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A model is proposed to describe the nonlinear excitonic resonance in semiconductors 
(specifically in quantum wells). This model includes correlation effects in the simplest way 
possible, along with phenomenological parameters that characterize the shift of the exciton 
resonance and its relaxation. The equations that describe these phenomena are solved in various 
cases. 

1. INTRODUCTION 

Nonlinear optics properties of semiconductor layered 
structures have been the subject of a large number of papers 
(see, e.g., the review in Ref. 1 ), in which exciton effects have 
also been studied. These exciton effects are the topic of this 
paper. 

We first pause to briefly discuss the difficulties that 
arise in solving this problem. The objects of interest are exci- 
tons, which can be created in a quantum well; our task is to 
find the nonlinear response of this system to an electromag- 
netic field with a frequency close to the exciton resonance. 

Ideally, everything about this problem should be clear. 
Excitons are generated by a resonance field; provided that 
the exciton concentration is not too large we can forget about 
their internal structure and treat them as indivisible particles 
of Bose type which interact among themselves in some fash- 
ion. It is this interaction that is the source of the nonlinear- 
ity. 

One complicating circumstance is the possibility of 
forming a biexciton. However, for excitons created by irra- 
diation with a specific polarization, which are all of the same 
type, it is not necessary to discuss biexcitons because single- 
type excitons apparently repel each other (recall the condi- 
tions for formation of a hydrogen molecule). This repulsion 
has a radius on the order of the size of an exciton, and may 
plausibly be treated approximately as a hard-sphere interac- 
tion; as for the Van der Waals attraction, it is ordinarily 
weak and need not be included (once again we recall the 
situation for hydrogen). 

Thus, the following model suggests itself: Bose particles 
with a repulsion plus their interaction with an external field 
(both creation of excitons and their destruction by this 
field). This model has one significant deficiency: it can be 
analyzed only in the limit of low-exciton concentrations (the 
gas limit), i.e., for sufficiently small resonant field intensi- 
ties. The situation is especially unfavorable for the gas ap- 
proximation in the two-dimensional case (i.e., excitons in a 
quantum well), where the requirement for this approxima- 
tion to be applicable is that the gas parameter be not simply 
small, but exponentially small. 

Usually such problems are solved within the Hartree- 
Fock approximation, an approach that is discussed in con- 
siderable detail in the review mentioned previously.' In this 
approach the role of correlation effects remains unclear; we 
would like to understand this, and also obtain at least some 
idea of the role of relaxation. 

In this paper a model is proposed in which correlation 
effects are included in the simplest possible way. A further 

advantage of this model is the ease with which relaxation 
effects can also be taken into account, as is also done here. It 
would appear that while the model reproduces the usual 
overall picture of what happens during the excitation of exci- 
ton resonances, it also allows us to obtain a number of results 
without a great deal of work. 

The equations of motion for the model are formulated 
in Sec. 2. In the sections that follow, various problems are 
discussed: the response to a strong resonance field (Sec. 3), 
bistability (Sec. 4),  and the properties of a weak probe signal 
superposed on an intense pump (Sec. 5).  Finally, additional 
considerations and comments are presented in the last sec- 
tion. 

In order to avoid misunderstandings, I would like to 
emphasize that whereas the review (Ref. 1 ) describes results 
of investigations which (although very approximate) were 
used over a wide interval of frequencies and external field 
intensities, the problem treated here is narrower in scope: 
only the neighborhood of the exciton resonance is investigat- 
ed, and for intensities that are low enough that only excitons 
in the ground state are present. Thus it is permissible to ig- 
nore, e.g., the creation, of unbound electron-hole pairs. 

2. THE MODEL 

Let us begin with a model system that only remotely 
resembles the one of interest to us. We will take from this 
system only those things that serve to further our goal, and 
add whatever it does not encompass later. The result will be 
the model we want. 

Let us consider an assembly of two-level atoms de- 
scribed by the Dicke model in an external field. Such a sys- 
tem is more appropriate for describing Frenkel excitons than 
Wannier-Mott excitons. However, the Dicke model has one 
attractive property: it is impossible to place two excitations 
on a single atom. This property mimics the impenetrability 
of the excitons in our problem, which are treated as hard 
spheres. It is this trait of an ensemble of two-level atoms that 
is of interest to us; in fact, it is the only trait that is really 
necessary for formulating the model. 

