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We investigate the channeling of propagating waves with frequencies in the whistler range within 
density ducts in which the plasma density variation transverse to an external magnetic field is 
nonmonotonic. Such structures arise near a radiator in a magnetized plasma as a result of thermal 
nonlinear effects. In such plasmas two independent modes of waveguide propagation are 
observed: in one, the field is concentrated in the central part of the channel, where the plasma 
density is lower than the background density, while the field of the other is largest near the central 
part of an annular layer whose density is higher than the background. We have carried out 
detailed phase and amplitude measurements of the fields of these waves. Based on experimental 
data and the results of theoretical calculations we have established that channeling of conical 
refraction waves occurs in the rarefied plasma region, while channeling of whistlers occurs in the 
layer with increased density. We show that under certain conditions leakage of energy from the 
high-density duct is extremely small when the latter has a width comparable to the wavelength of 
a whistler. We compare the results of our theoretical calculations with the experimental data. 

1. INTRODUCTION 

A large number of papers (see, e.g., Refs. 1-5) have 
dealt with the problem of guided propagation of whistler- 
frequency electromagnetic waves in density ducts of a mag- 
netoactive plasma under the conditions 

(here w,, is the lower hybrid frequency and a,, w,, are the 
gyrofrequency and plasma frequency of the electrons respec- 
tively ). As a rule, the ducts under study have widths that are 
large on the scale of the propagation wavelength, with 
smooth plasma density profiles N, that permit investiga- 
tions of the dispersion properties and eigenmode fields of 
such channels using either the parabolic equation method2 
or the WKB approximation.3 

Recently, there has been considerable interest in the 
distinctive features of guided propagation of whistler waves 
in ducts with nonmonotonic variations in the plasma density 
N, in the transverse directions. Such channels can arise in a 
magnetized plasma near antenna structures due to thermal 
nonlinear effects."' Laboratory experiments have shown"' 
that when sufficiently high levels of high-frequency power 
are fed to an antenna, a nonuniform channel forms which 
extends along the external magnetic field, within which the 
plasma density falls below the background value. This chan- 
nel is caused by heating of the electrons in the near field of 
the antenna, which gives rise to a thermal-diffusion-driven 
redistribution of near the radiator. As the channel 
with decreased plasma density N, forms, it is accompanied 
by a surrounding annular layer with a plasma density higher 
than the background. The goal of this paper is to investigate 
experimentally and theoretically the channeling behavior of 
whistler waves in such plasma structures. 

It is found that two types of guided whistler mode prop- 
agation are possible in these structures: localized modes, 
whose fields are concentrated in the vicinity of the low-den- 
sity plasma, and quasilocalized (slightly lossy) modes 

whose fields are concentrated in the vicinity of the annular 
layer. 

Recall that whistler mode energy leaks from a high- 
density duct as a result of the linear conversion of whistlers 
into fine-scale waves whose propagation is not supported in 
such channels.'s3 Our interest here is primarily in "narrow" 
channels with widths a <A,  (where A, is the wavelength of 
a whistler propagating in the waveguide), for which the 
WKB approximation, which is used in the majority of papers 
dealing with channeling of whistlers in density ducts (see 
Ref. 3 and the literature cited therein), is not appropriate. 
We note that the dispersion properties and fields of guided 
modes in "narrow" ducts with increased plasma concentra- 
tion form a topic of interest in its own right, which has not 
received enough attention. In this paper we show that when 
the condition w H e / w s  1 holds it is possible for slightly lossy 
whistler modes to exist in channels with increased density, 
provided that the characteristic transverse scales of confined 
and lossy waves are significantly different. 

A further feature of the case we treat here is that the 
scales of longitudinal waves confined to the lower-density 
channel differs markedly from those of waves confined to the 
higher-density annular layer. In our experiments the condi- 
tion wHe/w% 1 was well satisfied, in contrast to the experi- 
ments of Refs. 4 and 5; this allowed us to observe channeling 
of various types of whistler-frequency waves excited by an 
antenna in the nonuniform plasma. 

