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A model is proposed to interpret scanning tunneling microscopy (STM) images of the 
reconstructed ( 110) surface of GaAs. The model, which is based on the concept of 
quasistationary states and the tight-binding formalism, is used to calculate the STM images. The 
results obtained are found to be in good qualitative agreement with the experimental data. 

1. INTRODUCTION 

The discovery of scanning tunneling microscopy 
(STM) has made possible the study of surfaces at the atomic 
level. 

The usual starting point for interpreting STM experi- 
ments is the Bardeen-Tersoff-Hamann theory6v7 for the tun- 
neling current between two weakly coupled systems. In this 
approach, the current is given by the expression 

where the Bardeen tunneling matrix element can be written 
in the form6 

In Eq. (2 )  the integration is carried out over any surface that 
passes between the crystal and the tip, m is the free electron 
mass, Y, and Y, are unperturbed wave functions for states 
of the tip and the crystal, and E ~ ,  E, are the energy levels 
corresponding to these states. 

Equation (1)  is still not sufficient to provide a simple 
understanding of the atomic resolution in STM. Further 
progress in this direction was made in the work of Tersoff 
and Hamann7 and Baratoff,' where it was proposed that the 
sharp point be modeled as a sphere of radius R. In the limit 
R -0 such tips turn into point test atoms whose wave func- 
tions are localized and have s-type symmetry. For small ap- 
plied voltages, the expression for the tunneling current in 
this limit can be written in the form 

The derivation of Eq. ( 3 )  assumes that the tip is metallic, 
that is the Fermi energy in the tip, and that r, is the loca- 
tion of the test atom (in the limit R -0). It follows from Eq. 
( 3 )  that the tunneling current is proportional to the local 
density ofstates calculated at the point r,, i.e., at the "tail" of 
the crystal wave function. 

Thus, in the constant tunneling current regime, STM 
images correspond to contours of constant electron density 
near the crystal. 

For the case of simple metals the spatial distribution of 
electronic states follows the geometric position of the atoms. 
For metals, STM usually gives the real topographical image 
of the surface. For semiconductors the electronic states do 
not follow the direct topographical contour. In this case in- 

terpretation of an STM image is a nontrivial problem, re- 
quiring knowledge of the interrelationship of the electronic 
and atomic surfaces (i.e., the geometric structure of the sur- 
face). 

Despite the apparent simplicity and transparency of 
Eq. (3),  this approach suffers from important deficiencies. 
First of all, the atomic structure of the sharp point drops out 
of the discussion. A second and more serious deficiency was 
identified in the detailed and accurate analysis given in the 
paper by Chen9 of the original expression ( 1 ) and the transi- 
tion from it to Eq. (3).  Reference 9 showed that Eq. (3)  is 
correct, and in fact independent of the atomic and electronic 
structure of the sharp point, only in the macroscopic limit, 
i.e., when the spatial scale of modulation of the electron den- 
sity at the surface of the crystal greatly exceeds the atomic 
scale. In the opposite case, which is characteristic of the ex- 
perimental situation, interpretation of STM images with 
atomic resolution using Eq. (3)  becomes problematical. We 
also note that for simple metals, Eq. (3)  gives a value of the 
profile modulation that is several times smaller than what is 
observed experimentally when the electron structure of the 
sharp point is ignored (see the analysis of the experimental 
data in Ref. 10). The authors of Refs. 9-1 1 attempted to take 
into account the electronic structure of the sharp point by 
including impurity states with other than s-like symmetries. 
Their generalization of Eq. (3)  to includep- and d-orbitals 
of the sharp point improved the agreement with experiment. 

It is clear from the derivation of Eq. (3)  that effects due 
to the interaction between the tip and the crystal surface 
have been ignored. For small tunneling gaps these effects can 
turn out to be considerable. Attempts to include, e.g., 
changes in the surface spectrum (surface states induced by 
the tip for a fixed atomic geometry of the surface) were made 
by Tekman and Ciraci.I2 They used the Bardeen approach 
and the tight-binding method to study the effect of the next 
correction to the tunneling matrix element on the current. In 
what follows we will show that the effect of the tip-crystal 
interaction on the change in the spectrum can be included 
within the framework of tight binding in a systematic way. 