To each atom we may associate creation and annihila- 
tion operators a,+, a, (where m labels the atom) with Fermi 
commutation relations 

while the operators of differing atoms commute. Then the 
ground state of an atom corresponds to the vacuum function 
lo), while the excited states are the functions a,+ (0). The 
Hamiltonian of such a system has the form 
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where ZO is the Hamiltonian of the free atoms: 

(here Z?, is the spacing between levels), and Ri,, describes 
their interaction with an electromagnetic field; in the dipole 
approximation 

where 2 is the dipole moment operator of the system; E is the 
electric field of a wave: 

Here d is the matrix element of the atomic dipole moment 
(we may treat it as a real quantity). The external field is 
assumed to be monochromatic (the generalization to the ar- 
bitrary case is obvious), and we will not take into account its 
dependence on coordinates (i.e. the wavelength is large com- 
pared to the distance between adjacent atoms). 

Substituting Eqs. (2.3)-(2.5) into (2.2) and retaining 
only the resonance terms, we obtain the Hamiltonian in the 
resonance approximation: 

where we introduce the notation 

Let us investigate that part of the Hamiltonian (2.6) 
that describes the interaction with the field. Out of all the 
atomic degrees of freedom only one is described by the oper- 
ator a, which may be thought of as a collective operator 
corresponding to an excitation that is "smeared out" over all 
the atoms (and is not localized on an individual atom) ac- 
cording to the definition of the operators a + , a  in (2.7). The 
same picture also holds for the exciton when it is coupled to 
the electromagnetic field while in a single definite state, with 
a momentum that coincides with the photon momentum. In 
addition, only one excitation is allowed on one atom, which 
recalls the impenetrability of excitons treated as hard 
spheres. Therefore, if the concentration of atoms is such that 
the distance between neighbors is on the order of the size of 
the exciton, the system of excitations of such atoms corre- 
sponds qualitatively to our excitonic system. 

As for the first operator on the right side of Eq. (2.6), its 
correspondence with the total exciton energy is obvious. 
However, this model does not predict any shift in the reso- 
nant frequency as the concentration of excitations increases. 
Since such shifts should appear in a system of excitons, we 
are forced to include them artificially if we want to describe 
the exciton system (more of this later). 

Let us transform the Hamiltonian (2.6) in such a way 
that only one collective degree of freedom appears explicitly, 

as we discussed earlier, which we represent by operators a + , 
a. This implies that only states of the type 

are of interest to us, where n is the number of excitations, 
O<n<N ( N  is the number of atoms; how all this applies to 
excitons will be clear in what follows). The set of functions 
(2.8) with all possible values of n is by no means complete; 
however, it is important that these functions form a closed 
subspace, i.e., when the Hamiltonian (2.6) acts on the func- 
tion (2.8) we obtain a function of the same type. 

We now present the results of how the various operators 
in (2.6) act on the function (2.8). First, however, we must 
calculate the normalization coefficient A , ;  it is not difficult 
to verify that 

Using this expression we obtain 

These relations coincge with the relations for the angular 
momentum operator L, with the following substitutions: 

As a result the Hamiltonian (2.6) in the subspace of 
function (2.8) can be written in the following fashion: 

where we have introduced the "magnetic field" 

Ho= ( A  cos ot, A sin at. -8,). (2.13) 

The origin of the moment L = N/2 is clear: as we started 
with a collection of two-level atoms, each of which has a 
moment, as it were, of spin 1/2. As we see, there is an interac- 
tion with the external field only in the state with maximum 
possible total spin N/2. 

Although the Hamiltonian (2.12) forms the basis for 
the model, it is not yet the whole model. In what follows it is 
convenient to work not with the Hamiltonian but with the 
equations of motion, which coincide with the equations for 
magnetic resonance: 

clLldt= [LH,] 

Here the moment can even be considered a classical vector. 
We now can proceed to correct Eq. (2.14), using terms 

that (1) take into account the resonance shift mentioned 
previously and (2)  mediate relaxation processes (the neces- 
sity and possibility of including these is due to the conve- 
nience of the equation of motion). 

We will include the resonance shift phenomenological- 
ly. The dependence of the system energy on exciton number 
n can be described by a correction to the Hamiltonian 

where the form of the function f is unknown, so that in spe- 
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cific calculations we must make some assumptions about it 
(in Secs. 4 and 5).  The equation of motion including the 
correction (2.15) has the same form as (2.14) but with the 
replacements 

80+8=80+df  (n)ldn, (2.16) 

IIn+H= (A cos ot, A sill ot, -8). 

