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The behavior of the oscillation mode of the electrohydrodynamic (EHD) effect in a uniaxial 
nematic liquid crystal (NLC) with permittivity anisotropy E, is investigated on the basis of a 
linear theory of low-frequency EHD instability in a NLC in the presence of an auxiliary magnetic 
field. It is found that the oscillatory EHD-effect, in contrast to the stationary effect competing 
with it, is highly sensitive to the magnitude and sign of the anisotropy. Only one of the two 
oscillation branches can be observed. EHD oscillations are virtually unobservable in a planar 
NLC. EHD oscillations in a homeotropic NLC with small permittivity anisotropy can be 
observed in the absence of a magnetic field in layers of NLC of thickness L with upper limit Lf and 
lower limit L, ; the lower limit L,  + for E, > 0 is several times greater than the limit L,  - for 
E, < 0. It is pointed out that the uniaxial nematic PAA is a promising material for observing EHD 
oscillations. 

INTRODUCTION 

Since the second half of the 1980s, after an almost 10- 
year hiatus, interest in electrohydrodynamic (EHD) insta- 
bility in liquid crystals (LC) is reviving. This is largely due 
to the widespread occurrence of electrooptic properties em- 
ploying this phenomena, and it is also due to the more accu- 
rate experiments that are now possible and more powerful 
computers which have become available. As a rule, the main 
area of investigation in the last few years has been the nonlin- 
ear EHD instability in the nematic phase of a liquid crystal 
(NLC) far from1** and the critical value of the exter- 
nal magnetic field. However, in spite of the significant suc- 
cess achieved in the nonlinear region, unsolved problems 
still remain in the linear region of the low-frequency EHD 
effect. One such problem is the oscillatory EHD effect, pre- 
dicted in 1974 by Penz6 and still not observed experimental- 
ly, in the linear theory, admitting this effect together with 
the well-known stationary EHD effect (Williams domains). 
The fact that there is no experimental proof that EHD oscil- 
lations of the director n of an NLC arise from the unper- 
turbed state of the nematic in a low-frequency field E de- 
stroys the analogy between the EHD effect and the 
thermoconvective (TC) effect in NLC, both of which were 
investigated simultaneously. It was for the TC effect that 
success was achieved in the 1970s with respect to the predic- 
tion' and observationss9 of the oscillatory mode of the TC 
effect, and later it was shown1° that homeotropic orientation 
of the director n at the plane-parallel boundaries of the LC 
layer is necessary in order to observe TC oscillations in an 
NLC. 

Penz's results6 were later obtained with slight modifica- 
tions by a number of authors."s12 As in Ref. 6,  however, they 
employed a rough approximation for solving the Navier- 
Stokes equations (the hydrodynamic mechanism of relaxa- 
tion of the director n of the NLC was neglected)," which 
resulted in unphysical features appearing in the spectrum of 
the critical field Eo (q)  of the oscillatory EHD effect in a 
dielectrically isotropic NLC (E, = 0).  There is, however, an 
objection to this result: The case of permittivity anisotropy 
in the qualitative theory of the EHD effect does not result in 

removal of any of the relaxation mechanisms-elasto-orien- 
tational, hydrodynamic, or Maxwellian-operating in a liq- 
uid crystal. For this reason, as in the stationary EHD effect, 
the case E, = 0 should result in a finite critical field Eo . This 
was later pointed in Ref. 14. A systematic linear theory of 
EHD instability in an NLC, including a description of the 
stationary and oscillation modes, was also constructed in 
Ref. 14. A condition was found for the existence of the EHD 
effect in terms of the characteristic relaxation times of the 
director n. For the case ofpermittivity anisotropy in an NLC 
this condition is simple: The destabilization time of the un- 
disturbed structure owing to external fields and hydrody- 
namic flows should not exceed the characteristic stabiliza- 
tion time of the structure owing to the elastic properties of 
the NLC. In other words, the processes which destroy the 
structure should be faster than the processes which stabilize 
it. 

