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Coherently precessing states in 3He-B are considered within the general formalism of broken 
symmetry. A 6-dimensional manifold of Larmor precession is found instead of the Cdimensional 
space of conventional stationary 3He-B. The degeneracy states are described by two rotational 
matrices instead of one matrix Rai of the stationary B-phase states. The nontrivial topology of the 
extended space together with the hierarchy of interactions and length scales gives rise to a variety 
of new topologically stable objects. Continuous and discrete symmetries of the Lagrangian 
describing the spin dynamics are discussed, which lead to a relation between the properties of the 
precessing and stationary states. 

INTRODUCTION 

The coherent spin precession in superfluid 3He-B has 
proven to be extremely stable, as was found in Refs. 1-4. The 
unique properties of the precessing state, usually referred to 
as the homogeneously precessing domain (HPD), have been 
applied to the investigation of the superfluid 3He-B, in par- 
ticular of the topological defects in superfluid 3He-B which 
appear under rotation. The HPD technique allows one to 
prove the breaking of the axial symmetry in the cores of 
quantized vortices5 and to observe the combined spin-cur- 
rent and mass-current vortex, which has a soliton tail.6 

Here we discuss the topological objects which can arise 
in addition to the Larmor precession. Until now only one 
such object has been described7.' and ob~erved.~ This is the 
line about which the winding of the phase of the spin preces- 
sion takes place. We show that a variety of other topological 
objects is possible, and they are classified essentially by the 
same homotopy topology method as the topological defects 
in the stationary condensed matter (see the reviews in Refs. 
10-13). 

This application of the topological methods is possible 
because the state precessing with the frequency close to the 
Larmor frequency, belongs to the class of ordered time-de- 
pendent coherent states, which is a generalization of the con- 
ventional stationary coherent state described by the order 
parameter. The precessing states also have a stiffness (or 
rigidity ), which is the main feature of the ordered state with 
broken symmetry. Therefore the topological analysis of the 
time-dependent coherent states is in many respects analo- 
gous to that of the stationary superfluid phases of "e. It is 
not necessary to solve the Leggett equations of the spin dy- 
namics. Instead it is enough to consider the broken and re- 
maining symmetries of the coherent states, using the Larmor 
theorem, which shows the equivalence of the effect of the 
external magnetic field and the effect of precession with the 
Larmor frequency. 

The symmetry approach allows one to obtain the space 
of the degenerate states, the number of Goldstone bosons 
(gapless collective modes), the possible topological defects, 
etc. In the same manner as for the stationary states, an order- 
ing of the energies takes place which leads to reduction of the 
manifold of internal states at different length scales. They 
cause the orientation of the order parameter to be partly or 
completely fixed. This produces gaps in the spectrum of col- 

lective modes and gives rise to additional topological objects 
(textures and solitons), described by the relative homotopy 
groups. 

The most important is the dipole-dipole spin-orbit in- 
teraction. It reduces the multi-dimensional space of the Lar- 
mor precession to two separate subspaces: the non-precess- 
ing stationary state (NPD: Non-Precessing Domain) and 
the pure homogeneously precessing state which has been ob- 
served experimentally (HPD: Homogeneously Precessing 
Domain). These states reveal many similar features which 
result from the discrete symmetry relating them. This sym- 
metry is violated by other interactions: the spectroscopic en- 
ergy which is proportional to the deviation of the external 
frequency w from the Larmor frequency, the interaction of 
the order parameter with the mass current, surface energy, 
etc. 

In Sec. 1 we repeat the general symmetry approach for 
the stationary superfluid states of 3He-B in order to genera- 
lize this for the Larmor precession states in Sec. 2, where we 
find the extension of the conventional Cdimensional mani- 
fold of internal states to the 6-dimensional manifold. In Sec. 
3, the orientation energies are introduced for the extended 
order parameter, which gives the hierarchy of energy and 
length scales. In Sec. 4 the topological object related to the 
short length scale (less than the dipole length) are discussed; 
in addition to the conventional mass-current and spin-cur- 
rent vortices the topologically stable point defects are 
found-the hedgehogs in the fields of the spin and orbital 
angular momenta. Section 5 is devoted to the defects result- 
ing from the topology at distances larger than the dipole 
length and from the interplay of different length scales. Pres- 
ent among them is the intersection line of several interfaces 
between the HPD and NPD, which is described by the non- 
trivial elements of the fundamental homotopy group. In Sec. 
6 the topological defects on the length scale where the spec- 
troscopic energy becomes important are discussed. And fin- 
ally, the core structure of the hedgehog is discussed in Sec. 7, 
where the phase-slip process is found which is regulated by 
the homotopy group n-,. In Sec. 8 the application of the 
method to the precessing states in other superfluid phases is 
discussed. In the Appendix the Lagrangian is considered 
which gives the Leggett equations of the spin dynamics, and 
the symmetry properties of the Lagrangian related to the 
Larmor theorem are discussed including the local gauge in- 
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variance. The discrete symmetry of the Lagrangian is dis- 
cussed which leads to mapping of the properties of the HPD 
states to those of the NPD, including the spectrum of the 
collective modes, which appears to be similar for the precess- 
ing and the corresponding stationary states. 

1. BROKEN RELATIVE SYMMETRY IN THE STATIONARY JHe- 
BSUPERFLUID 

The relevant symmetry group G of the physical laws, 
which is broken in superfluid phases of 3He, contains the 
gauge group U( 1 ) and the group of rotations. Since the spin- 
orbit (dipole-dipole) interaction is relatively weak, the spin 
and orbital rotation groups, SO:, and SO$, can be consid- 
ered independently: 

G=U ( I )  XS03LXS0,S. (1.1) 

The superfluid phases of ,He are distinguished by their re- 
maining symmetry H. The equilibrium state of the phase B is 
invariant under combined spin and orbital rotations, while 
the separate rotations transform the initial state into another 
degenerate equilibrium state with different order parameter. 

The simplest equilibrium state of the B-phase, which 
can be chosen as the initial state, corresponds to the total 
angular momentum J = 0, which means that this order pa- 
rameter is invariant under simultaneous and equal spin and 
orbital rotations:I4 

A 

1f R  ̂ ' I '  and R  '2' are matrices of spin and orbital rotations 
respectively, and ei@ is the operation of the gauge transfor- 
mation, then the B-phase state described by the order param- 
eter ( 1.2) is transformed under operations of the symmetry 
G into another degenerate B-phase state described by the 
following order parameter: 

A 

where the c~nvent ion~l  R  matrix of the B-phase is expressed 
in terms of R  ( I '  and R  '2' as 

It is important that %e state dzscribed by the R matrix 
does not resolve between R  ' I '  and R  '2', which is the essence 
of the broken relative invariance. l5 Only relative rotations 
lead tTa new yuilibrium stat%while the combined rotations 
with R  ( I '  = R  '2' leave the R  matrix unmoved. Thus the 
space R  of the degenerate states of the B-phase includes the 
Grcumference U( 1 ) of the phase @ and the SOY' space of the 
R  matrix: 

The orthogonal R  ̂ matrix can be specified by the angle 8 
and the rotation axis 2 

The spin-orbit interaction 

fixes the 8 angle, cos 8, = - +, but leaves the degeneracy 
with respect to the orientation of A. (aL is the so called 
Leggett frequency, the frequency of the longitudinal NMR, 

and xe is the spin susceptibility of the ,He-B. We use the 
system of units in which the gyromagnetic ratio y for the 3He 
atom is 1, so the magnetic field and the frequency will have 
the same physical dimension.) Thus the space R  of the de- 
generate states of the B-phase is reduced by the dipole inter- 
action to 

where S2 is the sphere of the A vector. 
The homotopy groups of the spaces R  and R, 

[rl (R,RD ) and q ( R , R ,  ) ] lead to the topologically stable 
defects of the stationary B-phase: quantized mass-current 
vortices, spin disclinations, 8 solitions and 2  hedgehog^.'^-'^ 

2. EXTRA BROKEN SYMMETRY IN THE COHERENT 
PRECESSION STATES OF SUPERFLUID =He-B 

Let us consider now the time-dependent coherent states 
which appear not under stationary external conditions but 
under external time-dependent fields. Now the state is a ma- 
trix-valued function of time Ami ( t )  instead of a constant ma- 
trix in the stationary case. The symmetry group of physical 
laws acts on the functions A,, ( t )  and can in principle con- 
tain time-dependent operators g ( t )  from the group 

of time-dependent gauge transformations and orbital and 
spin rotations. Whether the time-dependent symmetries are 
allowed depends on the form of the Hamiltonian. We will see 
that in the case of nonlinear NMR where the coherently 
precessing states arise under a constant magnetic field Ha 
and a small radio frequency (rf) field H,, (wt)lH,, with the 
frequency w being close to the Larmor frequency wL = H,, 
the Larmor theorem provides the existence of such symme- 
tries. 