2. THE TIGHT-BINDING METHOD IN THE THEORY OF STM 

In this section we introduce some necessary informa- 
tion regarding the tight-binding method and its application 
to STM. 

In recent years the method of tight binding has been 
used successfully to describe the properties of solids both in 
bulk and at a surface (see, e.g., the book by HarrisonI3 and 
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citations in it). The tight-binding method is not numbered 
among the so-called first-principles methods (although the 
fact is that these latter methods cannot avoid the use of fit- 
ting parameters of one sort or another). In tight-binding 
calculations the energy spectrum of the solid is described by 
a Hamiltonian in which overlap integrals are introduced be- 
tween orbitals of various symmetries that are centered on 
atoms. As a rule it is sufficient to include overlap integrals 
between nearest neighbors. A large number of calculations 
of various properties of solids using this method have dem- 
onstratedI3 that the matrix elements possess the property of 
transferability, i.e., matrix elements determined for one ma- 
terial (e.g., fitted to experiment) can be used for other mate- 
rials. Of course, in this case it is necessary to include their 
dependence on bond length, which turns out to be quite uni- 
versal, and within the range of variation of bond lengths in 
solids is well-described by the dependence l/d (where d is 
the bond length). l3 However, the angular dependence of the 
matrix elements is dictated by the symmetry of the overlap- 
ping orbitals. This angular dependence is essentially deter- 
mined by integration of various combinations of spherical 
harmonics with respect to angle. 

The problem of tunneling, taking into account the mu- 
tual influence of the tip and crystal on the spectrum, also 
admits an elegant solution within the tight-binding method. 
This problem was solved in the paper by Caroli etal., '%sing 
the nonequilibrium techniques of KeldyshI4 in the one-di- 
mensional case and for one type of orbital at each lattice site. 

Let us obtain an expression for the tunneling current in 
our case, and show that when the mutual influence of the tip 
and crystal is neglected (to lowest order in the tunneling 
matrix element), the problem reduces to the Bardeen-Ter- 
soff-Hamann form.' We emphasize that this approach in- 
cludes the change in the tip and crystal spectrum due to the 
overlap of their orbitals, but does not take into account a 
possible shift of the atoms at the surface when the tip is ap- 
plied. 

In what follows, it is convenient to treat the crystal and 
tip as two clusters of finite but rather large numbers of atoms 
that are periodically repeated along the surface. The Hamil- 
tonian of the noninteracting tip and crystal can be written in 
the form 

where the labels c, t refer to the crystal and tip, respectively, 
and a is a spin index. The overlap integral is denoted by the 
same letters as in Eq. ( 1 ), according to a principle that will 
become clear in what follows. In determining it we find 

h 

where T is an "overlap" operator whose form will be made 
more precise below; p,,, (r - Ri ) are n-type orbitals 
(n = s,p,d, ... ) centered on atom Ri in the crystal (label c) or 
in the tip (label t ) .  In Eq. (4),  E, has the sense of an energy 
eigenvalue for an electron on an isolated n-type orbital at the 
position R, . 

Tunneling between the crystal and the tip is possible 
due to the overlapping orbitals. In this case, the tunneling 
Hamiltonian has the form 

Due to the rapid decay of the value of the matrixzlement 
T!,, with distance, the important contribution to T comes 
from orbitals for the sharp point and the regions of the sur- 
face close to it. The tunneling current between the two sub- 
systems is determined by the expression 

where the current operator has the form 

In what follows, it is convenient to go over to matrix form in 
the description, introducing the notation 

Taking into account Eqs. (7)-(9), we find 

I=ie sp{TtC,+(t)e,(t) > - < E , + ( t )  C,(t) > F + )  
=e  sp{P~f; (t, t ) - & ~  (t, t)Tf),  (10) 

the trace operation Sp in Eq. ( 10) is calculated after matrix 
multiplication with respect to all the orbitals and spatial la- 
bels of these orbitals, and the Keldysh functions are defined 
in the usual way as follows: 

G:; ( t ,  t') =i<C,+(t) C,(tl)), (11) 

G;,T (t, t')=i(C,+ (t) C,(tl) >. (12) 