The case E, = 0, not described by Penz's theory, was 
investigated in detail in Ref. 14. The main result obtained in 
Ref. 14 is that EHD oscillations are virtually unobservable 
in a planar NLC, but EHD oscillations can arise in a homeo- 
tropic NLC, even in the absence of an auxiliary magnetic 
field, if the ratio of the Leslie viscosities a2/a, in the plane- 
parallel layers of thickness L, exceeding some critical value 
L . , is sufficiently large: 

where 6 = 1 + a2/B2, Lo z (EK /aa) "' is the characteristic 
length in the NLC, Bi are the Miesowicz viscosity coeffi- 
cients, which are linear combinations of the Leslie viscosity 
coefficients ai ,I4 and E and u are the characteristic values of 
the permittivity and electric conductivity of the NLC, re- 
spectively. This is related to the fact that in a homeotropic 
NLC the threshold field of the stationary EHD effect is 
E, cc a2/a3, while the threshold field of EHD oscillations 
does not depend on this ratio,I4 i.e., as the ratio a2/a, in- 
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creases the oscillational EHD effect can compete more easily 
with the stationary EHD effect. It was pointed out that a 
layer ofp-azoxyanisole (PAA) not more than 50pm thick is 
a promising material for observing EHD oscillations in a 
homeotropic NLC. 

Six years after Ref. 14 was published, no progress has 
been made in the experimental arena. Oscillations of domain 
 structure^,'^-'^ which have been known since the beginning 
of the 1970s, including those mentioned by Penz6 and other 
authors".'2 as confirming their theory, form when the sta- 
tionary Williams domains break down in the substantially 
nonlinear region of the EHD effect and have no relation to 
the phenomenon under consideration, which must appear 
from the undisturbed state of the NLC instead of Williams 
domains. I do not know of any special experiments con- 
cerned with the search for linear EHD oscillations in NLC. 
For this reason, one can expect that such EHD oscillations 
arise in real dielectrically anisotropic NLC under very spe- 
cific conditions. Indeed, a recent report19 shows that the 
development of EHD instability in NLC via the oscillatory 
type cannot be observed largely because of the high sensitiv- 
ity, discovered by numerical methods, of the oscillatory 
mode of the EHD effect to the magnitude and sign of the 
anisotropy of the dielectric properties of the NLC. 

The present paper is devoted to a detailed exposition of 
the results announced previously in Ref. 19. 

LINEAR THEORY OF THE EHD EFFECT 

In the present section the formulation of the problem 
and the solution of the system of equations for the low-fre- 
quency EHD effect in NLC with planar (p) and homeotro- 
pic ( h )  orientations are briefly presented (see Ref. 14 for a 
more detailed exposition). 

Consider an infinite plane-parallel layer of an NLC 
with free boundaries. The unsteady flow of the LC medium 
is described by a system of four differential equations supple- 
mented by free boundary conditions on the surface of the LC 
layer: 

1 ) equation of continuity of an incompressible liquid; 
2)  equation of conservation of the volume charge; 
3) Navier-Stokes equation in the NLC; and, 
4) equation of motion of the director n neglecting the 

small specific moment of inertia of the liquid. 
Solving the system of equations with the help of the 

Fourier transform, we find that the spatial modes separate 
and we obtain a cubic characteristic equation for the damp- 
ing ratep, appearing in the basis U functions for the electric 
and hydrodynamic variables, for the perturbation: 

where q,, are the wave numbers of the periodic EHD struc- 
ture, which are determined at the point of the minimum of 
the lower branches of the spectrum of the stationary mode 
E, (q) and the oscillatory mode E, (q ) ,  k = 7i-/L, and L is 
the thickness of the LC layer. The Routh-Hurwitz criterion 
for the roots p, of the characteristic equation gives an 
expression for the critical field of one branch of the station- 
ary (Imp, = 0 )  instability (Fig. l a )  : 

FIG. 1 .  Position of the roots of the characteristic equation in the complex 
plane of the perturbation decrementp with development of stationary (a) 
and oscillational (b) EHD instabilities in NLC (ii and p are complex- 
conjugate quantities). 

and two branches of the oscillatory (Imp,  = w,#0) insta- 
bility (Fig. lb ) :  

Q4E:+Q2E,,2+Qo=0 (2) 

with the threshold frequency w, of the oscillations given by 

~ o =  (DtIDa) 'I2. (3) 

where 

1 
ri=B2k4+ (B,+B,)  k2qZ+B,q', r, = - (~ .o~-o ,e~)  q cos 2cp, 

4n 

r2= (K cosZ cp+K3 sin' c p )  kZ 

f (K, sin' cp+K3 cos2 c p )  q2+ x ,H2cos  2 (cp-h), 

1 
g = 4&- E" COS 2cp, 

In the formulas presented above the following notation was 
introduced: K, and K ,  are the Frank elasticity constants; , 
E ~ ,  xII , x I ,  011 , and a, are the principal values of the diago- 
nalized permittivity tensor E ~ ,  diamagnetic susceptibility 
tensor x u ,  and electric conductivity tensor aij , respectively. 
The auxiliary magnetic field H is oriented in a planar fashion 
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(A = 0) or homeotropically (A = .rr/2). The threshold char- 
acter of the breakdown of the undisturbed structure2' for the 
p-orientation (p = 0) of h-orientation (q, = ~ / 2 )  of the di- 
rector n at the boundaries of the liquid crystal layer remains. 