Now for the relaxation. In our case of exciton resonance 
it is apparently more correct to approach this problem by 
describing the relaxation in the Landau-Lifshitz form (see, 
e.g., Ref. 2); in this picture the magnitude ofthe moment J L J  
remains constant, while the change of the vector L  in the 
relaxation process is orthogonal to L  and directed along the 
magnetic field H. If we adopt this mechanism for relaxation 
and also take into account the changes connected with the 
resonance shift (2.16), then in place of (2.14) we finally 
obtain the following equation of motion: 

Here A is a relaxation parameter, which should be rather 
small so that we can speak of the exciton resonance. 

Equation (2.17) is now the equation of the model. As is 
clear from the process used to derive it, a fundamental prop- 
erty of this equation is that it allows us to treat correlations 
although in a very simple form. The equation contains the 
phenomenological parameters ( 8 - 8, ) and A; as for the 
quantity N, which determines the length L  ( L  = N/2),  we 
will say more about its connection with the excitonic param- 
eters in the next section. 

To conclude this section it is necessary to raise the fol- 
lowing question regarding the form of the relaxation term 
adopted here. It is known that both the solution itself and the 
limit to which it reduces for an arbitrarily small relaxation 
depend on how the latter is described, (see, e.g., Refs. 3-5). 
In the theory of paramagnetic resonance (and optical reso- 
nance in a system of two-level atoms) the Bloch equations 
are usually used, which differ from (2.17) by relaxation 
terms that do not conserve L. A significant difference be- 
tween our case and that of paramagnetic resonance is the fact 
that in the case of paramagnetic resonance we can indicate in 
principle how the spin relaxes, while in the exciton reso- 
nance this cannot be done due to the identity of the excitons, 
and we can only say that the state of the system changes from 
@, to @, - , ; in this case, only Landau-Lifshitz relaxation is 
appropriate, which we have used. This would be all we need- 
ed if nothing more occurred in the system than a change in n. 

In reality this is not all that happens. Let us consider, 
e.g., the following relaxation event: due to their mutual scat- 
tering, a pair of excitons convert to another branch ("ac- 
tive" excitons, i.e., those that interact with a given pump, are 
converted into "passive" excitons that do not interact with 
the pump). It would seem that all remains as before: the state 
@, is simply converted into the state @, - , . However, these 
passive excitons occupy a part of the volume, so that the 
limiting value of N for our "active" excitons is found to be 
different ( N  becomes small). However, we expect that as 
long as the change in N is small compared to N itself this 
change can be ignored, i.e., we can use Eq. (2.17) as before; 
that is, the accumulation of passive excitons should not be 
too large. We should note that the latter also affects the shift 

in the resonant frequency. This effect also must be included; 
otherwise the equations can be used only in cases where the 
number of passive excitons is small compared to the number 
of active ones. 

Finally, it is still possible to excite internal degrees of 
freedom of the exciton subsystem, which may or may not 
change the number of excitons. Since the internal degrees of 
freedom generally do not appear in this model, our descrip- 
tion is appropriate only for sufficiently low temperatures or 
for times that are not too long, i.e., during which the number 
of excitations in the exciton system is small. If we use the 
arguments adopted for superfluid systems, we can say that 
our model is appropriate only for those times when the den- 
sity of the normal component is considerably smaller than 
the density of the superfluid component. 

Now, it is not possible to derive a rigorous criterion for 
the applicability of the model-apparently, we would have 
to use a microscopic approach to do this. It is only important 
to note that the model does indeed appear to have some re- 
gion of applicability. 

3. SUSCEPTIBILITY 

In solving Eq. (2.17) it is convenient to introduce three 
mutually orthogonal vectors: 

ho= (O,0, - Z ) ,  
hl=(A cos ot, A sin ot, 0), (3.1) 

hz= [hohtllho, H=ho+hl, 

where h, = I h, I = 8. We will seek the solution in the form 

Substituting (3.2) into (2.17) and equating the coeffi- 
cients of h,, h, , h, on the left- and right-hand sides, we ob- 
tain respectively 

c% haL 
;+a--= - y - t  i [ l - ( Y . ( ~ h o L + p / 1 , ' ) ] .  

B hn 

The solution of interest to us must satisfy the condition 
L2 = L 2, i.e., 

It is not difficult to verify that this condition coincides with 
Eq. (3.3). 

