determined by formula (22) and for 
k< - (m + 1) by (22'). For - m<k< - 1 we have tk >0,  
and the integration contour in (21) must be closed in the 
upper half-plane. Since in this case k < 0 holds, we have 

Two poles lie inside the integration contour: a simple pole at 
point i(1 + a)'/* and a pole of order k at the point i. The 
simple pole contributes GL1'(t,a) to &k ( t ,a),  and this con- 
tribution is exactly equal to &, (t ,a) of (22) but for k < 0. As 
for the jk (th order pole, we write its contribution as 

&k'2' (t, a )  =2ni Res fk (i) , -m<.k<-1, 

where fk (x )  is the integrand in (21'). The contribution to 
K, (t,a) from the simple pole at i( 1 -t a) 'I2 can be repre- 
sented in the form of an infinite sum of combinations of (22) 
and (22'), which reduces to a geometric series: 

1 pt q2"+1+q-'2m+'' 1 ( i )  K, (t, a)=,--exp - - ( q+ilq 
+-. 

P P ( l + ~ ) ~ "  
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xexp [$ - 2iS(Eo) 1) 
1 (-arm +- e x p [ e  - 2x - - , i n ~ ~  (E, ,  ] 
P ( I+P)~"  T a 

q=dh ((2-t-p)-' exp [-p/o+iS ( E , )  I, (29) 

where q = a"* ( 1 + p )  - ' exp [ - p / a  + iS(E,,) 1. 
Substituting (28) and (29) with m = 0 into (26), we 

immediately obtain K(  t)  for times t satisfying the condition 
O<t<2T, or simply Eq. (23). The contribution to K,(t,u) 
from the I k I th order pole at the point i is the sum of m terms 
6 r ' ( t , a )  at values of k satisfying the condition 
- m ~ k ~  - 1 and constitutes the sum of a geometric series: 

K,'Z) (t, a) =2i Res F ( i ) ,  

The final expression for K,( t ,a)  is the sum of (29) and 
(29') : 

Kl ( t ,  o)=K,(') (t, a) +K1(2',(t ,  a). (30) 

As in Eq. (28), the unity in the brackets in F ( x )  contributes 
nothing to K i2'(t,a) since that term has no singularity at 
point i. 

Equations (29), (29'), and (30) for K, ( t , ~ )  and (28) 
for K, (t,a) make it possible to write the explicit expressions 
for the probability amplitudep( t)  and the correlation func- 
tion K( t )  defined in (26). For instance, in the time interval 
2T< t<4T(m = 1), 

(31 1 
In addition to the ordinary exponential term (24), this 

equation contains a term" corresponding to the interference 
of the primary flux in the decay of the state in the well I and 
the waves reflected from the right edge of well 2 when these 
waves interact near the barrier separating the wells. This 
term also has an exponential function, but with an exponent 
containing time measured from when the waves interact. We 
see that althoughp(t) is a continuous function, its first time 
derivativep ( t )  experiences a jump at point 2T. 

Let us examine in greater detail the limiting case 
2T/ r>  1 when 2T< t < 4T. In these conditions the second 
term in (3 1 ) is much larger than the first, since the first term 
has time to exponentially decay. At times t satisfying the 
condition 0 < t < 2 T  theGamow decay law (24) operates. At 
t = 2T the decay process terminates and the function p ( t )  
virtually becomes equal to its initial value at t = 0 and then 
falls off exponentially but more slowly than in the 0 < t < 2 T  
interval. The ratio 

is much greater than unity for all values o f t  in the interval 
(0,2T) except in the region t 5; r,  since t- T)T. Actually, a 

relation of the form (32) holds not only in the interval 
(0,2T) but for all positive values of t > 0. Thus, starting at 
t = 2T, the quantity p ( t )  ceases to decrease according to the 
exponential law (24) and at t = 2Tm (m = 1,2, ...) its de- 
rivatives experience jumps up to the mth order inclusive. At 
greater values oft at a distance of the order of -r from 2Tm 
the quantity increases to its value at - 1 and amounts to 
roughly unity, and then exponentially decreases, but more 
slowly than in the interval (0.2T), since in the mth interval it 
contains an algebraic factor ( t  - 2Tm)In, which results in 
an additional factor of order - ( T /r)".  This behavior of the 
probability amplitude p (  t )  affects the time dependence of 
K(t) ,  which according to (29) and (30) dramatically 
changes its value at t = 2T, 4T, ... . The sections below de- 
scribe this problem in greater detail. 