In order that the fields E, and E, describe the physical- 
ly observable appearance of EHD instability in an NLC, the 
remaining roots p. (besides p,) of the characteristic equa- 
tion must lie on the left-hand side of the complex plane of the 
damping ratep of the disturbance, i.e., Rep. < 0 (Fig. 1 ). It 
can be shown2' that the last requirement, together with the 
expression ( 1 ) for instability of the stationary type or the 
expression (2)  for an instability of the oscillational type, 
leads to Dl < 0. If this condition is not satisfied, then stable 
hydrodynamic phenomena are impossible in NLC, but re- 
laxational hydrodynamic processes can nonetheless exist. In 
particular, for sufficiently strong E and H fields an orienta- 
tional instability can develop in the NLC: the director n is 
stabilized by the external fields. In this case the equations of 
the EHD instability describe the relaxational process in the 
Frtderiksz effect taking into account hydrodynamic flows. 
This situation was discussed previously in Ref. 22. It should 
be noted that the FrCderiksz effect can compete with the 
EHD effect even if D ,  < 0. For this reason, for EHD oscilla- 
tions to develop the threshold FrCderiksz field EF must ex- 
ceed the threshold E, of the oscillatory EHD effect. It is 
convenient to use for E, the expressions found in Ref. 20 for 
thep-orientation of the NLC: 

and for the h-orientation of the NLC: 

The next necessary condition for the existence of EHD 
oscillations with E, # 0 is Q : > 4Q4Q,. There is, however, 
one other, stronger, necessary condition for the existence of 
EHD oscillations: E: > 0. This condition includes the pre- 
vious condition. Finally, in order to observe EHD oscilla- 
tions the minimum E, of the stationary branch must lie of 
above the minimum E, of one of the oscillatory branches of 
the EHD instability. Thus in order for the oscillatory type of 
EHD effect to exist the threshold fields E, , E, , and EF must 
satisfy the following criteria: 

1 )  D,<O, 2 )  E,2>0, 3) E,2<E.', 4 )  E,2<EF2. 

(7) 

Following Ref. 14, we introduce the characteristic 
length Lo in the NLC and the dimensionless parameters v 
and S: 

and the characteristic Maxwellian T, , hydrodynamic 7, , 
and elasto-orientational T, relaxation times of the director: 

In experiments the inequalities T, , T, , T, usually hold. It is 
convenient to represent the relaxation times in the form 
.r, = T, 1 2, and 7, = VT, 1 ', where I = L /Lo is the reduced 
thickness of the LC layer. We also introduce the magnetic 
field scale m = H /HF, where HF = k(K, /x, )0.5 is the 
threshold magnetic field in the FrCderiksz effect, and 
K, = K, cos2 q, + K, sin2 p .  It is convenient to take the di- 
mensionless physical parameters 1 ' and m2 as the genera- 
trices of the two-dimensional parameter space in which the 
conditions (7)  describe the region of observation A, of the 
oscillatory EHD effect. 

Numerical ca lc~la t ions~~ of the boundaries of the re- 
gion A, for NLC with dielectric anisotropy [&, /&I = 10 - 
show that these boundaries are appreciably different from 
the case of NLC with isotropic permittivity. This high sensi- 
tivity to the dielectric anisotropy is not accidental; it is relat- 
ed to the restructuring, occurring with small values of E, /E ,  

of the spectrum of the oscillatory mode of the EHD instabil- 
ity in contrast to the stationary mode. In order to verify this, 
we examine the shift occurring in the singularities of the 
spectra of the stationary mode E, (q) and oscillatory modes 
E,, (q) and EO2 (q) modes when dielectric anisotropy of the 
NLC is introduced. 

Investigation of the spectra E, (q) and E, (q)  for thep- 
and h-orientations of NLC with isotropic permittivity 
showedI4 that in the case of the p-orientation singularities 
exist for the stationary and oscillational branches: 

and in the case of the h-orientation 

The weak anisotropy of the dielectric properties of the NLC 
results in different shifts of these singularities. In the linear 
8-approximation we find, with the help of Eqs. ( 1 ) , (2),  and 
(4),  for thep-orientation 

Bz 
q:l=k28-(1 + l+mz cos 2h 

as l2  

and for the h-orientation 

As follows from Eq. (4),  Q4-S ', and for this reason the 
solutions of the dispersion equation (2)  for the oscillatory 
EHD-effect, in the first order of perturbation theory, have 
the form 

where in the limit S -+ 0 the first branch E,, assumes the form 
investigated in Ref. 14 for NLC with E, = 0, while the sec- 
ond branch E,, vanishes (Eo2 -+ w ). Since the polynomial 
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Q4(q) is positive-definite, all poles of both oscillatory 
branches ( 11) coincide with the zeros of the polynomial 
Q2(q). Analysis of the latter polynomial with the help of 
Descartes' theorem shows that go,, and qop, from Eq. (9) 
and go,, and qOh from Eq. ( 10) exhaust the list of singulari- 
ties of the branches Eop (q) and Eoh (q), respectively. 