2. EXPERIMENTAL RESULTS 

Our experiments were carried out in a vacuum chamber 
150 cm in length and 80 cm in diameter. An argon plasma 
was created at a pressure p, = 5.10 - Torr by a high-fre- 
quency pulsed discharge in a .  uniform magnetic field 
H, = 240 G; this plasma was shaped like a quasiuniform 
column of length 100 cm and diameter 40 cm. Under the 
conditions of our experiment the electron temperature T, 
and ion temperature Ti in the unperturbed plasma column 
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coincided and came to T, z T, ~ 0 . 4  eV. The antenna, which 
was a loop of radius a, = 2.5 cm, was placed on the axis of 
the column, with the plane of the loop perpendicular to the 
external magnetic field. After switching off the pulse source, 
during the decay stage of a plasma with density N, ~ 4 . 1 0 "  
cm - ' (characteristic decay time T, z 2 msec) a high-fre- 
quency voltage was fed to the antenna with fixed frequency 
GI = 3.9- 108sec - I, amplitude U = 2 to 150 V, and length up 
to 7, = 2 msec. 

The background plasma density was monitored within 
the time of the experiments using a microwave interferome- 
ter (with wavelength A, = 8 mm). The density perturba- 
tions in the vicinity of the antenna zone were measured by 
movable double and resonance microwave probes.' The spa- 
tial distribution of electromagnetic fields was investigated 
using a movable frame antenna (radius a ,  = 0.5 cm). In 
order to eliminate the dependence of the input impedances of 
the transmitting and receiving antennas on processes con- 
nected with precipitation of charged particles onto their sur- 
faces, the antennas were covered by an insulating layer.9 To 
study the spatial spectrum of the electromagnetic waves ex- 
cited in the plasma, we used an interferometric method in 
which signals from the receiving antenna and excitation os- 
cillator were fed to a balanced mixer (through a directional 
coupler) whose output signal A = A ,  cos q, allowed us to 
study the amplitude A, and the phase q, of the propagating 
wave. 

The experiments were carried out with both linear and 
nonlinear power levels P fed to the antenna. In the linear case 
(P<2 W) there was no density perturbation, and electro- 
magnetic waves excited in the uniform plasma (N, 5 4.10" 
cmP3  and w,,a,/c) 1, where c is the velocity of light in 
vacuum) propagated from the source along the external 
magnetic field H, = Hozo. Results of the corresponding 

FIG. 1 .  Results of phase measurements of the field in a channel at time 
r = 500 psec (the amplitude of signal A is proportional to the quantity 
(H,~'):a-r=0cm(P<2W),b-r=0cm,c-r=2cm,d-r=7cm 
(for curves b through d, P = 80 W ) .  

FIG. 2. Spatial distribution of the plasma density perturbations AN, at 
time T = 500psec (N, < 4.10'' c m ' ,  P = 80 W ) .  

phase measurements, which were carried out as the receiv- 
ing antenna was moved along the system axis r = 0 (the ac- 
tual function was A (z) = A, cos k,z, where k, was the longi- 
tudinal wave number) are shown in Fig. la. It is clear from 
Fig. l a  that in the linear case the wavelength of the wave 
propagating in the plasma was A, z 6 cm, while its amplitude 
fell off as z - ' with distance z from the source. 

For sufficiently high power levels fed to the antenna 
( h 8 0  W) the electron temperature near the radiator 
showed a marked increase due to ohmic heating of the plas- 
ma in the quasistatic field of the loop (the same as in the 
experiments of Refs. 4-7); at T = 500,usec after the start of 
the high-frequency voltage pulse, this temperature reached a 
value of T, z 1.5 eV. As a result of electron heating and the 
thermal-diffusive redistribution of the plasma connected 
with it,' a perturbed density profile formed near the axis of 
the system (Fig. 2).  It is clear from Fig. 2 that the perturbed 
density distribution was characterized by formation of a 
channel with decreased density on the axis of the system and 
an annular layer with an enhanced density surrounding this 
channel. 