The expression for the tunneling current (20) is valid to any 
order in the tunneling matrix elements of T, and can be con- 
verted to the form 

where gz;,- (E) are Keldysh functions (the caret denotes a 
matrix with respect to the orbital labels) for the noninteract- 
ing crystal and tip, respectively. We also introduce the nota- 
tion 

I Det (E)  12=DetR (E)  DetA (E) , 

where FsA (E) are the retarded and advanced Green's func- 
tions, and i is the unit matrix of corresponding dimension. 
We assume that the applied voltage is included in the distri- 
bution functions, which are contained in ( E ) .  Making 
use of the relation 
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wherep,, ( E )  are the density-of-states matrices of the crystal 
and tip, and n,, (E)  is the Fermi distribution function 

Eq. ( 13) can be simplified, and the expression for the tunnel- 
ing current, valid for any tunnel coupling between tip and 
crystal finally takes the form 

where Vis the external applied voltage. 
We note that in the weak tunnel coupling limit (i.e., 

large distance between tip and surface), we can assume that 
IDet ( E )  1' in Eq. ( 17) is - 1 to terms - T '. Let us show that 
in this limit Eq. ( 17) reduces to the Bardeen-Tersoff-Ha- 
mann equation ( 1 ) . 

Before doing this, we note that according to the paper 
by Goldberg et a1.,16 under rather general assumptions the 
hopping integral (5) (see Ref. 16 for details) reduces to the 
following expression within the tight-binding method: 

which agrees with the tunneling matrix element of Bardeen6 
[Eq. (2) 1. This agreement is not surprising if we recall that 
electron hopping between atoms takes place via the same 
tunnel coupling between two adjacent potential wells (the 
potentials of which can be replaced by pseudopotentials). 

We now find the density of states matri~j3~,,  . For conve- 
nience, we let the label k denote the pair of indices n,i, and 
pnc (r  - Ri ) = lpk ). The wave eigenfunction of energy lev- 
el E~ (tip or crystal) Iq, ) can be expanded in terms of the 
localized orbitals I pk ) : 

where Up, is a matrix of expansion coefficients, and IT, ) 
and Ipk ) are columns with dimensions {NA X No ) (NA is 
the number of atoms, No the number of orbitals per atom). 
In the basis of the eigenfunctions of the Hamiltonian, the 
Green's function has the simple form 

Completing the transition in (2 1 ) to a basis of localized orbi- 
tals using ( 19), we have 

taking into account Eqs. (5), ( 17), and (22), we find to 
within terms of order T 2  
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Using Eq. ( 19), we finally obtain 

which coincides with Eq. ( 1 ) . 
The tight-binding method is most convenient for calcu- 

lating spectra and other properties of systems that do not 
possess translation invariance. This is the situation for STM 
modeling. In practical calculations based on empirical tight 
binding there is no need to explicitly use orbitals to construct 
the Hamiltonian: it is sufficient to know only the geometric 
placement of the atoms and the types (symmetry) of orbitals 
at each site. After this the Hamiltonian can be written expli- 
citly in the form of a matrix. 

Unfortunately, direct computation using Eq. ( 17) re- 
quires knowledge of the matrix of expansion coefficients 
with respect to localized orbitals. In these calculations it is 
necessary to know not only the spectrum (eigenvalues) of 
the Hamiltonians of the tip and crystal, but also their eigen- 
vectors. Finding the latter requires largee computational re- 
sources. 

However, as was shown in Refs. 17 and 18, the tunnel- 
ing current can be calculated without finding the eigenvec- 
tors. In this case, the problem reduces to finding the complex 
energy spectrum of the composite cluster tip + crystal, in 
which case their mutual influence is taken into account auto- 
matically. In the next section this approach will be applied to 
modeling STM images on the ( 1 10) surface of GaAs. 