Since for real NLC v z  10 - -10- 4 ,  it is easy to show 
that the shifts of the singularities of the oscillatory branches 
qop and qoh are several orders of magnitude greater than the 
shifts of the singularities of the branches q, and q,, . The 
minima of the oscillatory and stationary branches, of inter- 
est to us, behave similarly. From this physical standpoint, 
such behavior of the oscillatory mode of the EHD effect ac- 
companying switching-on of the permittivity anisotropy E, 

in the liquid crystal is connected with the change in the de- 
stabilizing mechanism of the instability from hydrodynamic 
to Maxwellian, which corresponds to the appearance of the 
factor 1 + ST, / rh,  while in the stationary EHD effect the 
Maxwellian mechanism predominates irrespective of the an- 
isotropy. 

We call attention to the behavior of the singularities of 
the oscillatory branch Eol (q),  assuming that a,, a, < 0, as a 
function of the sign of the anisotropy S. In a p-NLC with 
6 > 0  and in an h-NLC with S<O the minimum of this 
branch can be expected to shift into the region q2 < 0 and, as 
a consequence, the oscillatory EHD mechanism will be dis- 
rupted or a different local minimum will be physically real- 
ized on this branch. Abrupt changes of the oscillatory struc- 
ture should not be observed in an h-NLC with S > 0 and in a 
p-NLC with S < 0. 

HOMEOTROPIC NEMATIC 

In the linear 6-approximation the coordinates of the 
minima qsh(min) and go, ,,,,,,, , of the stationary E,, (q) and 
first oscillatory EOh1 (q) branches, respectively, as well as 
the Frtderiksz threshold E,, have the form 

2 B2 S I-m2 cos 21  + L)] -' 
E~~~ . I - - b 0 0 : 1 [ ~ - - 6 ( b +  

I-L 1" vlZ (50 
7 

1 1-m2 cos 21 
a:, = - [ b  + 

12 TmTh 

a, 1 1 EphZ = - - - -(m2 cos 2h-1). 
u,, 6 z,t. 

(14) 

The second oscillatory branch has a characteristic minimum 
only for S < 0. In this case, the criteria (7) of its existence, as 
will be shown below, make the EHD oscillations corre- 
sponding to it virtually unobservable. We present the coordi- 
nates of its minimum in the absence of a magnetic field: 

FIRST OSCILLATORY BRANCH 

We now turn to the criteria (7) for the existence of 
EHD oscillations of the first type, introducing the notation 
v = @/(I  - S)v: 

2 )  m2 cos %>v-l+1- - fi-1-b) P, ( (17) 

4) (m2 cos 2h-1)6CO, 

l2 
v(m' cos 2h-1)z+-(m~os  22h-1) 

V 

It is convenient to give the last inequality ( 19) in an explicit 
form in two cases: 

- 1 .  6>0, m2 cos 2hC1, 

4.2)' 6 ~ 0 ,  m2 cos 2 P 1 ,  

In the limit 6-0, the inequalities (16)-(18) assume the 
form of the well-known  condition^'^ for a dielectrically iso- 
tropic NLC, while the conditions ( 19.1 ) and ( 19.2) do not 
limit the possibility of observing EHD oscillations in any 
region of the (m2,1 ') plane. 

Figures 2 and 3 show the results of the numerical calcu- 
lations of the region A, of existence of EHD oscillations for 
the classical nematic PAA, whose dielectrically isotropic 
variant is promising for observing  oscillation^.'^ The values 
of the physical parameters of PAA were taken from the re- 
view Ref. 24. calculations were performed for planar 
( 2  = 0) and homeotropic ( 2  = r /2)  orientations of the 
magnetic field H. For the calculation we used the exact ex- 
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FIG. 2. Range of observation of the oscillation EHD instability in an h- FIG. 3. Region of observation of the oscillational EHD instability in an h- 
NLC with positive permittivity anisotropy E, / E  = 1 0  (a),  10- (b), NLC with permittivity isotropy (a)  and negative permittivity anisotropy 
lo- '  (c),  and (d) .  The direction of the magnetic field HA= 0 in E , / E  = 10- (b),  - 10 - (c) ,  and - lo- '  (d) .  The direction of the 
the upper half-plane and /1 = n-/2 in the lower half-plane. Here and in magnetic field IM = 0 in the upper half-plane and /1 = n-/2 in the lower 
Figs. 3 and 4 the hatched region I corresponds to the condition E,, <E,, half-plane. The region I is separated by the gap P-  . 
the upper limit corresponds to w, = 0, and the region corresponds to 
E, > E, . The region I is divided by the gap 0, . 