Measurements of the spatial distribution of the fields 
showed that the picture of electromagnetic field propagation 
is more complicated in the nonlinear case than it is at linear 
power levels. Near the channel with reduced plasma density 
we recorded guided propagation of electromagnetic radi- 
ation with a longitudinal wavelength on the order of A ,  z 9.5 
cm. Evidence of this is apparent in the phase measurements 
shown in Fig. lb,c, which were carried out with the receiving 
antenna fairly close (r<2 cm) to the system axis. Guided 
propagation of electromagnetic radiation was also observed 
in the region of enhanced plasma density ( r z 7  cm). The 
longitudinal wavelength in this case came to A, 5 5.5 cm 
(see Fig. Id, for 20 cm <z  < 30 cm). 

The creation of waveguide channels at nonlinear power 
levels was confirmed by the structure of the equiphase lines 
in the perturbed plasma (Fig. 3 ) .  From Fig. 3 it follows that 
the waves trapped in the region with decreased plasma den- 
sity had phase velocities that were almost perpendicular to 
the external magnetic field H,, while in the channel with 
increased density the phase velocity of the trapped waves 
was almost parallel to the field H,. We note that analogous 
effects, i.e., spatial separation of various types of waves in the 
whistler region, were observed experimentally in Ref. 4 at 
linear power levels within a nonuniform plasma with a spe- 
cially selected density profile. 

626 Sov. Phys. JETP 75 (4), October 1992 Zaboronkova eta1 626 



FIG. 3. Equiphase curves in the channel at time 7 = 500psec for an input 
power P = 80 W (the phase shift between adjacent curves is Aq = a). 

The differences in character of the propagating electro- 
magnetic waves in the linear and nonlinear cases are easy to 
trace by comparing the amplitude distributions of the fields 
in planes perpendicular to the system axis. In Fig. 4 we show 
the dependence of the squared amplitude of the longitudinal 
field component Hz on the transverse coordinate ra t  various 
distances z from the source. At linear power levels unchan- 
neled propagation of waves occurs along the external mag- 
netic field and we observe a characteristic distribution of 

\Hz l 2  with a maximum on the axis r = 0 (Fig. 4a). At non- 
linear power levels additional maxima and minima appear in 
the transverse distribution IHz I*, which corresponds to the 
structure of the fields of the corresponding guided modes 
(Figs. 4b-4d). Close to the antenna (Figs. 4b, 4c) it is easy 
to see the field of a mode trapped in the lower-density chan- 
nel; also noteworthy is the increase of the field at r z  5 cm, 

corresponding to a mode trapped in the annular layer (Fig. 
4c). As the point of observation moves away from the source 
the channel "collapses" with decreased plasma density, the 
maximum of the wave field for the wave trapped in the annu- 
lar region becomes more noticeable (Fig. 4d: r z 4  cm). As 
the distance from the source increases (z > 30 cm) the den- 
sity perturbation gradually decreases and the waveguide 
propagation ceases. 

We studied the phenomenon of waveguide channel for- 
mation due to nonuniform variation in the plasma density in 
the transverse direction at various levels of high-frequency 
power. It is noteworthy that even rather small modulations 
of the plasma density (less than 10% of the background val- 
ue) led to the creation of such waveguide channels. 

We can find a qualitative explanation of the experimen- 
tal results by analyzing the form of the whistler wave refrac- 
tive index surface of a uniform plasma. Recall that in our 
case the dielectric permittivity tensor of a cold collisionless 
magnetized plasma H, llz, ) can be written as  follow^:'^ 

where 

In this case only an extraordinary wave can propagate, 
whose refractive index surface is described by the expression 

This is shown in Fig. 5 for three values of the density Ne : No, 
N, , NB, where No < N, < N, . Here the quantities q and p 
denote components of the wave vector k = k, + k,, z, nor- 
malized by k, = u/c, i.e., its longitudinal p = k,, /k, and 
transverse q = k,/k, components, in a uniform plasma with 
density given by Ne = mu2v/(4re2); the branch q, corre- 
sponds to the whistler wave characteristic, while branch q2 
describes quasielectrostatic waves (for p2 4 v/u ); the re- 
gion g, z q ,  (p2 = ?: = 4 v / ~ )  corresponds to conical re- 
fraction waves. 