2.1. Symmetry and the order parameter at short distance 
(spin-orbit interaction neglected) 

The ,He is electrically neutral, so the magnetic field H, 
interacts only with the spin of the ,He atom: the Larmor 
energy is F, = - H,.S. The field Ha produces an anisotro- 
py in the spin space along the field, which leads to the reduc- 
tion of the group G of the physical laws in the presence of an 
external magnetic field: instead of SO: one has SO;. How- 
ever the SO, spin rotation symmetry is restored if we consid- 
er the experimentally relevant particular case when the rf 
frequency is close to the Larmor frequency w, = Ha and is 
larger than the Leggett frequency: w - w, ( a L ,  fl,<w,. 
So to lowest order one has o = w, and also the spin-orbit 
interaction can be neglected. We will not take into account 
the dissipative terms, assuming that the amplitude H,, is 
maintained large enough to balance the dissipation of energy 
in the precessing state. However, H, <H,, holds, and we 
will always neglect the amplitude H,, of the rf field, suppos- 
ing that the rf field only fixes the precession frequency w. In 
this situation one can apply the powerful Larmor theorem. 
According to this theorem, in the spin-space coordinate 
frame rotating with the frequency o = H, the effect of the 
magnetic field H, on the spins of the 3He atoms completely 
disappears. The Zeeman energy FL = - Ha . S  is balanced 
by the Larmor energy term o - S  which appears in the rotat- 
ing spin frame. 
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Since in the rotating spin frame the magnetic field be- 
comes irrelevant, the spin rotation symmetry is restored, but 
now in the spin-precessing frame. Therefore the total sym- 
metry group of the physical laws is now 

E = u ( I )  x so: x so:, (2.2) 

where SO: is the group of spin rotations in the rotating 
frame. The elements g ( t )  of the group SO: are constructed 
from the elements g of the conventional SO: group in the 
following way: 

H(t) =6-' (a, at)gO(i. ~ t )  , (2.3) 

where the orthogonal matrix 

is the transformation from the laboratory frame into the ro- 
tating frame-this is a rotation about the z axis (along Ho) 
through the angle of. The Eq. (2.3) means that to perform 
the SO: symmetry transformation one should first make the 
transformation from the labgratory frame into the precess- 
ing frame, then perform the R '" rotation within this frame, 
and after that return to the laboratory frame. Z' is the sym- 
metry group of the Lagrangian which defines the dynamics 
of the system (see Appendix A)  if the spin-orbit coupling is 
neglected. 

The group Z' is isomorphic to the large symmetry group 
G of the physical laws in Eq. ( 1.1 ) , which holds in the ab- 
sence of the magnetic field and under stationary conditions. 
This isomorphism reflects the Larmor theorem, which im- 
plies the equivalence of the magnetic field and spin preces- 
sion with the Larmor frequency: if the spin-orbit interaction 
is absent the physics should be the same. 

Now we can find all the degenerate coherent states of 
the Larmor precession by applying the symmetry group 
(2.2) to some simple state. It is evident that the stationary 
(NPD) state (1.2) with the equilibrium spin density 
S'O' = xBHo is one of these states. So we take this state as the 
simplest initial state 

A xhe *act$% ofAelements of Z' on this state 
A = 0 - 'R "'OA "'(R '2 ' )  - '  leads to the following gen- 
eral coherent B-phase state under the rf field with the Lar- 
mor frequency, neglecting the spin-orbit interaction 

Aai (t) =A,eimRai(t). 

R,< (t)=Oaa(2, -ot)R::' O,,(i, at) (R(Z'YIIi-'. (2.5) 

The spin density in this state is also obtained by the spin 
rotation SO: from the initial spin in Eq. (2.4) : 

Sa (t) =Oab (2, --at) R,':' ~ s H o 7 .  (2.6) 

This means that the spin density in the precessing frame, 3'0, 
is constant in time: 

which corresponds to the precession of spin with the tipping 
angle 

5 . ~ 0  (1, 
cos = 7 = R,, . 

a H 0  

One can check that Eqs. (2.5), (2.6) represent the general 
solution of the spatially homogeneous Leggett equations de- 
scribing the spin dynamics (See Appendix B),  under the 
conditions that w = w, and that the spin-orbit interaction is 
absent. 

So the general coherent state of the Larmor precession 
contains as the degeneracy parameters the phase? of the 
Eose condensate and the two rotation matrices R ' I '  and 
R "'. AS distinct from the coherent states in Eqs. (1.3)- 
( 1.4) under stationary conditions, these two rotations occur 
in the precessing and laboratory systems respectively, and 
therefore they cannot compensate each other. So both matri- 
ces represent degen~racy parameters. 

Note that the R "' matrix has only spin indices, while 
R^ '2' in Eq. (2.5) has both spin and orbital indices. This is 
important for the construction of the interaction terms in 
Sec. 2. The physical meaning of these matrices is as follows: 
the R ( I '  matrix defines the orientation of the s p k  in the 
precessing frame according to Eq. (2.7), while the R '2' ma- 
trix defines the orientation of the orbital momentum 
L, = - Rai (t)Sa ( t ) .  This momentum is constant in the 
laboratory frame according to the following equation: 

The direction of L also shows the orbital anisotropy axis for 
the gap in the quasi-partiGe energy spectrum. Moreover, we 
shall use the unit vector I = - L/x,HO for the axis of the 
orbital anisotropy. 

This orbital anisotropy is usually small since we have 
w, <AB, but it can be incorporated in the general formalism 
if one takes into account in the initial stationary B-phase 
state in Eq. (2.4) : 

Here All and A, are gaps in the quasiparticle spectrum for 
the momenta parallel and ~erpendicular to & with 
(A, - All )/A, --&/A;. The R '*' matrix rotates this axis 

h 

to obtain the anisotropy axis 7 = R '2'.i for the general state. 
Onecan see now that not only the relative symmetry but 

also the combined symmetry is spontpeous l~  broken in 
such coherent states. Even if one takes R '') = R ( 2 )  one ob- 
tains a degenerate coherent state which is different from the 
initial one, since S and L are oriented differently. It is impor- 
tant that the combined symmetry is not broken completely. 
Some gmmetry2till remains: the rotations induced by ma- 
trices R "' and R '2' about the axis z can compensate each 
other. Therefore the symmetry subgroup of the coherent 
state is 

where the rotation group SO? is the symmetry of the state 
under simultaneous spin and orbital rotation about the axis 
z. The factorization over the invariant subgroup leads to the 
manifold of degenerate states 

(2.11) 
As a result we have a topologically nontrivial 6-dimen- 
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sional space of degenerate states-the most complicated 
space known in condensed matter (the same space of degen- 
erate states could occur in the stationary planar phase of 3He 
if this phase were stable). This D = 6 space of coherent 
states includes the conventional Cdimensional manifold 
(1.5) of the stationary B-phase states as it~~subspace, this 
subspace R of can be obtained if one takes R "' as the unit 
matrix. 

A convenient para~etrizatign for five independent 
variables of the matcces R "' and R "' can be made in terms 
of the Euler angles: R "' (a,,P,,y,) with a, a%d PI being the 
azimuthal and polar angles of i = 8 / ~  and R '2'(a2,P2,y2) 
with a, and px being the azimuthal and polar angles of the 
orbital vector I. Due to the combiped symmetry the state is 
defined by 5 variables: i (a , ,P,) ,  1(a2,/3,) and the relative 
rotation about the z axis by the angle y = y, - y,. 