pressions for E,, ( q ) ,  E,, , ( q ) ,  and EFh from Eqs. (11, (2) ,  
(4),  and (6). As analysis shows, the resulting analytical ex- 
pressions ( 16)-( 19) describe well the numerical results. 

For v > 6 > 0 the limit of existence of the EHD effect 
( 17) is the vertical line with the coordinate 12 = v in the 
(m7,1 2 ,  plane (Fig. 2a). The sign of the anisotropy of the 
dielectric properties of the NLC is significant for observing 
EHD oscillations. For NLC with positive anisotropy S > 0 in 
the absence of a magnetic field (m = 0)  the oscillatory type 
of EHD effect can be observed in LC layers with thickness 
l > l d ,  

while for v &  1 

A numerical calculation shows that there probably ex- 
ists a finite positive value 6 $ Y (Fig. 2d) for which / : = a, 
i.e., EHD oscillations cannot be achieved in the absence of a 
magnetic field. 

Due to the competition between the hydrodynamic 
mechanism of EHD oscillations and the orientational mech- 
anism of the Frkderiksz effect, for m2 cos U > 1 the region 
A, decomposes into two disconnected parts (Fig. 2),  sepa- 
rated by a gap f l +  where EHD oscillations are forbidden: 

For v <  1 

(20) As follows from Eq. ( 19.1 ), the upper limit G + (I) has the 
following asymptotic behavior: 

(23.1) 
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and for (u l  %2A, '(A, - 2fK,/K3 ): 

1 
G+ (I)-1+&v+Ahva - 

El' 
(23.2) 

For negative anisotropy S < 0 and no magnetic field the 
oscillatory type of EHD effect should be observed in LC 
layers with thickness I >  I,, 

It  is interesting to note the behavior of the frequency of the 
oscillations w,, , (I) : 

The maximum value of the frequency wohl is reached at 
l=l,,,, 

and can reach several kHz. The criterion (19.2), asso- 
ciated with the possible Frtderiksz effect in an h-oriented 
NLC with S <O, results in the appearance of a gap P-  , 
where EHD oscillations are forbidden, in the region A, with 
m2 cos U < 1 (Fig. 3): 

G, ( I )  <mZ cos 2h<I.  (26) 

The gap P-  divides the region A, into two disconnected 
parts, which join at the point P(m2 cos 2A = 1, l 2  = I:) in 
the (m2,1 2 ,  plane, 

so that for I < 1, there is no gap 0- . The lower limit G - (I) 
exhibits the following behavior for 1 2  I, : 

and the following asymptotic behavior for large I: 

We now present approximations for I t ,  1 k,  15, and 
G - (1) from Eq. (28) for Iu l<  +(Ah - 2(K,/K3) - ': 

The asymptotic expansion (29) shows that for v > f - the 
region where EHD oscillations are observed in the absence 
of a magnetic field also has an upper limit: 

where 

For lu1,2A , 2 ( ~ A h  + 2fK1/K3) we obtain the approxima- 
tion 

Comparing Eqs. (30.2) and (33), we obtain an estimate for 
the width of the region where EHD oscillations are observed 
with m = 0: 

It is interesting to note that if for a dielectrically iso- 
tropic NLC EHD oscillations can be observed without a 
magnetic field only for nematics with a large ratio of the 
Leslie viscosities a2/a3 (or C > 0) ,I4 then when dielectric 
anisotropy is introduced this result remains valid only for 
positive E , ;  for negative anisotropy, as follows for Eq. (34), 
EHD oscillations can be observed for m = 0 for any nema- 
tics. In this case, instead of I f ,  the thickness of the LC layer 
for which the threshold of the oscillational instability E,, is 
equal to the threshold of the stationary instability E, can 
play the role of the upper limit of observation, just as in 
MBBA. 