5. SPECTRAL REPRESENTATION OF THE PROBABILITY 
AMPLITUDE AND CORRELATION FUNCTION 

The explicit expressions (28 1-( 30) for the probability 
amplitude p( t )  and the correlation function K( t)  obtained 
in Sec. 4 have different analytic representations in different 
intervals of time t, increase in complexity as t grows and 
become practically incomprehensible. They have similar 
structure within different time intervals, which suggests that 
they become much simpler after a Fourier transformation, 
and this also makes it possible to study their asymptotic be- 
havior at large times. Technically it is more convenient to 
employ the Laplace transform, since this is more suitable for 
studying the analytic properties and establishing the asymp- 
totic behavior. To obtain the transitions ofp( t)  and K(t)  it is 
expedient to begin with the initial expressions (4) and ( 14). 

The Laplace transform of the probability amplitude 
p ( t )  is defined in the following manner:I2 

Applying (4)  directly, we can easily show that Ip(t) 1 < 1, 
whereby the growth index so of this function is zero. The 
transform P(s) is analytic in the half-plane Re s > so = 0 and 
has the form 

By employing the Poisson transformation, we can express 
P(s)  as follows: 

Using Eq. ( 17), we arrive at an expression for H, (s) similar 
to (21): 

We evaluate (36) for Re s > 0. For k> 1 the integral in 
(36) must be closed by a contour in the upper half-plane. 
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Since the poles of the integrand at x = - i and x = - is7 lie 
in the lower half-plane, we have H, (s) =O in this case 
(Res>Oand k > l ) .  

For k < 0 the contour for the integral in (36) must be 
closed in the lower half-plane, which contains the pole at 
x = - is7 of the integrand. The pole provides the following 
contribution: 

At k = 0 we easily find Ho(s) = T/( 1 + 7s). Substitut- 
ing this P(s) into (35), we get a geometric series whose 
range of convergence is the half-plane Re s > 0, where 

This function P(s) is analytic and has no singularities in the 
right half-plane Re s > 0. All poles of this function, as can 
easily be verified directly, lie on the imaginary axis Re s = 0. 

For K(t,u) of (25) we introduce the Laplace trans- 
form, which is similar to (35) and (36): 

As P(s),  the function K, (s,u) is analytic in the half-plane 
Re s > so = 0. For k>O, the integration contour in (38) must 
be closed in the upper half-plane, with 

For k < 0 we must close the contour in the lower half-plane, 
with 

Substituting (39) and (40) into (38) and summing the 
geometric progression obtained, we arrive at the final result 

At u = 0 we have p = 1 and K, (s,u) of (41 ) is identi- 
cally equal to P(s )  of (37). According to (26), the image 

function K(s) of the correlation function ( 16) is equal to the 
difference between K, (s,O) = P(s)  and K, (s,u) of (41 ). 

6. THE ASYMPTOTIC BEHAVIOR OF THE PROBABILITY 
AMPLITUDE AND CORRELATION FUNCTIONS AND THE 
POSSIBILITY OF A STOCHASTIC REGIME IN THE DECAY OF 
A QUASISTATIONARY STATE 

Let us study the decay of a quasistationary state in a 
two-well potential (Fig. 1 ). Initially the particle is in the left 
well with an energy Eo. The decay of the quasistationary 
state is determined by two characteristic times T and T, with 

the width of level Eo and T-  ' the level separation in the 
right well. 

At times t satisfying the condition 0 < t < 2T the proba- 
bility amplitudep(t) for the transition from level Eo to the 
states of a two-well potential behaves according to an expo- 
nential law in accordance with the Gamow theory: 

where T contains no characteristics of the right well, into 
which states the quasistationary state decays. Starting at 
t = 2T, the period of motion in the right well, the particle 
begins to feel the finiteness of the right well, and in the time 
interval from 2T< t < 4 T  there appears, in addition to the 
exponential factor corresponding to the Gamow decay of the 
quasistationary state, a second term also describing the de- 
cay of the quasistationary state but with an exponential func- 
tion measured from the moment t = 2T  [Eq. (3  1 ) 1. This 
exponential function already contains the characteristics of 
the right well in the form of the oscillating factor 
exp [2iS(Eo) 1. 