In the traditional states with broken symmetry the 6- 
dimensional space of the degenerate states would result in 
the existence of six Goldstone (gapless, or low-frequency) 
collective modes. The situation is different in the presence of 
the magnetic field due to the absence of the time reversal 
symmetry. On the one hand the Larmor gap w, appears for 
some of the collective modes. On the other hand the oscilla- 
tion with frequency close to o, corresponds to the low-fre- 
quency motion in the precessing frame. Therefore the modes 
with the frequency close to w, can also be considered as 
Goldstone modes. In our case the low frequency oscillations 
of 2 represent the Goldstone mode in the precessing frame, 
while in the laboratory frame this is the mode with the fre- 
quency close to w, . Such oscillations superposed on the sta- 
tionary state correspond to the transverse NMR mode. The 
low-frequency oscillations of y correspond to the longitudi- 
nal NMR mode in the stationary state. Andfinally the low 
frequency oscillations of the orbital vector I represent the 
Goldstone mode in the laboratory frame, which we will refer 
to as orbital waves. In the stationary state this corresponds 
to the gapless branch of the transverse NMR. The spectrum 
of the modes is discussed in Appendix D; the symmetry Z, of 
the Lagrangian is used to relate the spectrum superposed on 
the NPD to that of the HPD found by F ~ m i n . ' ~ ~ "  

2.2. The order parameter space at large distance (spin-orbit 
taken into account) 

The 6-dimensional manifold of degenerate states is re- 
duced if the spin-orbit interaction (dipole forces) in Eq. 
( 1.7) is taken into account as a small perturbation of the 
Larmor precession. After averaging over the basic solution 
(2.5) for the Larmor precession one obtains the dipole ener- 
gy in terms of the degeneracy parameters: 

F D  = 21, ,~B~L2 [(s,i, - + 112 (1 + s,) (1 + iz) cos Y ) ~  

+ l l s ( l - 9 z ) 2 ( 1  - - l z ) 2 +  ( 1 - ~ , z ) ( 1  -b(l +cosy ) ] ,  

(2.12) 

where 3, = cos 8, and I ,  = cos 0, are z projections of 3 and I. 
The dipole energy is minimized when either iz = 1 or 

I ,  = 1 holds, which leads to two families of degenerate 
states. The first of them is the fa2ily i, = 1 of stationary 
states (NPD). For this family the R "' is fix*, R 6'; = Spy, 
as well as the spin density S = xBHO, while R '2' is the ma- 
trix of rotations about the A, axis through the angle @,,, with 
A, being arbitrary: 

Accordingto Eq. (2.9) the 1 vector can be arbitrary within 
the region I, > - 1/4. 

Another family represents a special class gf precessing 
gates, which we call HPD. It has a fixed 4'2' matrix, 
R = S,,, and therefore a fixed orbital vector I = 2, while 

A 

R::' (s,, 0") =h,,i,it- (6,i-nlan,i)'cos Oo-eai,&ik sin 00 

with A ,  arbitrary. This means that the orientation of the 
magnetization 8 in the precessing frame can be arbitrary 
within the region 2,) - 1/4, as follows from Eq. (2.8). 

Note the discre!e symmetry Z, between the spin and 
orbital vectors 3 and I in the dipole energy (2.12); this sym- 
metry is discussed in Appendix A [ y e  Eq. (A,! 1 ) 1. D2e to 
this symmetry the given NPD state (R "' = LR ',' = R,) is 
equivale~t to the HPD state with R '*' = 1 and 
2'1' = R  - 1  , . Therefore some properties of the HPD state 
can be mapped from that of the corresponding stationary 
state. In particular the collective mode spectrum superposed 
on the HPD can be obtained from the spin-wave spectrum of 
the corresponding NPD (see Appendix D )  . 

Due to the discrete Z, symmetry the dipole interaction 
does not discriminate between these two families: the HPD 
and the NPD are energetically equivalent to each other. 
Thus the dipole forces reduce the space to two spheres of 
A,,, vectors in the HPD and NPD states: the sphere of A,  in 
the precessing domain and the sphere of A, within the NPD. 
Due to the equivalence of rotations about the axis z in HPD 
and NPD, these two spheres touch each other at two points 
A ,  = A, = + 2. Therefore the total degeneracy space under 
the dipole forces is 

where R (S hPD ,S ipD ) denotes the bundle of two spheres 
with two equivalent points: the north pole of one sphere is 
equivalent to the north pole of the other and the same for the 
south poles (see Fig. 1 ). 

FIG. 1.  a,b) Degeneracy space i?, of the time-dependent coherent states 
reduced by the dipole interaction. These are two spheres of the A vectors in 
the NPD and HPD. The north poles of the spheres, N, and N,, where 
A ,  = A, = 2, are equivalent to each other, as are the south poles S, = S,, 
where A,  = A, = - 2. c )  Universal covering spaceover R(S2,SZ) ,  which 
is a chain of infinite number of spheres. 
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Both NPD and HPD belong to the same space E D  of 
degenerate states. Further reduction of symmetry by other, 
smaller, interactions discriminates between HPD and NPD. 
Which state is preferable depends on the sign and the magni- 
tude of w - H,, on the presence of the counterflow, and on 
the boundary conditions, as will be discussed in Sec. 3 where 
the additional orientational energies are considered. The 
competition between these factors leads to the spatial sepa- 
ration of the HPD and the NPD regions with the phase 
boundary between them at which A ,  = A, = + 9. This can 
be considered as the boundary conditions at the phase 
boundary. 

The complicated order parameter space with the hierar- 
chy of the length scales results in numerou~topologi~lly 
stable objects and textures in the fields of R ( I '  and R ( 2 )  

matrices. 

3. ENERGETICS OF COHERENT STATES 

3.1. Spectroscopic energy 

An additional orienting energy term appears if o # H,. 
In this case the Larmor energy-Hoes is not compensated 
completed by the precession and one has the term 

where we have used Eqs. (2.6) and (2.7) for the spin [see 
also Appendix C where this term, Eq. (C2), is obtained from 
the Lagrangian for the spin dynamics]. This is the ~o-called 
spectroscopic energy, which depends only on the R ' I '  ma- 
trix. In different notation it was introduced by Fomin (see 
Ref. 18). Due to the violation of Z2 symmetry for w # w, this 
term discriminates between HPD and NPD states. 

Usually in experimental situations this term is small 
compared to the dipole interaction. In the limit of extremely 
large dipole coupling one can assume that at zach point of 
$e vesszl we have either the HPD state [ E  '2' = 1 and 
R (I' = R "'(A,,B,)] or the NPD state [R ' I )  = 1 and 
2 (2 )  = 2 (2)( i l ,eo)  I .  

For the NPD state, where S = x,H,, the spectroscopic 
energy 

does not depend on the orientation of A,. On the other hand 
for the HPD state it depends on the orientation of A,: 

F, (HPD) =xBw (a-H,) R::' 

and the equilibrium orientation of A ,  is defined by the sign 
w - H,. 

Ifw - H, is negative, then A;q = + 2, which means that 
the NPD state is preferable. Since the NPD energy does not 
depend on the orientation of A,, the A, vector in the NPD 
state is arbitrary (here and below we neglect the very small 
interaction of A, with H,). Therefore, if w - H, is negative, 
the space R (S hpD ,S  ipD ) (the bundle of the two spheres of 
A ,  and A,) is further reduced to a single S &,, sphere of A, of 
NPD. 

For positive o - H, the A ,  vector in the equilibrium is 
constrained to be in the plane transverse to 9, as follows from 
Eq. (3.3), which now requires that A,, = 0. Since the equi- 
librium HPD energy in this case is less than the NPD energy 

F. (HPD) -F,(NPD)=-~o (a-Ho) (4-cos 00). (3.4) 

the HPD state takes place in the equilibrium. As a result, for 
w > H, the space R ( S  hpD ,S kpD ) of A ,  and A, is reduced to 
theS ' space of A,  in the transverse plane. This is the circum- 
ference of the precession phase a, in the HPD, which gives 
rise to vortices with 2 r N  winding ofa ,  (Refs. 7,9). Accord- 
ing to Eq. (2.8) the tipping anglep, of the precessing spin in 
the equilibrium HPD 

coincides with the angle 8,. 
If the spectroscopic energy is not infinitely small com- 

pared to the dipole energy, then both energy terms 
(2.12) + (3.3) should be minimized, and one obtains for the 
equilibrium values of Sz and 8: 

It is instructive to see what occurs if w(w - H) ) a:; i.e., 
the dipole forces are small compared to the spectroscopic 
energy and can be neglected. In this case for w > H, the pre- 
cessing state is preferable with n,, = 0 and cos 8, = - 1, 
which means that the magnetization is opposite to the field 
direction S = - H,. The remaining degeneracy spacz of 
this reversed spin state (RSD) is the SO, space of the R '2' 

matrix. This space is further reduced by the dipole interac- 
tion, which gives I, = 0. 

3.2. Counterflow effect 

In contrast with the spectroscopic term, the counter- 
flow interacts with the 9rbital vector I due to the anisotropy 
of the superflow along I, and20 the counterflow term in the 
energy depends only on the R (2 '  matrix: 

where u = v, - v, andp, is the anisotropy of the superfluid 
density along and perpendicular to 7 (see, e.g., Ref. 19). 