3. MODELING STM IMAGES OFTHE (1 1O)SURFACE OF GaAs 

The cleaved ( 110) surface of GaAs, along with the 
( 1 1 1 ) Si 2 X 1, ( 11 1 ) Si 7 X 7, and graphite surfaces, have 
received the most study, both by STM1"" and by other 
techniques." The atomic structure of an ideal ( 110) GaAs 
surface shown in Fig. l a  turns out to be unstable and under- 
goes relaxation (Fig. lb)  . That the ( 110) GaAs surface has 
the structure shown in Fig. lb  is now considered to be reli- 
ably established. For this surface there are a variety of calcu- 
lations based on minimum energy (see Ref. 23 and the cita- 
tions therein), which give roughly the same values for the 
relaxation parameters. In this paper we use the relaxation 
parameters and matrix elements of the tight-binding Hamil- 
tonian obtained by Chadi.23 The total electron density of 
states in the upper layer of a relaxed surface and the partial 
density of states on individual orbitals of Ga and As atoms in 
this case are shown in Figs. 2a to 2c. For an ideal surface 
there are two bands of surface states in the gap for the bulk 
density of states, one of which is formed essentially by atom- 
ic Ga states, the other by As states; during relaxation these 
two bands are expelled into the bulk conduction and valence 
bands, r e~pec t i ve ly . ' ~~~~  Our calculations of the density of 
states are in rather good agreement with those of other au- 
thors (see, e.g., Refs. 24,25). 

The tip is modeled as a linear chain of 20 atoms placed 
perpendicular to the plane of an ideal surface. At each atom 
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FIG. 1. Side view [ (projection on the plane ( 110) 1 of the ( 110) sur- 
face of GaAs. The filled circles are Ga atoms, the open circles As; a- 
ideal surface, b--relaxed surface. 

we have centered one s-type orbital with a single electron. lap integrals between orbitals localized on tip and crystal 
The value of the overlap integral in the chain was chosen to atoms were chosen in the following way: - 
equal 1 eV. The crystal was modeled as a periodically repeat- 
ing cluster consisting of 2  x 2 unit cells in the plane of the 

( s l s ) = f ( d ) .  ( s l p , ) = f ( d ) l ,  ( s l p , ) = f ( d ) m ,  ( s l p , ) = f ( d ) r ~ ,  

surface with a thickness of 8 atomic layers; in the calcula- 
tions we took into account the interaction of the last atom of 

( 2 5 )  

the tip with all the atoms in the first crystal layer. The over- / ( d ) = e x p [ - - ( d - I )  ]. ( 2 6 )  

FIG. 2. a-total density of states in the upper 
layer of a relaxed ( 110) GaAs surface. The par- 
tial densities of states at individual orbitals are 
shown for As atoms (b) and Ga atoms (c):  the 
solid curves refer to the surface, the dashed 
curves to the bulk. 
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where l,m,n are direction cosines between the directions of 
the "dumbbell"-shapedpi orbitals and the radius vector that 
connects atoms of the tip and crystal, and d is the interato- 
mic spacing in angstroms. The dependence of the matrix 
elements (25) on distance through (26) is essentially deter- 
mined by the work function, which for the majority of solids 
has a value on the order of 4 to 5 eV; this agrees with the data 
from the tables of Clementy and R ~ e t t ~ . ~ ~  In fact, the quali- 
tative character of this dependence leads to considerable in- 
determinacy in the value of the tunneling current. Direct 
comparison of the absolute value of the tunneling current for 
a specific experiment, when the tip is positioned above a spe- 
cific point, is made still more difficult by the fact that the 
tunneling current, as we have already noted previously, de- 
pends on the atomic structure of the sharp point. However, 
this does not imply that such a comparison is impossible. In 
fact, methods have recently been developed for obtaining 
tips with known point geometries. Reference 27 report fabri- 
cating a tungsten tip with a pyramid made up of four atoms 
at its point. The presence of the pyramid was clearly demon- 

strated using an ion microscope; furthermore, it is clear from 
Ref. 27 that the procedure for obtaining such a tip is quite 
reproducible. If the shape of the sharp point is known, then 
calculations are possible for any specific situation. Never- 
theless, use of a simple linear tip and matrix overlap elements 
determined by Eqs. (25) and (26) is found to be sufficient 
for a good qualitative description of the experimental re- 
sults. 