SECOND OSCILLATORY BRANCH 

We now consider the conditions (7 )  under which the 
second type of EHD oscillations are observed: 
E 5h > E , > 0. These conditions can be written in the form 
of a double inequality for a bicubic polynomial: 

where we have introduced the notation 
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The solutions of the double inequality ( 3 5 )  lie in a narrow 
neighborhood Al, of the positive zero I ,  of the polynomial 
@ h  ( 1 ) :  

and the value of I ,  can be found analytically in different 
regions of the values of the parameter: 

PLANAR NEMATIC 

In the 8-approximation the coordinates of the mini- 
mum qop(,in) , qopl , and qOp2, ,, , of the stationary branch 
E, ( q )  and the two oscillatory branches Eop, ( q )  and 
EOp2 ( q )  as well as the Frtderiksz threshold EFp have the 
form 

The condition Dl < 0  admits wide possibilities for the 
existence of EHD oscillations, but the second type of EHD 
oscillations nonetheless cannot be observed. Indeed, the case 
(38.1 ) requires that the thickness of the LC layer be known 
to within AIh - v ( a , / a , )  which is equal to 10- 
Since Lo = 22.5pm for PAA and Lo = 6.3pm for MBBA,14 
we find that the thickness of a layer of these nematics must be 
determined to within a fraction of a micron. First of all, this 
exceeds the technical capabilities of experiments and, sec- 
ond, it results in fluctuation smearing of the oscillation effect 
when the noise effect of the external field E (Ref. 25) and the 
hydrodynamic fluctuations themselves in the liquid crystal 
(Ref. 26) in the neighborhood of the thresholds E, and E, of 
the EHD effect are taken into account. The case (38.4) re- 
quires LC layer thicknesses of not less 3-5 mm, which also 
falls outside the range of the technical possibilities in the 
production of uniform LC layers.' The cases (38.2) and 
(38.3) give comparatively acceptable requirements for the 
thickness L of the LC layer and accuracy with which the 
value ofL must be determined, but in this case, as it is easy to 
show, the threshold of the first oscillatory branch lies below 
the threshold of the second branch. Indeed, for 

= ( 2 / ~ ) * / ~  

l+m2 cos 2h 

a2 I 1 E,,L - -- -(l+m2 cos 2h). 
00 6 t m T c  

( 4 2 )  

The second oscillatory branch has a characteristic minimum 
only for 8 > 0.  In the absence of a magnetic field its coordi- 
nates will be 

FIRST OSCILLATORY BRANCH 

The criteria (7 )  for the existence of EHD oscillations of 
the first type in ap-NLC have the form 

a: 1 
For PAA and MBAA this is equal to and l o - ' ,  re- 2) -mLeor 2).>v-~+1+ (1 + - -) 12, 

a2B2 6 
( 4 5 )  

spectively. Thus for the h-orientation of the NLC the first 
oscillatory branch can be observed, in contrast to the second 
branch, in a dielectrically anisotropic nematic in the absence 3) -m2cos 2h>l+12( 1-8-8---  

of a magnetic field. As the value of 8 decreases, irrespective - 
of the sign of the anisotropy, it becomes easier to observe 
EHD oscillations. 

672 Sov. Phys. JETP 75 (4), October 1992 L. G. Fel 672 



( l + m 2  cos 2h) 6<0, 

where the parameter u can be seen in Eq. (35), and 

As 6-0 the inequalities (44)-(46) assume the form of the 
well-known inequalities for a dielectrically isotropic NLC 
withp-orientation,I4 while the condition (47) makes it pos- 
sible to observe EHD oscillations in the entire (m2,1 ') plane. 
Numerical analysis shows that the resulting analytical ex- 
pressions accurately describe the computational results. 

The general picture of the behavior of the region A, 
where EHD oscillations are observed in the (mZ,l ') plane is 
as follows (Fig. 4): As the dielectric anisotropy S increases 
the narrow strip A, of width {( 1 + {BzazS/a: ) shifts in the 
(m2,1 ') plane away from its isotropic dielectric position. The 
directions of displacement, depending on the sign of the ani- 
sotropy, are the same as in an h-NLC. In contrast to the 
homeotropic situation, however, in a p-NLC the physical 
parameters of the liquid crystal (g = 10- -10- ) virtually 
exclude the observation of EHD oscillations for real NLC, 
just as in dielectrically isotropicp-NLC. 