Let us consider the effect of the counterflow in thejimit 
of strong dipole interaction. For the HPD state, where 1 = 2, 
this term 

does not depend on the orientation of A ,  and is exactly zero if 
ulH,. On the other hand, for the NPD state one has Eq. 
(3.5 ), which orients the A, vector in such a manner that this 
energy is minimized. So in the equilibrium NPD state under 
the counterflow we have 

F ,  (NPD) =-'/zp,~Z. (3.7) 

Hence this term always makes the equilibrium NPD state 
more advantageous, since 

As a result, due to the counterflow (if the counterflow effect 
dominates the spectroscopic term) the whole space 
R(ShpD,ShpD ) of A,  and A, vectors is reduced to two or 
four discrete points of A, which correspond to the minimum 
of the counterflow energy. 

If the counterflow effect and the spectroscopic term are 
comparable to the dipole energy, the equilibrium state is ob- 

654 Sov. Phys. JETP 75 (4), October 1992 T. Sh. Misirpashaev and G. E. Volovik 654 



tained by the minimization of all three energy terms: 

F = F ,  + E; -+ F D  = - ' / ,pa (US 1) ,  $- XnCd (a - KO) S2 
+ 2/lsXoR,2 [ (%iz- >I2 + ' I2  (1 + 3 r )  ( 4  t iz) cos 

+. '1, (1 - $,)* 11 - ZL), + (1 - s.2) (1 - f : 2 )  (1 -+ C O S  ?)I. 

For ulH, this leads to the phase diagram in the u,  ( w  - Ho) 
plane with three phases, HPD, NPD and RSD, with the first 
order transition lines between the states." 

3.3. Surface energy at the container wall and boundary 
conditions 

h 

The surface energy also depends only on the R "' ma- 
trix: 

F,=-~H,,~ i ; , . i ) 2 = - d ~ , 2  (c .  fi('). 2)'. (3.9) 

Therefore it also leads to the preference of the NPD state in 
which 7 can be oriented along the normal Q to decrease the 
surface energy. This gives the boundary conditions for the 
NPD state if the !urface energy is large enough. For the 
HPD state, where I = 2, this term 

F,(HPD) =-dHn2 ( ~ . 2 ) ~  (3.10) 

does not depend on the orientation of A,, and there are there- 
fore no boundary conditions for A,. 

3.4. Gradient energy 

The gradient energ1 should ̂ be written in terms of the 
degeneracy parameters R "' and R ' 2 ' .  It can be obtained by 
substituting Eq. (2.5) into the conventional gradient energy 
of the B-phase: 

The simplest expression is obtained in the limit of the 
large dipole energy which fixes either the HPD or the NPD 
states. For the NPD family the gradient energy has a con- 
ventional form: 

F,,@(NPD) = ~ ~ c , . '  ( 4  -cos O D )  (8,&2)' 

- L / 2 X B ( ~ ~ ~ - ~ 1 , 2 )  (sin O0C .n2 

+ ( I - c o s  ~,);.VX&)'. (3.12) 

For the HPD states the Eq. (3.1 1) should be averaged over 
the precession period to obtain the gradient energy in terms 
of the A ,  vector in the precessing frame: 

Fsrnd (£ZPD) = x,~c: ( 2  - cos 0,) [din,)' 

-'/jxB (Ci - ~ 4 , )  [(sill ." -/- (I - coS Oa) V >c i1)' 
+ (sin 8,V,h1, + (1 - cos 8,) n,. 2 X PZn,)' 

The gradient energy produces the healing lengths for 
different interaction. For example the healing length for the 
spectroscopic energy term is 

3.5. HPD-NPD interface 

The two domain precession discovered in Refs. 1-4 has 
been extensively investigated both theoretically and experi- 

mentally, including the influence of the countertlow on the 
position and structure of the domain boundary.'' Here we 
discuss this in terms of the A,  and A, vectors. In some cases 
this simplifies the problem. The interface between the HPD 
and the NPD is the surface at which A ,  = A, = f 2. This 
surface is always accompanied by the neighboring textures 
where the A ,  and A, vectors are reoriented to obtain the equi- 
librium orientation far from the interface. Usually the whole 
texture of the A,  and A, vectors on both sides of the interface 
is called the domain boundary. 

To find the structure of the HPD-NPD phase boundary 
one should solve the separate equations for A ,  on the HPD 
side of the interface and for A, on the NPD side with the 
boundary conditions A ,  = A, = + i at the interface between 
NPD and HPD. The equation for A, on the NPD side is 
obtained by minimizing 

F (NPD)=Fgrnd (NPD) +Fs (NPD) +Fu (NPD) , (3.14) 

while the equation for A,  on the HPD side is obtained by 
minimizing 

F (HPD) =F,,,d(HPD) S F ,  (HPD) . (3.15) 

The solution of these equations gives the A ,  and A, textures 
outside the interface. These textures depend on the position 
of the interface, so the final step is to minimize the obtained 
total energy P(HPD) + F(NPD) as a function of the inter- 
face position to find the equilibrium position of the interface. 

Sometimes the problem of the equilibrium position of 
the interface is simplified. The interface is obtained as the 
surface at which the force from the HPD domain is compen- 
sated by the force from the NPD domain; i.e., the energy 
densities of the states become equal: 

F,*(HPD, r)+F,(HPD, r)=F,(NPD,r)+F,,(NPD, r ) .  
(3.16) 

This corresponds to the coexistence of the phases separated 
by the first-order transition line. Equation (3.16) is valid if 
the forces are large enough, and so the characteristic lengths 
of the A textures are small compared with the characteristic 
length scales at which the orientational energies change. The 
Eq. (3.16) gives the following equation for the interface po- 
sition in the presence of inhomogeneous magnetic field and 
superflow: '' 

The A ,  and A, textures of the HPD-NPD interface in the 
presence of the counterflow were calculated in Ref. 20. 

4. SMALL-SCALE TOPOLOGY OF LARMOR PRECESSION 

4.1. Homotopy groups 

The topology of the Larmor precession at distances 
<gD is given by the order parameter space R in Eq. (2.11) 
with the following homotopy groups: 

Then-, (g ) group is the same as in the stationary state of 
the B-phase and gives rise to the quantized vortices and dis- 
clinations, while the n-,(R) group is nontrivial only due to 
the extension of the B-phase degeneracy space R to the whole 
space 8 of coherent precession. It describes the point de- 
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fects, hedgehogs, with an integer topological invariant; such 
hedgehogs cannot exist in the stationary case. 

4.2. Hedgehog in the spin and orbital vectors 

The object with the nontrivial n-,(x ) is the hedgehog in 
the field 3 in the pr5cessing frame, accompanied by the 
hedgehog in the field 1 in the laboratory frame. The integer 
topological invariant of the hedgehog is given by 

where the integ~ation is over the closed surface u around the 
hedgehog. The I vector has the same invariant: 

The distribution of the spin and orbital momenta in the 
spherically symmetric hedgehog with the topological charge 
N = 1 is given by 

while the order parameter in this spherically symmetric hed- 
gehog is given by 

* 
Rai(t)=Oag (2, -mLt)Oei (r. mbt) 

-egik;k sin (oLt) 1 .  (4.6) 

It is important that the 3 and i hedgehogs cannot be 
separated from each other. If the Euler angles a, and& have 
a point singularity, it should be accompanied by the linear 
singularity in y, attached to the3 hedgehog: y, has 43- wind- 
ing around this line. In the same manner, if the Euler angles 
a, andg, have a point singularity, it should be_ accompanied 
by the linear singularity in y, attached to the I hedgehog: y, 
has a 4n- winding around this line. If 3 and I hedgehogs are at 
the same point in space, the physical parameter y = y, - y2 
is well defined everywhere since the singularities in y, and y, 
compensate ea~h~other .  So one has the topological confine- 
ment of the3 and I hedgehogs. The separation will lead to the 
singular line connecting the point defects (Fig. 2): onAthe 
line tJe angle y of the relative z rotations of matrices R "' 
and R ''' is not well defined since it has a 477 winding. This 
resembles the 4n-vortex tail attached to the imonopole in th! 
A-phase. The tail gives rise to the attraction of the 3 and I 
hedgehogs. 

"\ /" y - string \ /  

FIG. 2. Small-scale hedgehog in thetime-dependent coherent state (illus- 
tration of why the constituent 3 and I hedgehogs cannot be separated from 
each other). The disclination line appears between the hedgehogs, which 
serves as the string confining the monopoles. 