We will look for a steady state, for which a, 0,  y (and 
8 ) do not depend on time. Let us express a and0 in terms of 
y using (3.4) and the third of equations (3.3 ); this gives 

Taking into account this expression in the first of equa- 
tions (3.3), we obtain 

At this point we have exact equations; it turns out we 

701 Sov. Phys. JETP 75 (4), October 1992 E. G. Batyev 701 



can simplify them. First of all, we can neglect the quantity 
Ah : y compared with w - h,, simply because the frequency 
shift Ah : y is always small compared to the interval of fre- 
quencies of interest to us. Secondly, we can neglect the last 
term on the right in Eq. (3.6). We can verify the correctness 
of these statements after obtaining the result. 

After these simplifications, we have in place of ( 3.5 ) 

Here we have used the previous notation: h, = Z?, h, = A, 
and introduced a new one: 

In place of (3.6), taking (3.7) into account, we obtain a 
quadratic equation for y, the appropriate solution to which 
can be written in the following way: 

Here the minus sign is used in front of the root, i.e., A2f 
should be less than unity (see (3.7) ); this solution gives the 
correct limit as y -0 when 1-0. 

Let us evaluate the expression for y in the following 
limits. If the effect of attenuation is small compared to the 
field effect (i.e., S 4 A) or large (S> A), then for y we have 

We must still find a criterion for picking the sign in 
(3.7), a problem that turns on the question of stability (see 
Sec. 5). As it turns out, in the stable regime we should have 

This implies that the projection of L on the direction of the 
largest component of the "magnetic field" h, should be posi- 
tive, which is completely natural. 

Now we have everything we need to calculate the sus- 
ceptibility x(w), which is defined in the usual way 

where P(w) is the Fourier component of the polarization. 
According to the definition of the polarization (the dipole 
moment per unit area in the two-dimensional case), we have 

where S is the area. Taking into account (2.5), (2.11 ), and 
(3.2), this gives 

In the isotropic case we have dllE,; therefore, we can write 

Ad+d2E,. 

The coefficient for 1/2 E, exp( - iwt) in (3.12) is the sus- 
ceptibility we are looking for: 

N 
x (a) = --d2(p+iy). S 

Here we have taken into account that L = N/2. 
Let us investigate this equation in the limiting cases of 

small and large intensities. Taking into account (3.7), 
(3.10), and (3.11) as A-0 weobtain 

This is the right contour around the pole, which confirms the 
correctness of condition (3.1 1 ) . As for the residue, it now 
appears possible to make the meaning of N more precise; as 
we noted previously, we should expect that (N/S) - is on 
the order of the exciton size; and indeed it is: comparing with 
the exact results for excitons in the linear regime' gives 

where $(O) is the normalized wave function with respect to 
motion when the electron and hole coordinate values coin- 
cide. 

The limit of large intensities A )S is interesting; in this 
case, 

N sign (8--(*) + i }. (3.16) T d ' {  [ (g-6) )2+A~]~~ (&'-fi))2+A' 

We might expect that in the limit of high intensities a result 
of the form (3.14) should be obtained, but with renormaliza- 
tion of 8, (Z?,  - 8 and 6. As is clear from (3.16), this is 
not so: Rex is greatly changed. 

Note that the quantity @?, which is a function of A and 
w, remains to be found; we will return to this problem in the 
next section. 

In conclusion, we present the expression for calculating 
the energy Wabsorbed per second per unit surface area: 

(the bar denotes a time average). 

4. BISTABILITY 

The appearance of bistability in a nonlinear system is 
not terribly unusual, and occurs in our case as well. In order 
to understand its appearance it is necessary to know the 
properties of the function f(n),  which defines the shift in the 
resonance frequency [see Eq. (2.16 ) 1. We will assume that 
the average energy of the exciton increases with exciton den- 
sity (see Secs. 1 and 2) and evaluate the shift in frequency 
using the specific expression: 

where p = n/N, 8, > 0. This simple law apparently is not 
too bad for small p. 

A problem unrelated to bistability arises regarding the 
dependence of 8 on the parameters A and w of the problem. 
In principle this problem is resolved simply: n is coupled to 
L, in (2.11), L, with a in (3.2), and a is determined by 
expressions (3.7) and (3.9), which themselves contain n 
through their dependence on 8. As a result we obtain an 
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equation for n which must be solved in order to find the 
required dependence of @? on A and w. 