SECOND OSCILLATORY BRANCH 

The conditions for the observation of the second type of 
EHD oscillations, just as for h-orientation (35 ), also reduce 
to a double inequality for a bicubic polynomial: 

where v > 0 is determined in Eq. ( 16), and in addition 

(D, ( I )  =IB-'12vF-'/,sv2 ( x + ~ / ~ u )  1 2 - 1 / ' X ~ ~ 3 .  (49) 

The solutions of the double inequality (48) lie in a narrow 
neighborhood Alp = rl, I, of the positive zero 1, of the poly- 
nomial @, (I), whose value can be found analytically in dif- 
ferent regions of values of the parameter: 

FIG. 4. Region of observation of the oscillational EHD-instability in ap- 
typeNLCfordifferentvaluesofE,/~= - 10W6 ( l ) ,O  (2),and 
( 3 ) .  The direction of the magnetic field IU = 7r/2 in the upper half-plane 
a n d l  = Oin thelower half-plane. The region I is separated by thegapp- . 

The region u>s - is of no practical interest, since it corre- 
sponds to anomalously large positive dielectric anisotropy of 
the nematic: 

where the coefficients of a, /a correspond to the physical 
parameters of PAA and MBBA. Apparently, even in liquid- 
crystalline cyanophenyl ethers, for which the maximum 
positive value of the dielectric anisotropy is obtained," the 
last relation is not satisfied. 

The analysis of the conditions (50.1 ) and (50.2), as a 
whole, is identical to the analogous analysis of the conditions 
(38)  for an h-NLC. The conditions (50.1 ) require that for a 
material of the type PAA (with positive E, / E )  in a layer of 
thickness 200pm, the layer thickness must be determined to 
within tenths of a micron. On the other hand, the conditions 
(50.2), for which the required accuracy of the thickness of 
the LC layer is technically acceptable, give a thickness of 
several millimeters, which, just as in the preceding case, 
makes it virtually impossible to observed EHD oscillations 
of the second type for the same reason as in an NLC of the h- 
type. The intermediate condition v - s -  ' gives acceptable 
requirements for the thickness of the LC layer and the accu- 
racy of the value of L, but, in this case, as in Eq. (39), the 
threshold of the first oscillation branch falls below the 
threshold of the second branch: 

Thus EHD oscillations of both types are practically unobser- 
vable in p-type NLC. 

CONCLUSIONS 

The behavior of the oscillatory mode of the EHD effect 
in a uniaxial nematic with dielectric anisotropy E, was inves- 
tigated on the basis of the linear theory of EHD instability in 
a low-frequency electric field. It was found that the EHD 
effect, in contrast to the stationary EHD effect which com- 
petes with it, is highly sensitive to the magnitude and sign of 
the anisotropy. This is connected with the change in the de- 
stabilizing mechanism of the oscillatory EHD instability 
from hydrodynamic to Maxwellian, while in the stationary 
EHD effect the Maxwellian mechanism predominates irre- 
spective of whether or not dielectric anisotropy is present in 
the NLC. 

A specific feature of the development of EHD oscilla- 
tions in a dielectrically anisotropic NLC is the presence of 
two oscillatory modes of the EHD effect, the second of 
which E,, should be virtually unobservable in an experi- 
ment against of the background of the first mode E,, . 

673 Sov. Phys. JETP 75 (4), October 1992 L. G. Fel 673 



TABLE I. 

The regions A, where the EHD oscillations inp- and h- 
oriented nematics are observed were found in the (m,l) 
plane, where m is the reduced magnitude of the auxiliary 
magnetic field and 1 is the thickness of the liquid crystal 
layer. The calculation was performed for the classical nema- 
tic PAA, whose dielectrically isotropic variant is promising 
for observation of EHD o~cillations.'~ 

In ap-type NLC the region A, is a narrow strip of width 
6 = 10- 6 - 1 0  ', irrespective of the sign and magnitude of 
the anisotropy E,. This virtually precludes observation of 
EHD oscillations for a realp-NLC, just as in the dielectrical- 
ly isotropicp-type NLC. 

In a h-NLC the region A, consists of two disconnected 
parts, separated by a gap /3, where, owing to competition 
with the Frederiksz effect, EHD oscillations are forbidden. 
The sign of the anisotropy E, is significant for observing the 
oscillatory EHD effect. For a dielectrically isotropic NLC, 
EHD oscillations can be observed without a magnetic field 
for only nematics with a quite large ratio of the Leslie viscos- 
ities a2/a3,14 while in the presence of dielectric anisotropy 
this is true only for positive E, ; for negative anisotropy the 
EHD oscillations can be observed with m = 0 in any nema- 
tics. 

We now discuss the possibility of observing EHD oscil- 
lations with m = 0 in real classical NLC with negative ani- 
sotropy-PAA and MBAA, whose physical parameters 
were taken from Ref. 24 and are presented in Table I. For h- 
PAA with anisotropy E,/E = - 3 . 1 0 '  at T = 125 "C os- 
cillations can be observed in a liquid crystal whose thickness 
L lies in the range L, = 496pm < L < Lf = 498pm. Analo- 
gous calculations for a layer of the other nematic MBAA 
with anisotropy E, /E = - 0.14 at T = 25 "C give a lower 
limit of the thickness L, = 2.65 pm, which falls outside the 
range of technical capabilities for producing uniform ho- 
meotropic liquid crystal layers.' 

