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Percolation on planar lattices in a binary system of similarly sized particles was investigated 
experimentally. It was found that the percolation threshold of the system increases linearly with 
the number of large particles. For a particle size ratio of order 10 or more, the behavior of the 
system is practically asymptotic. Percolation was studied analytically in binary and 
polydispersed systems of spherical (circular) particles with greatly varying sizes. It is shown for 
the first time that virtually complete, percolation-free filling of space with the remaining unfilled 
pores forming a fractal structure is possible. 

1. INTRODUCTION 

It is convenient to describe percolation for a system of 
identical nodes by an equivalent system of spherical (circu- 
lar) particles. Irrespective of the type of packing (lattice), 
the so-called Scher-Zallen invariant holds for the relative 
fraction of a space of dimension d occupied by particles: 8, 
= 0.45 + 0.02 ( d  = 2) and 0, = 0.15 f 0.01 (d  = 3). For 
8>, 8, the particles form a percolation cluster (PC). A perco- 
lation cluster is also called an infinite cluster, since it con- 
tains chains which permeate the entire space. For contin- 
uous problems, the percolation thresholds are close to lattice 
 threshold^:'.^ 8, = 0.50 ( d  = 2) and 8, = 0.15 + 0.02 
( d  = 3). In this connection, there arises the question of the 
fundamental possibility of filling a space with relative frac- 
tion exceeding 8, without forming macroscopic clusters. 

In the present paper we consider percolation in binary 
and polydispersed systems of spherical (circular) particles 
with very different sizes. It is shown, for the first time, that 
percolation-free filling in the limit 8- 1 with the remaining 
unfilled pores forming a fractal structure is possible. Perco- 
lation was investigated experimentally for a binary system 
on planar lattices of particles with close sizes. It was found 
that the percolation threshold of the system increases linear- 
ly with the number of large particles. For particle size ratio 
of the order of 10 and higher the behavior of the system is 
practically asymptotic. 

2. BINARY SYSTEM 

We consider percolation in a binary system of particles 
with very disparate sizes (asymptotic system). As the space 
is gradually filled with large particles below the percolation 
threshold, i.e., with relative fraction of the space occupied by 
the particles 8< 8,, small particles, occupying a volume of at 
most 8, ( 1 - 8), can be arranged in the remaining unfilled 
volume without percolation clusters forming. Therefore, the 
percolation threshold for a binary system of particles with 
greatly varying sizes is given by the expression 

ticle sizes cannot be traced analytically. Let the ratio of the 
particle sizes be p = R,/R,. If p = 0, then the expression 
( 1) for the percolation threshold holds. I f p  = 1, the system 
becomes degenerate and the percolation threshold is equal to 
8,. 

In order to study the behavior of a binary system for 
intermediate ratios (i.e.,) for R,  -R,, we employed the 
Monte Car10 method, implemented on planar lattices ac- 
cording to the standard method of searching for percola- 
tion.' Percolation (the problem of nodes) in trigonal and 
tetragonal lattices was investigated. The number of nodes 
was not less than 20 736 in all experiments. 

The experiment was performed as follows. Let an empty 
lattice with step L be filled in a random manner by large 
particles with radius R, = (2k + l ) L  /2, where k = 1, 2, 
3, ..., up to a relative fraction x, of occupied nodes. Percola- 
tion arose in the system of large particles for x, greater than 
x,, = 0.6 in the tetragonal lattice and x,, = 0.5 in the tri- 
gonal lattice; this agrees with known results.' For values 
below the percolation threshold x, < x,, , a definite number 
of small particles with radius R ,  = R,/ (2k + 1 ) was added 
in a random fashion. The choice of the radii of the small 
particles was dictated by the requirement that the lattices be 
commensurate. The percolation threshold in the binary sys- 
tem was determined by gradually increasing the fraction x ,  
of nodes occupied by small particles. Ten experiments were 
performed and the results were averaged. 

Figure 1 shows as a function of x, and for different vai- 

where A ,  = 1 - 0,. 
Thus for an asymptotic system the percolation thresh- 
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old is a linear function of the number of large particles. FIG. 1. Percolation threshold of a binary system on a trigonal lattice with 
The behavior of the system for an arbitrary ratio of par- p = 1/3 ( I )  and 1/7 ( 2 ) .  
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ues ofp the total value of the fraction of nodes x, + x2 which 
are occupied by particles such that percolation arises in the 
binary system (on a trigonal lattice). As expected, near the 
percolation threshold with respect to large particles, 
x2-x,,, the percolation threshold of the binary system fluc- 
tuates strongly. In all experiments, however, the percolation 
threshold of the binary system is a linear function x, in both 
the trigonal and tetragonal lattices: x, = x,, + a(,u)x2. This 
dependence is observed for all x, with the exception of 
threshold regions satisfying the condition (x2, - x2)/  
x,, < 0.1, where fluctuations are large. As the parameter p 
decreases the characteristics of the system approach the lim- 
it of strongly differing particle sizes, where the percolation 
threshold is given by Eq. ( 1 ) . Therefore the 8, dependence 
of the percolation threshold of a binary system with arbi- 
trary particle sizes can be given by a formula analogous to 
Eq. (1): 

The coefficient A,@) = a ( p ) ( l  - 8,)/(1 - 8,/f), where 
f is the packing density, has the limiting values A, (0) =A, 
and A, ( 1 ) = 0. The study of percolation in continuous sys- 
tems2 shows that for particles with very close sizes, i.e., for 
(1 - p) 4 1 we have A, ( p )  -0. For p in the interval 
0 < p  < 1 the values of the coefficient A, ( p )  are found by 
analyzing the experimental data. 