First of all, let us assume that the damping is small, i.e., 
6(A,  and ignore the contributions associated with it for the 
moment. AQ 6 -0 we obtain the following expression for L, : 

Squaring the left- and right-hand sides of (4.2), expressing 
L, in terms of n, and changing to dimensionless variables, we 
obtain in place of (4.2) the expression 

This equation can be analyzed graphically by construct- 
ing curves on the interval 0 < p  < 1/2. It is clear from Fig. 1, 
on which we show the case 0 < E  < 1/2, that bistability is 
possible in this interval of e for values of h that are not too 
large. Under these circumstances there are three roots 
p, <p, <p,; as a rule, the middle root corresponds to an 
unstable solution (see the next section). 

It is not difficult to determine the interval of bistability; 
we present the result: 

We must still discuss the role of attenuation, which is ex- 
tremely important for small &. Let us use expression (3.10) 
for y, treating it as an interpolation for arbitrary ratios be- 
tween A and 6. Then in place of (4.3) we obtain 

where 6 = a/$, . It is not difficult to analyze this equation 
for small values of all quantities entering into it. As a result 
we obtain in place of (4.4) the following interval of bistabi- 
lity: 

A,cA<Az, 

(the upper sign for h:, the lower for h: ) . From this it is clear 
that we should have E > 6 [in contrast to (4.4) 1. 

The magnitude of the polarization I PI follows the usual 

S-shaped curve for bistability as a function of the pump in- 
tensity (which enters in through A2). When the intensity is 
increased to the point h,, IPI jumps to a lower value; if the 
intensity is then decreased there is another jump in IPI to a 
higher value at the point h, . 

5. PROBE SIGNALS 

In experimental investigations of nonlinear properties 
of excitonic systems, a weak (probe) signal is usually used in 
the presence of an intense pump. It is necessary to clarify 
how this pump affects the behavior of the weak signal. 

To solve this problem let us use the equations of motion 
(2.17), substituting the following expressions into them in 
place of H and L: 

and linearizing them with respect to the corrections H', L'. 
We obtain 

The correction H' consists of two parts: 

H'=H,'+Hzl. (5.3) 

The first part H; is directly connected with the field of the 
weak signal analogous to (2.13 ), i.e., 

H,'= (A'  cosm, A' sin m, 0) , 

Ar=dE0', @=Qt+@o, 

where R is the frequency and EA is the amplitude of the weak 
signal. The second part H; is determined by the change in 
(see (2.16) ) caused by the weak signal: 

It is convenient to seek the vector L' in a form that 
explicitly includes its orthogonality to the vector L. For this 
we must turn to a system of coordinates rotating together 
with L. This can be done, e.g., in the following way. Let us 
introduce the unit vectors 

In terms of these unit vectors L' can be written as follows: 

From Eq. (5.2) it is necessary to obtain an equation for 
p, Y.  For this we must know the derivatives of the unit vec- 
tors we have introduced, which are not difficult to find if we 
take into account that the vector L rotates with frequency w 
in the direction {. Then we obtain for the derivatives 

g=-a (q cos 0+6 sin 0) ,  

q=og cos 0, 
i=og sin 8. 

FIG. 1. 

We recall that 13 is the angle between L and h, . 
In addition, it is necessaly to express the vectors H, H' 
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entering into (5.2) in terms of the vectors (5.6). We present 
the result: 

A2 
h, = -[-pg+y cos O.q+y sin 0.51, 

sln 0 
ho=ho[-sin 0.1l-tcos 0.61, (5.9) 

A' 
H ' - - [cos (@-cp) .h, - sin(@-cp).hzl, 

l - ~  

ho d2f H,'=-- v sin 0. 
h, dn2 

Hereg ,=wt ,@=Rt+@, .  
Substituting (5.7)-(5.9) into (5.2) and equating the 

coefficients of 5, q, 6 on the left- and right-hand sides, we 
obtain the required equations. They are given here in the 
simplest form, neglecting contributions to (5.2) that contain 
the product A H': 

i+6,p+ (WO-o,)Y=-LA' cos 0 cos ((D-(P+x)', (5.10) 
V + B ~ Y  - -o~~=LA'  sin (Q-(P+x~. 

Here we introduce the notation 

6,=h(aho"+~AZ) ~6 cos 0, 
a,= (a-8)cos 8-PAZ= [ (O-Z)~+A~]  "sign (0-81, 

d L  f 1 
(5.11) 

rn - -1 s in20- -  8 1  sin? 0, 
d n2 2 

sin' 0 P+iy= (y++y2)'"e'X. p 2 - C y 2  = - 
A" 

We can also write an expression for o, which is convenient 
when relation (4.1 ) holds. 