At linear power levels we have N, = N, (v = v, ) and 

FIG. 4. Spatial distribution of fields in the channel at time 7 = 500psec at FIG. 5. Refractive index surface for various values of the density. 
various distances from the source: a - z = 10 cm (PC 2 W), b - z = 10 I-N1 = 4.8. 101Zcm-3,2-N, = 4. 1012cm-3, 3-No = 3 .2  1012 cm-3; 
c m , c - z = 2 0 c m , d - z =  30cm (forcurvesbtod,P= 80W). herew = 3.9108sec-',w, =4.2. 109sec-' (H, =240Oe). 
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the condition koao uA'2 $1 holds. Under these conditions, a 
loop of radius a, should be most effective in exciting those 
whistler waves with propagation constants p 5 9, where 
9 = [ ~ , / ( u ' / ~  - 1 ) ] I/* is the dimensionless propagation 
constant of a whistler along the external magnetic field in the 
uniform background plasma. The longitudinal wavelength 
scale observed in experiment R = 6 cm (p = 80.6) is in good 
agreement with the theoretical estimate 9' = 90 
(NB = 3.8. 1012 ~ m - ~ ) .  

For a plasma with a perturbed density profile, it follows 
from analysis of the refractive index surface that in the chan- 
nel with the decreased density Ne =No localized (non- 
lossy ) waves can propagate when the condition 

holds, while in the annular layer with increased density 
Ne = N, propagation of quasilocalized (slightly lossy) 
waves is possible (v , ,  = vBNo,, /N, ) under the condition 

The wavelengths measured under our experimental condi- 
tions (No -3.2 1012 cm- ', N, ~ 3 . 8 .  1012 cm- 3, N, 24.0 
1012 ~ m - ~ ) ,  i.e.,A, =9.5 cmandR, <5.5 cm (p, = 50.9, 

p, = 91.3) satisfied relations (4) and (5) respectively. This 
shows that at these nonlinear power levels we actually were 
observing the formation of waveguide channels for the two 
types of wave. 

More specific and refined conclusions can be drawn 
based on the results of rigorous theoretical calculations. 
Here linear theory is sufficient to describe the distinctive 
features of channeling of whistlers, since the creation of the 
nonuniform density profile is not associated with the propa- 
gation of whistler waves, which have rather small ampli- 
tudes, but is rather a result of the nonlinear interaction of the 
strong quasistatic antenna field with the plasma.' 

3. THEORETICAL CALCULATIONS 

1. Consider a cylindrical plasma column oriented along 
an external magnetic field H,. The components of the fields 
of axially symmetric eigenmodes guided by the plasma col- 
umn, which is nonuniform in radius, can be obtained from 
the following system of equations 

H=iko-' rot E, 

where h = kop is the propagation constant of a mode in the 
channel, r, p, z are cylindrical coordinates, and 

we assume that all fields are proportional to exp(iwt - ihz). 
Let us limit ourselves to the simplest model of the plas- 

ma density profile in the column: Ne ( r )  = No, v(r) = u, for 
r < d, Ne (r)  = N, , v(r) = U ,  for d < r < d + 2a, 
Ne(r)  = NB, v(r) = U, for r > d  + 2a; here No,, , N,, v , , ,  
and v, are constants such that No < N, < N, (v, < v, < v, ). 
It is not difficult to show that when condition (4) and 
k,alIm qIz (p,vI ) 1 )  1 hold, it is sufficient to consider the 
simpler density profile N, ( r )  = No, v(r) = vo for r < d ,  
N(r) = N, , ~ ( r )  = U, for r >  d to describe the dispersion 
properties and eigenmode field structure for the modes lo- 
calized in the region of low-density plasma. In this case the 
solution to Eq. (6)  can be written in the following way 

a)  r c d .  

where 

here J,, (6) and K, ( c )  are the Bessel function and modified 
Bessel function of the second kind, respectively, and A ,  and 
B, are constants. 