5. LARGE DISTANCE TOPOLOGY: DIPOLE INTERACTION 

5.1. Bunch of domains (interfacial vortices) 

The dipole forces reduce the degeneracy space to the 
kD space of HPD and NPD. The first homotopy group of 
this reduced space is 

while in the stationary case 

The additional fundamental homotopy group Z in n-, (2, ) 
comes from the existence of two points in i?, where the 
spheres S &,,, and S h,, touch each other. Such a bundle of 
spheres corresponds to a torus with two opposite circumfer- 
ences contracted to points. The nontrivial topology of such a 
torus gives rise to the singular line with integer charge %. 
This singular line represents the bunch of the boundaries 
between NPD and HPD. 

A singular line with N = 1 (Fig. 3a) can be also consid- 
ered as a linear singularity of the HPD-NPD interface (lin- 
ear boojum). In accordance with Ref. 21, where the general 
classification scheme for the defects on the interface between 
different phases of ordered media has been constructed, this 
line represents the nontrivial element of the relative homo- 
topy group n-, (S &,, X S &,, ,Z2) = n-JZ,) = Z2. Here 
S &,, and S i,, are spheres of vectors A ,  and A, respectively 
outside the interface, and Z, stands for two possible orienta- 
tions of A ,  = A, = + 2 on the boundary, which characterize 
the two-fold degeneracy of the interface (Fig. 3b). 

Larger integer %s correspond to a bunch of 2% inter- 
faces (between HPD's and NPD's) emanating from the sin- 
gular line (see Fig. 3c for % = 2). Outside the topologically 
stable line each of the two neighboring interfaces have oppo- 
site directions of A. Figure 3d illustrates how a singular line 
with %> 1 can be decomposed into primitive singularities of 
the HPD-NPD interface with % = 1 of Fig. 3a. 

5.2. A, and A, hedgehogs 

One can show (see Appendix E) that pointlike singu- 
larities for the reduced space x, are classified by two integer 
indices. Instead of one type of A hedgehogs in the stationary 
state, the order parameter space gives rise to A ,  hedgehogs in 
the precessing frame within the HPD and to conventional A, 
hedgehogs within the NPD. A typical example of an A ,  
hedgehog within the HPD is A ,  = i. in the rotating frame 
while a typical example of an A, hedgehog within the NPD is 
A, = i. in the laboratory frame. The angle 8 = 0, at r  > 6, 
and 0 - 0  at r -0 .  The distribution of the spin density for the 
hedgehog within HPD is given by: 

i ( r )  = 2") (nl ( r ) ,  0,) i = 2 cos 0, + 2 ( 1  - cos 0,) cos 6 
- - cj? sin 0, sin 0, ( 5 . 3  

where r, 8 and q, are spherical coordinates. 
The hedgehogs cannot penetrate the domain boundary 

due to the boundary condition A ,  = A, = + 2. 

5.3. The relative homotopy groups: cylindrical domains of 
magnetization 

The relative homotopy groups give rise to the planar 
and linear solitons. In our case 
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FIG. 3. Interfacial vortex: the bunch of HPD-NPD interfaces. 
a )  Vortex with the topological charge N = 1, which is a linear 
b_oojum at the HPD-NPD interface; b)  the nontrivial contour in 
R,, which corresponds to this vortex. The contour starts at the 
point S of the A, sphere, then at the point Ni t  passes to the A,  
sphere, where it terminates at the starting point S; c) the vortex 
with the topological charge N = 2; d )  two ways of the vortex 
with N = 2 can fission into two primitive vortices with N = 1. 
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The a, group is the same as in the stationary case and thus 
gives the 6 solitons with thickness of order f,, while the n-, 
group is nontrivial, in contrast with the stationary case. It 
leads to the existence of the linear solitons (the cylindrical 
domains). 

The cylindrical domain is obtained from the hedgehog 
in the 3 and fields under the action of the dipole forces. 
Within this domain the spin distribution has an integer topo- 
logical invariant 

where the integral is over the cross section of the domain. 
The I vector field has the same invariant in the domain. 

5.4. Relative hornotopy groups: 0 soliton 

According to Eq. (5.4) there is only one topologically 
nontrivial contour in the space with the ends of the con- 
tour being kept in the R, subspace. The conventional Maki 
soliton22 in the NPD state corresponds to this nontrivial 
contour and can be constructedjf one chooses tke contour 
which passes in the space of the R ',' matrix with R ' I '  equal 
to the unit matrix. Inside the Maki soliton with the minimal 
energy one has A,IIi., wher%i. is the normal to the soliton 
wall. The angle 6, of the R '2' matrix increases from the 
equilibrium angle 6, to n- with constant A, = i. and then de- 
creases from n- back to 6,, but with the opposite A, = - i.. 
This object is also referred t%as the 62oliton. 

The distribution of the R ' 2 '  and R ' I '  matrices in the 6 
soliton can be now deformed in such a manner that the same 
topologically nontGvial contour passes in the space of the 
R  ̂ "' matrix, with R ',' being equal to the unit matrix. This 
corresponds to the 6 soliton yithin the HPD state. Within 
this soliton the angle 6, of the R ' I '  matrix increases from the 
equilibrium angle 6, to n- constant A ,  and then decreases 
from n- back to 6,, but with the opposite A ,. According to Eq. 
(2.7) the tipping angle of the spin 3 changes from 6, to ?r and 
then back to its equilibrium value far from the soliton, but 
with the phase a, of the precession of 3 changed by n-. This 
soliton has higher dipole energy than the soliton within the 
NPD: A ,  is constant in the precessing frame, which means 
that in the laboratory frame it cannot always be oriented 
along the normal to the soliton wall to minimize the energy 
of the soliton. 

Now let us consider what occurs for w > H, when the 
HPD state is the equilibrium state outside the soliton. This 
corresponds to the experimental situation at which the 6 
solitons have been ob~erved.~ There are two ways to incorpo- 
rate the soliton into the HPD (Fig. 4).  

( i )  In Fig. 4b the pure HPD soliton in the space of the 
R  ̂ "' matrix is shown and the magnetic field is along the 
vertical axis. The A,  vector is precessing, so if at some mo- 
ment this vector is normal to the soliton wall, then after a 
quarter of the precession period it should be parallel to the 
wall. 

(ii) In Fig. 4c the conventional Maki soliton is present 
within the NPD region which is separated from the HPD 
region by the NPD-HPD interface. Between the soliton wall 
and the interface the A, vector changes its orientation from 

A,IIi. at the wall to 2,112 at the interface. Then on the HPD 
side the A ,  vector changes from A,ll2 to A , l i  far from the 
interface. These A, and A ,  textures, which both have thick- 
ness of order fo  % f,, form the soft core of the soliton. 

The second structure seems to be preferable since A, has 
a proper (normal) orientation within the hard soliton core 
of order f,, and so the dipole energy is less for the NPD 
soliton. The NMR experiment shows that just this second 
structure, the NPD soliton imbedded into the HPD and 
coated by the NPD-HPD interface, is r e a l i~ed .~  

6. TOPOLOGY OF COHERENT STATES: SPECTROSCOPIC 
ENERGY 

The spectroscopic energy term at w > H, reduces the 
space &, to the circumference R, = S ' of the HPD states. 
The relative homotopy group 

n2(RD,  R,,) =ZxZ (6.1) 

gives rise to the spin vortices and linear A ,  solitons. 
Spin are topologically stable linear objects at 

w > H about which the 2n-N winding of the phase a, of 
precession occurs. The core structure of the vortex depends 
on its symmetry: in the most symmetric vortex A ,  is always in 
the transverse plane. Since 2 ,  is not well defined on the vor- 
tex axis one should have 6, = 0 on the vortex axis, which 
leads to an increase of the dipole energy within the core of 
order 6,. Such a core is unstable against a vortex with 
broken discrete symmetry (parity). Within the core of this 
vortex of the order fo  %g,, the angle 6, = 6, and the A ,  
vector sweeps either the north or the south hemisphere of the 
sphere Sh,,. This double degeneracy results from the 
broken parity. 

The cylindrical domain is the nonsingular line: outside 
the domain the A ,  vector is uniform and perpendicular to 2, 
while inside the domain A ,  has the same structure as I in the 
doubly quantized A-phase vortex; i.e., the integral over the 
cross section of the cylindrical domain 

is an integer topological charge (unity in the simplest case). 
This linear soliton can have an end on the A ,  hedgehog dis- 
cussed in Sec. 5.2 with the same topological invariant. The 
integral (6.2) over the cross section of the soft core of the 
spin vortex is N = 1/2. 