Decreasing the parameter S makes it easier to observe 
EHD oscillations in these nematics. We shall briefly discuss 
the technical possibilities for varying the value of 8. The sim- 
plest method is to vary continuously the temperature of the 
liquid crystal phase. However, as the temperature of the liq- 
uid crystal approaches the bleaching point [ T,,,, = 46 "C, 
T,,, = 135 "C (Ref. 28) 1, E, -+0 and a, -0, simultaneous- 
ly. In addition, since in our case E, and a, are proportional 
to the first power of the magnitude of the order parameter of 
the liquid crystal, at the bleaching point 6 can differ appre- 
ciably from zero. There exists, however, a different method 
for varying S-doping with dielectric and ionic additives in 
order to change E, and a,, respectively. For example, tetra- 
butyl ammonium bromide is used to change the sign of a, in 
MBBA, and 4 cyano-benzylidene-4-octyloxyanilene is used 
to change the sign of E, in MBBA.I2 This method, however, 
is limited in that S can only be varied by appreciable steps. 
For this reason, a combination of both methods can make it 

C 

possible to achieve continuous variation of S sufficient for 
our purposes. 

When the anisotropy E, /E = 1.38.10- ' with constant 
a, /(T = 0.3 is achieved in PAA, the range of thicknesses L of 
the liquid crystal layer can be infinitely expanded; more ac- 
curately, L, = 98 pm and Lf -+ co . The lower limit of E, /E 

is, as a rule, 10 - for the other known nematics also;4' this is 
apparently connected with the limits of the accuracy of mea- 
suring instruments. When E, /E = - 1.8.10 - 
(a, /a = 0.3) is achieved in MBBA, the Frideriksz effect no 
longer competes with EHD oscillations in h-MBBA with 
m = 0; in this case, L, = 27.6 pm. However, the range of 
thicknesses of MBBA has an upper limit Lf; this is connect- 
ed, as pointed in Eq. 20, with the negative sign of the con- 
stant C for MBBA. Calculations give Lf = 36pm. However, 
in MBBA the range of thicknesses of the liquid crystal layer 
can be extended to infinity (L,, Lf -+ co ) by increasing the 
ratio a2/a3 and changing the sign of C. The latter can be 
achieved by dissolving in MBBA complexes of macrocyclic 
ether MCPE-18-crown-6 and KC1 salts with total concen- 
tration c = 0.15-0.2%; this results in a sharp reduction (by 
an order of magnitude or even with a change in the sign with 
c = 0.25% of the Leslie viscosity and in addition the 
other physical properties of the NLC (the Franck elasticity 
constants, the other Leslie viscosities a, , i# 3, and the an- 
isotropies a,, E, ) do not change significantly. 

This range of parameters of liquid crystal layers in real 
nematics that is required to observe EHD oscillations and 
the specific methods employed to make these parameters 
approach the experimental capabilities explain why there 
have never been any accidental experimental observations of 
electrohydrodynamic oscillations in real nematics, and they 
indicate a real possibility for observing EHD oscillations in 
NLC with specially prepared liquid-crystal samples, pri- 
marily PAA. 

I am deeply grateful to S .  A. Pikin for a discussion of 
this work and for critical remarks and to L. I. Kovarskii for 
assistance in the numerical calculations. 

1 I / E I iua,oL 

" This approximation is justified in Ref. 6 by the smallness of the dimen- 
sionless parameter Y = pK /a2, which for known NLC is indeed equal to 
10-6-10-4 (pis the density of the NLC, a and Kare the characteristic 
values of the isotropic shear viscosity and Frank's elasticity constant). 
As shown in Ref. 13, however, the expressions describing the nonsta- 
tionary EHD effect contain the combination ~ ( a , / a , ) ~ ,  which is by no 
means small (a2,a3 are the Leslie viscosity coefficients). 

2' The threshold fields E, and Hi in the Frideriksz effect do not depend on 
the anisotropy of the electric conductivity o, of the NLC.23 

"In contrast to PAA, the other classical nematic MBBA belongs to the 
class of liquid crystals with C< 0. 

4'S. V. Belyaev, private communication. 

4 lo-? 1 i 1 
0 1 I 6.3 I /-0.1" l" *0-' / ::G?i 1 ::I: 1 2.25 / 0.3 
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