Both equations (5.10) are obtained by setting equal the 
coefficients of 6 and q respectively; as for the third equation, 
it is satisfied identically. 

Especially noteworthy is the fact that the quantity S,, 
which determines the damping of ,u and v, must be positive 
for stability: 

which immediately gives condition (3.11) (if we do not con- 
sider a small neighborhood near 8 = .rr/2). Of course, the 
corresponding frequency R, should be real: 

In the opposite case the state is unstable, which occurs im- 
mediately for the root p, (see Sec. 4); this is verified as 6 - 0. 

In the final analysis what we are interested in is the 
correction P' to the polarization due to the field of the probe 
signal E'; we can calculate this correction using expression 
(3.12): 

We can find the projections lx, 7, using (5.9): 

t,=-sin (v-x), q,=cos 0 cos(cp-x). (5.15) 

The expression obtained after solving Eq. (5.10) for P' can 
be written in the form 

P'=p{A sin @+B cos @+C sin [ 2  ( ( P - X )  - @ I  
+D cos [2(cp-x)-@]), (5.16) 

where for the vector p and coefficients A, B, C, D we have 

Here we have included powers of 8 ,  in the coefficients A, B, 
C, D no higher than the first (small attenuation). 

From the expressions given here it is clear that in addi- 
tion to harmonics with frequency a ,  P' contains harmonics 
with frequency 20.1 - R as well, which is one of the conse- 
quences of nonlinearity; hence, radiation appears at this fre- 
quency (two pump photons are converted into a probe pho- 
ton and a photon with frequency 2w - R) .  Other 
frequencies should not appear in the resonance approxima- 
tion. In the weak-pumping limit ( A  -+ O,B- 0)  the nonlinear 
effects disappear and we obtain the usual linear expression 
for P' [see (3.14)]. 

The response has a resonant character (i.e., resonances 
at frequencies R = w + 0, ); in the absence of a resonance 
shift (i.e., for o, = 0) , the eigenfrequency a, coincides with 
the Rabi frequency, which is natural. 

It follows from these expressions that the probe signal 
may be amplified as well as damped. To verify this, we must 
find what work the field E' does above the average. We can 
calculate the corresponding power W' just as in Sec. 3, i.e., 
using the expression 

Let us present the value of the quantity A at resonance: 

A comparison of the magnitudes of the various terms in 
the curly brackets shows that the magnitude of the second 
term is small; this implies that absorption of the probe signal 
occurs for one of the resonance frequencies and amplifica- 
tion at the other (the amplification is always smaller). 

6. DISCUSSION 

As far as I know, the equations of the form (2.17) pos- 
tulated in this model have not been used previously to inves- 
tigate nonlinear exciton resonance. A number of arguments 
that are made in this paper are known in the literature (see 
the review Ref. I ) ,  although not all of them, e.g., bistability 
was not discussed in review Ref. 1. The model allows us to 
obtain predictive results in all the cases of interest; undoubt- 
edly this is its advantage. 

Considerations of the applicability of the model were 
presented in Sec. 2. I emphasize once again that the model is 
suitable only for studying a purely excitonic resonance, im- 
plying that the parameter A which characterizes the effect of 
the pump on the system should be considerably smaller than 
the binding energy of the exciton; the same thing applies to 
the magnitude of the detuning Iw - $ 1  as well. However, 
the shift in resonance frequency %' need not be small. 

Incidentally, the only expressions that are suitable for 
describing the shift in resonance frequency are (2.15) and 
(2.16), because in fact we are dealing with the ground state 
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of the exciton system (in a model formulation). As for the 
quantity Z?, in (4.1 ), apparently it is on the order of the 
binding energy of the exciton. 

One of the fundamental effects contained in the model is 
the effect of saturation: it is impossible to pump more than a 
certain limiting number of excitons into the system. This is 
completely natural for those intensities at which the model 
itself has meaning (recall the limitation on the magnitude of 
A mentioned above). 

In particular, questions regarding the role of inhomo- 
geneous broadening of the exciton level remain outside the 
framework of the model, although such broadening appar- 
ently can play an important role in real quantum wells. How- 
ever, there are several cases where the effects of inhomogen- 
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eous broadening could have been taken into account using 
the results shown here. 

I am grateful to M. K. Balakiriev for useful discussions. 
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