7. CORE STRUCTURE OFTHE SPIN HEDGEHOG: n, 
INSTANTON 

The small-scale singular objects, quantized vortices and 
disclination, are described by the same elements of the ho- 
motopy group n-, as in the stationary B-phase. Therefore in 
cores of these singularities the B-phase is distorted in a re- 
gion of order the superfluid coherence length g. The spin 
hedgehog discussed in Sec. 4 is the only singular object 
whose stability is dictated by the topology of the space R of 
the coherent precession, while from the point of view of the 
B-phase space R this object is topologically trivial. This 
raises the problem of what occurs within the core of the 
hedgehog. Is it possible to construct a state within the core 
without distortion of the B-phase state? This is the problem 
of the interplay of the topological properties of and R. 
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FIG. 4. Bsolitons under coherent Larmor precession. a )  The 
distribution of the vector AB within the conventional soliton 
wall in the stationary state (NPD); the black dots represent 
the termination line of the soliton, the 0 vortex (disclina- 
tion). Here fie changes from AB,, far from the soliton to the 
value AT in the middle of soliton, which is equivalent to 
- AT. The lowest energy is obtained if all A orientations are 

rotated by ~ / 2  in the plane of the paper to obtain the normal 
orientation of A within the soliton wall. b) The soliton within 
the HPD state: HPD penetrates the region of thesoliton wall. 
The spin i (solid arrow) is precessing within the soliton wall 
within the tipping angle which follows the angle B in Fig. 4a. 

H PD Therefore the magnetization is reversed in the middle of the 
soliton compared with its direction in the stationary state. 
The precession of the A ,  vector (dashed line) avoids the low- 
est energy, which is achieved at the normal orientation of A ,  
to thesoliton wall. That is why this soliton should be unstable 
towards the soliton in Fig. 4c. c )  Another case of the soliton 
within the HPD: the HPD does not penetrate the region of 
the soliton wall, and the soliton is actually within the NPD 
region separated by the HPD-NPD interface from the HPD 
in the bulk liquid. The orientation of the A, vector (dashed 
line) is normal to the soliton wall. The magnetization is sta- 

HPD tionary within the soliton, being directed along the magnetic 

b field. The NPD and HPD are separated by the HPD-NPD 
interface. On both sides of interface the A ,  and A, vectors 
form the textures of the thickness {,, . 

Let us first construct an example of the hedgehog with- 
out any singularity in the B-phase order parameter in the 
core; i.e., the order parameter in the core sweeps the mani- 
fold R of the B-phase. It is clear that this spin is not well 
defined at the center of the hedgehog, so the magnitude S ( r )  
of the spin should decrease within the core to zero in the 
center of the hedgehog. If the gradient energy is neglected 
then the spherically symmetric solution for the hedgehog 
including the region of the core is given by 

=On,(&, - o L t )  [soi C O S ( O  ( r ) t )  

+ ^ r B ~ , ( l - ~ o ~ ( o ( r ) t ) ) - e B i h ~  s i n ( o ( r ) t ) ] .  ( 7 .1 )  
In this equation the time dependence contains two different 
frequencies: the Larmor frequency w, and the coordinate- 
dependent frequency w ( r )  = X ,  ' S ( r ) .  

If we now introduce the gradient energy we observe that 
the gradient energy in Eq. (3.1 1 ) diverges with time as t due 

659 Sov. Phys. JETP 75 (4), October 1992 T. Sh. Misirpashaev and G. E. Volovik 659 



to the coordinate dependence of the frequency S( r )/x,. 
This is an example of importance of the stiffness, or rigidity, 
of the ordered system for HPD: the gradient energy of the 
order parameter requires the unique coordinate-indepen- 
dent precession frequency. The quantity Vw ( r )  for the spin 
system plays the part of the gradient of the chemical poten- 
tial for the conventional superflow. It accelerates the spin 
current, and the quasiequilibrium steady-state spin current 
is obtained due to periodic phase slip processes. This ac Jo- 
sephson effect with the spin current was observed within 
HPD in Ref. 23, where the phase slip process was the un- 
winding of 271 in the precession angle a. 

In our case a similar divergence of the energy also can be 
stabilized by a kind of ac Josephson effect, when the phase 
slippage processes reduce periodically the gradient energy. 
One can conclude that within the core the precession with 
the homogeneous frequency is violated, but the periodic mo- 
tion can still survive if the core serves as the source of the 
periodic phase-slip events. We will see now that in our case 
the phase-slip process is described by the homotopy group n, 
in contrast with the conventional phase slip described by the 
homotopy group T ,  of the space of the precession angle a. 

Let us show that two possibilities exist: (i)  The B-phase 
with its order parameter matrix R,, (r,t) is well defined ev- 
erywhere in the core, but the motion is not periodic, since the 
energy diverges with time. The Eq. (7.1) shows an example 
of such a situation. (ii) The motion is periodic in time, but at 
some moments of time there is necessarily a distortion of the 
B-phase state within the core. This distortion corresponds to 
the phase slippage center, an instanton, the object in the 4- 
dimensional space-time with the .rr, topological invariant. 

The topology of the dynamical evolution of the order 
parameter within the core of the hedgehog is defined by the 

FIG. 5. Topology of the periodic phase slip processes in the core of the 
spin hedgehog. Each phase-slip event is represented by the instanton, the 
point in the 4-dimensional time-space S ' x B  ' ,  where B 3  is the core of the 
hedgehog, and S ' is the periodic time interval of the length T = 2n/w, .  
The instanton is described by the integer topological charge of the nontri- 
vial mapping of the three dimensional spheres3 around the instanton into 
the order parameter space SOY'. 

mapping of the Cdimensional space-time into the order pa- 
rameter space. Outside the core of the hedgehog the motion 
is periodic in time; therefore the appropriate space-time 
manifold surrounding the hedgehog isS ' x S 2, withS ' being 
the circumference of the time in the periodic process (see 
Fig. 5) .  So outside the core we have some mapping ofS ' x S 
into the space R of the B-phase. We must find o ~ t  if it is 
possible to construct a nonsingular solution for the R matrix 
within the core, i.e., without escaping from R. To do this, let 
us introduce the 3-dimensional solid sphere B of the core 
volume bounded by S2 and consider the extension of the 
mapping of S ' X S  into R to the mapping S ' X B into R. 

First we show that the ansatz (4.6) corresponds to the 
topologically nontrivial mapping of this 3-dimensional 
space-time S ' xS2 onto the SOY' space of the order param- 
eter matrix R,, (i.,t). The topological invariant (degree of 
this mapping) can be represented in the form of an integral 

where T = 271/w is the periodic of precession, SO the infin- 
itesimal angle of solid rotations of the R matrix: 
SR, =SO X R,. It follows from the direct calculation that 
N = 1 for the ansatz (4.6) describing the hedgehog with unit 
topological charge (4.3) [in the general case N equals the 
topological invariant (4.3) of the hedgehog]. This implies 
that the ansatz (4.6) cannot be continued to get the periodic 
solution into the entire core volume without escaping from 
R. Therefore we have either ( i )  or (ii). 

Let us first consider the case ( i ) ,  the aperiodic process 
without singularities. Instead ofS  ' X S  of the periodic pro- 
cess we have now [0,T] XS 2-the lateral surface of the 4- 
dimensional cylinder over B in the space-time whose bases 
are the core volumes at t = 0 and t = T (Fig. 5 ) .  Topologi- 
cally the boundary of this cylinder is the spheres 3. Since we 
assume5 here that there was no singularity in the B-phase 
matrix R within the core, the mapping S -+ R should be tri- 
vial. Hence the integral giving the degree of this mapping 
vanishes. This integral decomposes into a sum of the integral 
over the lateral surface (7.2) and the difference of integrals 
over bases I, = - I, = ,  . Therefore in the absence of singu- 
larities in the B-phase order parameter one has 

- \' drde&)and edv60 x a66e = - I .  
i=o 

(7.3) 

From this equation it follows that as the subsequent times 
t = nT the integral over the core region is 11, = ,,. I = n; i.e., it 
increases with time. So this is the aperiodic process ( i )  in 
which the core energy increases with time. 

For the periodic process (ii) one should have 
I, = = I, = , , so their difference does not cancel the integral 
in Eq. (7.2) and the mappings -+ R has the winding number 
N = 1. This means that there is a singular point in the 4- 
dimensional space-time of the core where the B-phase order 
parameter matrix is not well defined. This point, the instan- 
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ton, has the IT, topological invariant N = 1. This number is 
obtained as the integral in (7.2) taken over the S3 sphere 
around the instanton. These instantons realize the phase-slip 
processes at some times t, = to + nT. In such a process the 
gradient energy, which monotonically increases with time 
between the instantons, jumps down. This is the first exam- 
ple of the phase slippage center in condensed matter which is 
the point in Cdimensional space-time. 