The decay phenomenon manifests itself most vividly in 
the limit ~ 4 2 T .  In this case the exponential function (24) 
corresponding to the decay of the state falls off completely 
and there remains only the second exponential function ( 3  1 ) 
measured from the time t = 2T. At times t close to 2T the 
value of this exponential function is of order unity; then it 
decays with a time constant T, just as it did in the interval 
0 < t < 2T, and, hence, at t close to 4Tconstitutes and expon- 
entially small quantity. At t = 4T there emerges another ex- 
ponential function with an amplitude close to unity, which 
then also falls off with a time constant T. In general, at 
t = 2kT (with k an integer) p ( t )  is of order unity and then 
decays with a time constant T in the time interval 
2kT< t < 2(k + 1 ) T. Thus,p(t) is quasiperiodic with sharp 
maxima at t = 2kT followed by an exponential decay with a 
time constant T. Here the peak amplitude before the multiple 
harmonics depends on the size of the right well owing to the 
oscillating factor exp{2ikS(~,)). For 7>2T, the decay has 
no time to manifest itself fully at times t-2Tand the proba- 
bility amplitudep(t) has no sharp minima at points t = 2kT 
and is always of order unity. This mode corresponds to 
Fock-Krylov oscillations. 

The asymptotic behavior of the probability amplitude 
can be clarified by analyzing the temporal correlation func- 
tion K( t )  of Eq. ( 14). Within a single period 2Tof motion in 
the right well the correlation function is not only character- 
ized by the time constant T, as inp(t) ,  but contains a second 
time constant T/P, with p = and u = T/T [see Eq. 
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(23)]. For r &  T these two constants coincide, but for r$ T 
the value of r/p = differs substantially from rand gives 
the time required for coherent motion to develop in the sys- 
tem, and for an infinite number of wells describes the time of 
formation of band motion. Here r/p 47, that is, in this limit- 
ing case the decay time r is much longer than the time for 
coherent motion to set in. While the time motion r gives the 
correlation-decay time, r/p characterizes not only the decay 
but the strengthening of correlations with the passage of 
time. Hence, the correlation function reaches its minimum 
in the middle of the period of motion in the right well, at 
t = T. The same situation occurs in the middle of multiples 
of the period [see Eq. (29) 1. 

An important quantity specifying the behavior of the 
probability amplitudep(t) at infinity is the value of the cor- 
relation function K(t)  at t = 0. This quantity K(0) deter- 
mines the fraction of time spent by the system in the asymp- 
totic region in the initial state. Generally, this time 
experiences rapid oscillations related to the size of the right 
well [see Eq. (23') 1. The most graphic answer is presented 
in the limiting cases of 7% T and 74 T. In the first case 
K(0) = 1, decay is practically absent, and the system is 
characterized by oscillatory dynamics, in accordance with 
the Fock-Krylov oscillation t h e ~ r e m . ~  In the second limit- 
ing case, K(0)  = r/2T is the ratio of the width r- ' of the 
decaying level to the level separation 1/2Tin the right well. 
Thus, K(0) is inversely proportional to number of levels ly- 
ing within the level width r- ' (Fig. 2), and in the asympto- 
tic region it is equally probable for the system to stay on one 
of these levels. In both limiting cases, K(0) does not experi- 
ence oscillations as S(Eo) does. Oscillations occur only at 
a = r/2T- 1, when the period of motion in the right well 
2T, is on the order of the half-decay time r .  

A more subtle characteristic of the asymptotic behavior 
of the system is the behavior of higher-order correlation 
functions, such as 

where Kc') ( t )  is the first-order correlation function K(t) .  
For the second-order correlation function there exists a for- 
mula similar to ( 14) : 

FIG. 2. The metastable state spreads out over the states of well 2 (Fig. 1 ) 
that lie in a band T ' wide. 

This correlation function can be expressed in terms of a- 
derivatives of K") ( t )  of (23): 

where in finding a-derivatives one must bear in mind that 
p = dm. If we let a go to infinity in (44), we get 
K"' (0) = 1/2, which refines the limit that formula (23") 
yields, K(0) = 1, and shows that this limiting case corre- 
sponds to the Fock-Krylov mode when only one level is 
located within a band of width 7- ' . If we let a g o  to zero, we 
have (0) = (0/2)~, which is related to the expression 
K(0) = r/2Tin this limit in the following manner: accord- 
ing to (42), this is the square of K(0) divided by 2T/r,  
which is the number of levels lying within a band r- ' wide 
(Fig. 2),  that ~ s , K ( ~ )  (0) = ( T / T ) ~  = K3(0).  Other higher- 
order correlation functions can be analyzed similarly. 