The parameter A, ( p )  as a function of the particle size 
ratio p in the experiments on the trigonal and tetragonal 
lattices is shown in Fig. 2. The behavior of the binary system 
is virtually asymptotic already forp<0.1: within the limits of 
error it satisfies A,  (p) =A,. The rapid passage to the 
asymptotic limit is probably connected with the fact that the 
smallness parameter is the ratio not of the particle radii, but 
rather the particle areas (volumes), i.e.,p2. For particle size 
ratios p>0.1 the coefficient A, (p) depends on the type of 
packing (lattice). The asymptotic regime is reached more 
quickly in the tetragonal lattice than the trigonal lattice. 
Thus the invariance of the percolation threshold with re- 
spect to the fraction of the occupied space breaks down here. 
We were not able to follow the behavior of the system in the 
limit p - 1 on the lattices. In the experiment p,,, = 1/3. It 

FIG. 2. A, ( p )  as a function of the particle size ratiop = R ,/R, in experi- 
ments on trigonal ( I )  and tetragonal (2) lattices. 

could be assumed that, until at least one small particle occu- 
pies the pores between the large particles we have A, (p) ~ 0 .  
For a tetragonal lattice this value of A, corresponds to 
p = 0.414, which cannot be checked experimentally, since it 
is greater than p,,,. For the trigonal lattice, however, 
p = 0.155, and for this reason there are at least two experi- 
ments which do not confirm our assumption. The coefficient 
A, (p )  is different from zero for large values of p because a 
percolation cluster forms significantly earlier than close 
packing of particles is achieved. Correspondingly, the re- 
maining pores are significantly larger than in the case of 
close packing. 

3. POLYDISPERSED SYSTEM 

The limit of greatly varying particle sizes can be natu- 
rally extended to polydispersed systems. If the particle radii 
satisfy the condition R,  4 R, 4 ... gR,, then the percolation 
threshold is found by solving the recurrence equation 

e,=e,+ (1-0,)0 ,-,, (3) 

where n = 2, 3 ,..., Nand 8, = 8. The equation (3  ) for N% 1 
has the asymptotic solution 

which can be used to estimate the percolation threshold. 
The geometric structure of the system formed when the 

space is filled with polydispersed particles is fractal. In addi- 
tion, it differs significantly from the structure of ordinary 
percolation clusters consisting of monodispersed particles. 
It is well known that on small scales the geometric structure 
of percolation clusters is determined by the fractal dimen- 
sion D = ( d  - p / v ) ,  where d is the dimension of the space 
a n d p  and Y are critical  exponent^.^ It is the system of parti- 
cles and not the remaining unfilled volume of the space that 
is fractal. 

When the space is filled by a system of polydispersed 
particles the situation changes qualitatively: The remaining 
pore space is fractal. We shall clarify this for the example of a 
fractal set with dimension less than unity. We take a segment 
of unit length and divide it into three parts. We discard the 
central part, and we divide the remaining two segments into 
three parts, once again discarding the central part. If this 
process is continued long enough, we obtain a fractal set 
(Cantor dust) with dimension D = ln2/ln3 (Ref. 4). Now, 
examine the filling of the space with polydispersed particles. 
First we arrange the largest particles, making sure that the 
filling does not exceed the percolation threshold 898,. After 
this, we arrange the next fraction of the particles, whose size 
is 1/p times smaller than the preceeding particles, R, /R, + , 
= 1/p, in the remaining pores. We continue filling the space 

with the next fractions, and we set the fraction of the volume 
occupied by particles in the pores equal to 8. In this manner 
the space can be practically completely filled without forma- 
tion of macroscopic clusters of touching particles. In con- 
trast to the particle distribution, the pore distribution is de- 
scribed by a fractal set with similarity dimension equal to the 
Hausdorf-Besikovich dimension 

D=cl+ln( 1-0)lln ( I / p ) .  

This is the analog of Cantor dust for a space of dimension d. 
The values d = 1,B = 1/3, and 1/p = 3 correspond to Can- 
tor's construction. 
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4. CONCLUSIONS 

The continuous limit can be obtained by decreasing the 
period of the regular lattice. This explains the closeness of 
the percolation threshold for the lattice and continuous 
problems. However this is not the only possible passage to 
the limit. One possible path is to fill gradually the space with 
increasingly smaller particles. The results obtained in this 
paper indicate that the percolation threshold can be signifi- 
cantly increased in the process. 

Percolation-free filling of space, exceeding the percola- 
tion thresholds of monodispersed systems, is already possi- 
ble for a binary system. A space can be filled practically 
completely by a system of polydispersed particles without 
infinite clusters forming. This circumstance could be of 
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practical value in optimal-packing problems, for example, 
for arranging microelectronic elements on a two-dimension- 
al substrate or fixing dangerous substances in the volume of a 
matrix material. 
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