Now we briefly discuss how the transition from the re- 
gion ( i )  (the gradient energy growth) to the regime (ii) (the 
periodic motion) can occur when the inverse gradient ap- 
proaches the coherent length g. If we start with I, =, = 0 in 
the process (i), then the evolution of the invariant according 
to Eq. (7.1) is II(t = nT) I --n, and the characteristic gradi- 
ent is -n1I3 /L, where L is the initial core radius. Thus the 
transition between the regimes occurs at no = (L /6),9 1. 
Since the value no at which the phase slip process starts is 
large, the instanton process of the phase-slip, which leads to 
no-no - 1, practically does not reduce the gradient energy. 
This means that in the steady-state periodical regime (ii) 
with the phase slip, there is a large nonzero average value of 
the topological invariant ( I ( t ) )  -no. This corresponds to 
the nonzero value of the electric current in the ac Josephson 
effect in superconductors. 

The large value of the average topological charge im- 
plies that the typical gradients in the core are of order 6- ' ; 
i.e., the hedgehog always has a core of order 6 where the B- 
phase is distorted. Therefore the phase-slip center is a line in 
the Cdimensional space rather than a point. We can con- 
struct an example of such a hedgehog with the core radius of 
order 6. In order to produce the spherically symmetric state 
for the hedgehog one can take as the simplest initial state the 
following stationary spherically symmetric ansatz with zero 
topological invariant: 

S ( r )  = 2H,  Aa;(r,  t) =f ( r )  6.i (7.4) 

with f ( r  = 0) = 0 and f ( r>  R,,, ) = 1. Then,^applying the 
topologically nontrivial global spin rotation R "'(@,8) in 
the precessing frame and the inverse orbital rotation in the 
laboratory frame, one obtains the spherically symmetric an- 
satz with the topological invariant N = 1 outside the core: 

~ ~ ~ ( r ,  t) = f (r)O,p( 2, -6)Lt) ( 6 ~ ~  C O S ( ~ L ~ )  
+&;< (I-cos (aLt) ) -egikrR sin ( a ~ t )  ) . (7.5) 

This order parameter is well defined at the origin since 
f(r  = 0) = 0. 

The function f(r) within the core can be obtained by 
minimizing the Ginzburg-Landau free energy functional, 
which for this oversimplified ansatz is reduced to: 

where the parameters satisfy al-a,-{2, and therefore 
Rcore =6- 

8. DISCUSSION: LARMOR PRECESSION IN OTHER 
SUPERFLUID PHASES 

The same procedure can be applied for the other phases 
of superfluid 3He. To contider the precession of the magneti- 
zation S( t )  and the axis d ( t )  of the magnetic anisotropy in 
the A-phase with the frequency close to the Larmor frequen- 

!y one should start with the initial state, at which the 
d 'O' = ilHoIIP: 

Application of the symmetry operation SO: of the spin 
rotations in>he precessing frame leads to the following time- 
dependent d ( t )  and spin: 

d, ( t )  = oap (2, --at) ~ J l ' j f ) , , ,  ( 2 ,  ot) ar), (8.2) 
S, (t) = 0afi (2, - ot) R ' : ; ~ ~ . , I ~ , , .  (8.3) 

Thus instead of the sphere S of the 2 vector in the conven- 
tional stationary state of the A-phase the precess&g states 
are degenerate over the SO, space of the matrix R ( I '  (the 
spin-orbit interaction is negl5cted). 

This SO, space of the R 'I '  matrix is reduced by the 
spin-orbit dipole interaction: 

The equilibrium state chosen by the dipole interaction de- 
pends on the angle A of the i vector with respect to magnetic 
field H,. This angle can be regulated in the parallel plate 
geometry.I4 After averaging Eq. (8.4) over the period of 
precession one has 

From Eq. (8.5) it follows that at A < ~ / 4 ,  the HPD 
state is preferable to the NPD state. The equilibrium tipping 
angle of the precessing magnetization is 

For A = 0 the solution for the precessing state was obtained 
in Ref. 24. 

For the larger angles A >  IT/^ the NPD is the equilibri- 
um state; i.e, the HPD state is unstable against NPD. This is 
in agreement with instability of the HPD at A = ~ / 2 ,  found 
in the A-phase both theoreticallyz5 and e~~erimental ly. '~  SO 
in the A-phase it is the dipole energy which discriminates 
between the HPD and the NPD, while in the B-phase the 
dipole energy is the same for both states and it is the spectro- 
scopic energy term which discriminates between these 
states. 

A similar situation occurs in the A,-phase, in the A- 
phase close to the A ,  transitionz7 and also in solid 
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APPENDIX A 

Symmetry of the Lagrangian 

The magnetic field plays the part of the time component 
of the SO: gauge field, so the kinetic term in the Lagrangian 
expressed in terms of the order parameter field contains the 
covariant derivative: 
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where R, = Rai, and the covariant derivative is 

In the matrix notation 

the kinetic term is 

The factor in the kinetic term in Eq. (A1 ) is chosen so that in 
the equilibrium state where the order parameter is time-in- 
dependent, the Lagrangian gives the correct value for the 
energy of the system in an external magnetic field: 

L,q=-l/,~sHZ+F (Ri) . (A51 

The potential energy includes the dipole energy ( 1.7) 
and the gradient energy (3.11). In the gradient energy we 
distinguish here between the isotropic and anisotropic parts: 

(A61 
[in the Fomin notation we have: cf,,,, = c :  and 
c:Fomin = $ (c: + ci ) 1. 

Different terms in the Lagrangian (A 1 ) have different 
symmetry. 

Local gauge symmetry 

The Lagrangian F,,, + L,,, displays local gauge invar- 
iance: the gauge transformation which leaves this Lagran- 
gian invariant, 

A 

also includes the change in the magnetic field. Here O(t) 
depends only on t. This invariance is the manifestation of the 
Larmor theorem, which usually corresponds to special case 
of gauge transformation: rotation with constant angular ve- 
locity 

The spin-orbit coupling violates the gauge invariances in 
E ~ s .  (A7)-(A8). 

The following symmetry operations which do not 
change the magnetic field are important. 

Z2 symmetry 

The Lagrangian F, + F i  + Lkin displays the following 
invariance. First we transform 

At this transformation FD + F i  does not change while the 
kinetic energy becomes 

yhere the covariant derivative is characterized by the matrix 
H on the right, in contrast with the initial energy on the left. 
To obtain the same Lagrangian this transformzition should 
be supplemented by the transposition of matrix R, i.e., by the 

interchange of the spin and orbital indices, and by the substi- 
tution t+ - t. So the discrete Z2 symmetry Pof the Lagran- 
gian is 

with P2 = 1. 
T g s  symmgry ope~ation transforms the given NJD 

state (R ': = 1,R:2' = R,) into the HPD state with R "' 
= 1 and R ' I '  = R ; '. Therefore most of the properties of 

the HPD state can be mapped from that of the corresponding 
stationary state. In particular the collective modes spectrum 
superposed on the HPD can be obtained from the spin-wave 
spectrum of the corresponding NPD (see Appendix D). It 
also transforms the spin degrees of freedom to the orbital 
ones and vice versa. In particular, the spin density Eq. 
(B2) is transformed into the orbital momentum L = R S in 
the precessing frame: 

PS(t)=O-'(2, o,t)L(-t), PL(t)=O-'(A, o,t)S(-t). 

(A121 

The hidden Z2 symmetry of the Lagrangian results, in 
particular, from the specific form of thz dipole energy, which 
depends only on the trace of matrix R. Such a form occurs 
only in the limit of small ratio w L / A B  91,  i.e., when the 
isotropic B-phase state is not distorted by the magnetic field. 
For the spatially inhomogeneous case, when the order pa- 
rameter gradients become important, this invariance is vio- 
lated by the anisotropic part of gradie~t energy, which cou- 
ples the orbital rotation of the matrix R with the coordinate 
transformation. 