In Figs. 3a, 3b and 4a, 4b we show STM images of a 
relaxed ( 110) GaAs surface calculated in the constant cur- 
rent regime ( ] I  I = 0. l nA) when voltages U = + 2 V and 
- 2 V were applied to the crystal, respectively. The energies 

of the atomic orbitals in the tip were chosen so that the Fermi 
levels in the crystal and tip coincided in the absence of an 
applied voltage. In the first case ( U  = + 2 V), electrons 
tunnel from the tip into the conduction band of the crystal, 
which was formed essentially from s-type orbitals of Ga 
(Fig. 2b). When U = - 2 V, the valence electrons of the 
crystal participated in the tunneling; these electrons are lo- 
calized primarily inp-orbitals of the As atoms (Fig. 2c). In 

FIG. 3. a-three-dimensional image of the profile of a ( 110) GaAs 
surface, calculated in the constant-current regime ( I =  0.1 nA) 
with a voltage U = 2 V applied to the crystal. b--topographical 
image of this profile. The coordinate origin coincides with the posi- 
tion of an As atom on an ideal surface. The distance along the z-axis 
is measured from the tip atom closest to the crystal to the plane of 
the ideal surface. 
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agreement with this, the bumps in the STM image (Fig. 3a) 
corresponded to Ga atoms for U = 2 V, and atoms of As 
were not observed. Conversely, when the sign of the voltage 
was changed, an image of the As atoms appeared (the bumps 
in Fig. 4a), and the Ga atoms dropped out of the picture. 

From Figs. 3a and 4a it is clear that in both cases the 
modulation of the distance from the sharp point to the sur- 
face was much larger in the [OOl] direction than in the 
[ 1101 direction. All of these results are in complete agree- 
ment with e~periment; '~, '~ however, it should be noted that 
the spacings in the [001 ] direction observed in Ref. 19 be- 
tween maxima in the profile of the STM images (corre- 
sponding to atoms of G a ~ n d  As) obtained for U = + 1.9 V 
were found to equal 1.8 A (an average over various series of 
measurements gives 2.1 + 0.09 A), while in our calculations 
they are practically indistinguishable from the spacings in 
the [OOl ] direction between atoms of Ga and As in the up- 
permost layer of the relaxed surface (approximately 1.25 
A). At this time the reason for this considerable disagree- 

FIG. 4. The same as in Fig. 3, but for a voltage U = - 2 V 
applied to the crystal. 

ment between theory and experiment is unclear. 
The comparison of experimental and theoretical STM 

images given in Ref. 19 (the latter calculated using the Ter- 
soff-Hamann method) gives better agreement with experi- 
ment, although the calculations do not take into account the 
mutual influence of the tip and crystal. Our calculations, 
which do take into account the mutual effect of the tip and 
crystal on their electronic spectra, show that it is impossible 
to achieve complete agreement with experiment. Both our 
calculations were made for a fixed surface geometry. How- 
ever, when a voltage is applied and an excess charge (or 
deficit) appears, it is possible for the surface to distort com- 
pared to a free surface during the tunneling of electrons from 
the bond to the surface. Thus, in STM experiments involving 
the Si (001 ) 2 X 1 surface one often observes symmetric 
dimers, whereas other experiments and theoretical calcula- 
tions of the free reconstructed surface indicate that an asym- 
metric-dimer model is appropriate (see the detailed analysis 
of data in the paper by B a d ~ i a ~ * ~ ) .  An attempt has been 
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madez8 to explain this contradiction by taking into account 
the distortion that accompanies the charging of these dimers 
while electrons are tunneling. We note that the change in the 
geometry of adsorbed molecules of CO type during scanning 
by a tip along a surface can turn out to be significant in the 
interpretation of STM images (see discussion in the paper by 
Stoneham et We cannot exclude the possibility that 
atomic relaxation on the surface during electron tunneling 
can occur for the ( 1 10) surface of GaAs as well. 

Thus, the use of the method of quasistationary states to 
calculate the tunneling current within the framework of a 
simple tight binding model leads to a good qualitative de- 
scription of STM images. As for quantitative comparisons 
with experiment, for this we apparently require inclusion of 
the real atomic structure of the sharp point and a more accu- 
rate calculation of the overlap matrix elements between tip 
and crystal orbitals, and possibly the inclusion of surface 
relaxation during the electron tunneling. 
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