The system most suited for studying experimentally the 
laws established above is a SQUID. In most systems where 
the decay of a quasistationary state can be observed the tun- 
neling is not one-dimensional (for instance, the decay of a 
radioactive nucleus takes place in three-dimensional space). 
In view of this inhomogeneity, the above laws are averaged 
over the size of the second well because the well has different 
dimensions along different directions. For example, averag- 
ing over the action Sof the correlation function K( t )  of (23) 
yields 

Averaging over S means averaging over the size of the right 
well or over the spread of the external field and leads to 
exclusion of all dimensional effects in the problem. It is most 
convenient to find the average value of the probability ampli- 
tude for all values o f t  by employing the transform P ( s )  of 
(37) : 

Going over to original functions, we arrive at the following 
expression for the probability amplitude averaged over S: 

which corresponds to the Gamow decay law but, in contrast 
to (24), operates not only in the interval 0 < t < 2T but for 
all values oft. Thus, eliminating dimensional effects leads at 
once to an exponential decay law over the entire time range. 

Averaging of K, (s,a) over S yields 

< K ,  (s, o )  )=(ZIP) (sz+P)-'. 

Using (26), we obtain formula (45) for the averaged corre- 
lation function, (K(t) ), , valid for all times t and not only for 
0 < t < 2T. Thus, the averaged value of K( t )  is nonzero for all 
values of t. As the size of the right well increases without 
limit,p = tends to unity. In this case the period of 
motion T becomes infinite and (K(t)),  vanishes, since this 
limit corresponds to the transition to the continuous spec- 
trum, which means that all correlations cease. In the other 
limiting case, where the right well shrinks (a- co and 
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p-co), we have (K(t)),  = (p ( t ) ) , .  This occurs in the 
Fock-Krylov oscillation mode, when there is no real dynam- 
ic decay of the initial state. The above reasoning suggests 
that in three-dimensional space all dependence on S be- 
comes smeared in the lowest-order approximation and the 
Gamow law (43) is valid for the averaged probability ampli- 
tude (p(t)), at all times t even in a finite system. Here the 
spatially averaged correlations behave according to the law 
(45). 

Only a one-dimensional system is suitable for observing 
dimensional effects as functions of S, and a SQUID is just 
such a system because its parameters that determine the po- 
tential field in the decay of a quasistationary state can be 
easily controlled. This usually presupposes the use of the 
modulation m e t h ~ d . ~  

Let us consider two limiting cases that emerge in the 
modulation method. In the mode where the modulation of a 
parameter ASis much smaller than unity, the method makes 
it possible to measure the finer dynamic characteristics of 
the system, say, the derivatives ofp(t) and K(t).  The oppo- 
site limiting case of AS) 1 involves measuring averaged 
characteristics, for instance, (45) and (46), in the same way 
as during self-averaging in the three-dimensional case. If in 
this method, for AS) 1, one measures the S-derivatives of 
p ( t )  and K(t) ,  the result is a random quantity. The reason is 
that for AS)1 modulation means averaging not over an in- 
teger number of periods of the function exp (2iS) but over an 
interval that apart from an integer number of periods con- 
tains a noninteger part random in length. Since the average 
over an integer number of periods is independent of S, its 
derivative with respect to S vanishes and there remains only 
the derivative of the random quantity. This may be the rea- 
son why for certain values of the parameters of the system 
randomization is observed in experiments involving 
SQUIDS.~ 

Another source of randomization may be the internal 
properties of the system, properties not related to modula- 
tion. As is well known," even in classical dynamics there is a 
dimensionless critical parameter K that determines whether 

the motion of the system is stable (K < 1 ) or whether ran- 
domization develops (K > 1 ). In this case tunneling between 
the two wells becomes possible, and the effect of the modu- 
lating field on the system makes the system quite ripe for the 
stochastic mode to appear in the classical motion in two 
wells, the transition between which is a purely quantum na- 
ture, that is, quantum tunneling. The resulting situation is 
similar to the vibrations of a nonlinear pendulum in the 
neighborhood of the separatrix. Hence, a purely classical 
type of stochastization is possible in a two-mode system with 
the modes coupled by quantum transitions. 

We are grateful to Yu. Kagan for discussions of Ref. 1 1, 
which stimulated the present work. 
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