G SYMMETRY 

The Lagrangian F, + L,,, displays the invariance un- 
der the global group in ( 1.1 ) which we primarily exploit. 
The global SO: transformation is 

A 

where 0(4,w, t)  is a rotation with exactlylhe Larmor fre- 
quency about the direction of the field, and R "' is a constant 
rotation matrix. The global SO$ transformation is 

A 

where R '*' is a constant rotation matrix. 
For the most isotropic Lagrangian Fd + L,, the SO$ 

transformation extends to SO$ '"'X SO4 "', which contains 
the s y m ~ e t r y  SO: '"' under the isotopic orbital rotation of 
matrix R and the separate symmetry SO$:' unier the coor- 
dinate transformation. The element g(R "',R ' 2 ' )  of the 
symmetry SO: X SO$ '"' is thus 

g(IYi), a(=') a=s-' (6, @Lt) A'"0 ( 2 ,  oLt) A 

From Eqs. (A15) and (A1 1 ) it follows that 

Dynamic and staticsymmetries 

It is important that the symmetry group of the physical 
laws could be different for the Lagrangian (A1 ) and for the 
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free energy (A5). In the freeznergy (A5) there is no interac- 
tion of the order parameter R with the magnetic field due to 
the isotropy of the magnetic susceptibility of the B-phase in 
the limiting case of w,/A, 9 1. The interaction term 
- a(H.it ) 2  is of order (@,/A, and may be ne- 

glected. The interaction between the order parameter and 
magnetic field appears only at the dynamical level where it is 
manifested by the covariant derivative in the kinetic term. 

APPENDIX B 

Leggett equations 

The equation obtained from the Lagrangian ( A l )  is 

This equation, which is of second order in the time deriva- 
tive, corresponds to two first order Leggett equations if one 
introduces the spin density 

Substitution of Eq. (B2) into (Bl )  gives the first Leggett 
equation for the magnetization: 

while the second Leggett equation for the order parameter is 
obtained from Eq. (B3) if one solves this equation in favor of 
d, R, : 

APPENDIX C 

Spectroscopic term 

The kinetic term in Lagrangian (A1 ) gives the spectro- 
scopic term (3.1) if o# H. After substitution of Eq. (2.5) 
with o#H into the kinetic term of the Lagrangian one ob- 
tains 

D t B = ( [ ' " ~ ]  -lj) a+ 6-',"'6['n6)] (A1'))-' ,  

L t ~ n = ~ - ' / ~ ~ ~ [  ( C I ) - H ) ~ + W ~ ]  

-'12xB T I . ( [ ' " ~ ] - A ) ~ ( ' '  [ l 'L~](a( i ' ) - l ,  (c1) 

where imw] is a matrix associated with the vector o: 
["o], = eaDp , .  The second term is transformed to 

which is the so-called spectroscopic term. When w is close to 
w, this coincides with Eq. (3.1 ) . 

APPENDIX D 

Collective modes of Larmor precession 

The collectiv~modes are2he oscillations of the degener- 
acy parameters R (I' and R "' superposed the Larmor 
precession. If one neglects the anisotropic part of the gradi- 
ent energy, one can use the Z,  symmetry in Eq. (A1 1), 
which relates the HPD and NPD states. From this symme- 
try it follows that the spectrum of the collective modes su- 
perposed on the HPD is the same as the conventional spec- 
trum superposed or, the stationary state if one takes the same 

condition for the vector A in both cases, e.g., AlH. The spin- 
wave spectrum superposed on the stationary state is given by 
equation 
( w 2 - C 2 y Z )  J-(02-C:4:) 21 2 LZ 

where c = c,, = c, for our case of the isotropic gradient ener- 

gy. 
In the limit of small Cl,/w, 9 1 one obtains three 

branches of oscillations on the background of NPD: ( i )  the 
branch corresponding to the transverse NMR 

(ii) the branch corresponding to the longitudinal NMR 

of,,, (NPD) = Q , ~ & ~ ' + C ~ ~ ' ,  (D3) 

and (iii) the branch of the "orbital waves" 

All this coincides with the spectrum of oscillations su- 
perposed on HPD found in the precessing frame by Fo- 
min, 16-17 who also observed the similarity in the spin-wave 
spectrum superposed on the HPD and NPD states. We 
stress that this similarity is the result of the Z ,  symmetry of 
the Lagrangian. Under this symmetry operation the orbital 
and spin vectors, however, are interchanged. This means 
that the Goldstone modes in the precessing frame are trans- 
formed into Goldstone modes in the laboratory frame and 
vice versa (see Fig. 6). So the spectrum of the orbital waves 
superposed on the HPD is given by Eq. (D2) with the shift- 
ed frequency 

In the same manner 

These oscillations in the background of HPD have been ob- 
And finally, the longitudinal NMR has the same 

frequency in the precessing and laboratory frames and one 
obtains 

The Eq. (D5] for the spectrum of the low frequency 
oscillations of the 1 vector, the orbital waves, superposed on 
the HPD will be obtained directly now in order to show the 
consistency of the approach based on the Z2 transformation. 
To find the2rbital waves let us introduce the time-dependent 
deviation R "' - 1 into the Lagrangian (A1 ) . The main 
contribution to the kinetic term is given by the first-order^ 
term in the time derivative, yhich in terms of the deviation SI 
from the equilibrium value I,, = P is 

The potential energy is the dipole interaction (2.12), which 
fixes I,, = 2 in the HPD state, and the gradient energy: 

663 Sov. Phys. JETP 75 (4), October 1992 T. Sh. Misirpashaev and G. E. Volovik 663 



NPD HPD 

I I I 
I 

I 
I 16'~ I I 
I I 

I I I 

I I 
1 , O  orb (lab) 

! I I 
I I 

FIG. 6. Schematic presentation of the mapping between the collective 
modes in the nonprecessing state (NPD, Fig. 6a) and precessing state 
(HPD, Fig. 6b) caused by the 2, symmetry of Lagrangian. If the angle 0 
between directions of spin ? and orbital I momenta is the same for both 
states, then the frequencies of the collective modes in the background of 
the HPD state, considered in the precessing frame (labeled by the letters 
"pr" in brackets), coincide with the frequencies of spin-wave modes su- 
perposed on the corresponding NPD. The frequencies of the HPD excita- 
tions measured in the laboratory frame are shifted by the Lamor  frequen- 
cy o,, as shown; they are labeled by letters "lab" in brackets. 

The variation of ~ ( i )  = (D!) + (D9) leads to the equation 
for the orbital dynamics of I: 

which gives the spectrum of the orbital waves 
52,2+2c"2 

Worb = 
2% - ( D l  1) 

This coincides with (D5) if one takes it: = 1 in Eq. (D2). 
The orbital wave spectrum has a dipole 4ap due to the dipole 
interaction which fixes the equilibrium I,, = 2 in the HPD. 

APPENDIX E 

Topology of RD 

Here we calculate the homotopy groups for the space 
R,, which is the total degeneracy space with the dipole in- 
teraction taken into account. It follows from (2.13) that the 
problem can obviously be reduced to that for the bundle 
R (S: ,S t ) of two spheres S 2 and S 2, with two equivalent 

points N, = N, = N, S, = S, = S (Fig. lb ) .  The homotopy 
groups of R ( S  2 ,S ) can be calculated with the aid of a uni- 
versal covering." The universal covering space %' over 
R (S J; ,S ) is an infinite chain of spheres 

each sphere S :  touches two neighboring ones S:  _ , and 
S: + , at the points A, and A, + , respectively (Fig. lc) .  Un- 
der the projection of the covering p: V + R (s; ,S i ) the 
spheres with odd numbers are mapped into (say) S t ,  while 
the spheres with even numbers are mapped to another sphere 
S t .  All the points A,, + , , k€Z are projected to S and the 
points A,,-to N. One obtains 

the generator a of this group being represented by a projec- 
tion of any path y,  connecting A, and A,. The element 
naea, (R(S:,St ) )  is represented then by a projection of 
any path y, from A, to A,, . 

Since %'is homotopically equivalent to a bouquet of an 
infinite number of spheres, the second homotopy group 

n, ( R ( S 2 ,  Sh2) )=n2 (V) =Zm 032) 

turns out to be infinite-dimensional. Apart from the obvious 
generators a, and 8, represented by the spheres S: , S i re- 
spectively, there arise two series of generators 
a, = a, + ka; fl, =Po + k a  corresponding to projections 
of all the spheres entering the bouquet (e. 

In the presence of a linear singularity the turn of a given 
pointlike singularity transforms it into another one. This 
transformation is called the action of n-, on n-,. Equation 
(E2) does not imply the existence of an infinite number of 
types of singularities because when n-, acts nontrivially on a, 
such singularities are classified by the orbits of this action 
rather than by a, itself." In our case the turn around the 
linear singularity k a  transforms the generators of 
?r,(R ( S  2, ,S 2, ) ) as follows: 

a o + n o u a o +  (n+k)o, 

~o+no. - t~o+(n+k)o .  

Hence this action effectively reduces the number of genera- 
tors of n-,(R (St ,S t  ) ) leaving only two integer indices. 
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