From the condition of continuity of the tangential field 
components at r = d we can obtain the following dispersion 
equation for the eigenmodes of the waveguide, which are 
valid for the case of channels with both increased and de- 
creased plasma density:" 

Here 

Equation (8)  coincides in form with Eq. ( 17) of Ref. 12, in 
which an analogous problem was considered. However, 
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4 arb. units n, arb. units 

FIG. 6. Distribution of the field components in the trans- 
verse direction for the lowest mode in the channel with 
decreased plasma density: o = 3.9.10' sec- I ,  

o, = 4.2. lo9 sec- I ,  d = 3 cm, No = 3.2. lo1* cm-', 
N, = 4.8. 1012 cm-'. 

there was some imprecision in the expressions used in Ref. 
12 for the coefficients C, ,  which greatly affected the results 
of the solution to the dispersion equation (especially for 
channels with increased plasma density). 

The dimensionless propagation constants p for wave- 
guide eigenmodes ar: roots of the dispersion relation (8),  
which in the general case must be investigated numerically. 
For the fundamental mode of the low-density cylindrical 
waveguide, at the pre-specified values w = 3.9.10' sec-', 
w, = 4.2. lo9 sec-' (Ho = 240 Oe), No = 3.2. 1012 cm-', 
N, = 4.8. 1012 cm-', d = 3 cm corresponding to the condi- 
tions of our laboratory experiment, numerical calculations 
give p = 48.085 (we also note that the values of the trans- 
verse wave numbers corresponding to this value of the prop- 
agation constant were Q, = 8.89, Q2 = 11.02, 
S, = S: = 7.14 + i. 10.02, and the wavelength in the chan- 
nel A, = 10.06 cm). 

The distribution of field components for this mode 
along the transverse coordinate are shown in Fig. 6. It 
should be noted that the condition k,alImq,,, (p,v, ) I  
= (a/d) Re S,,, % 1 ( a  -d) is satisfied here with a consider- 
able margin, while the propagation constant p lies between 
thevalues Po = 2 ( u , / ~ ) ' / ~  =47.83 and 9, = 2 ( v , / ~ ) " ~  
= 58.59, corresponding to conical refraction waves in a uni- 
form plasma for the given values of the density No and N, 
respectively. The condition pg2(vB/u)  [see (4)  ] also 
holds when the background plasma density NB > 3 . 3  10l2 
cm - (in our experiment N, 5 4. 1012 cm - 3) .  As the width 
of the waveguide d increases the propagation constant of a 
given eigenmode shifts to the value P o ,  while as the channel 
shrinks it shifts to the value 9 

2. We now turn to an analysis of the distinctive features 
of guided whistler propagation in the channel with increased 
plasma density. We begin our considerations with the sim- 
plest case, namely a planar waveguide (layer), since, as we 
will see later, under certain conditions the dispersion proper- 
ties of modes guided by such a layer are in many ways analo- 
gous to those of modes of an annular layer observed in exper- 
iment. We specify the plasma density profile in the plane 
layer as follows: Ne (x)  = N, , v(x) = u,, 1x1 <a ,  
N , ( X ) = N ~ , U ( X )  =us, IxI>u, NB<Nl  (vB<v1) .  

It is well known that eigenwaves of a planar waveguide 
propagating along the z axis whose field does not depend on y 
can be divided into even modes [E, (0) $01 and odd modes 
[E, ( 0 )  = 01. Let us pause for a more detailed study of the 

dispersion properties of the even modes (the odd modes are 
treated analogously). 

The components of the field of an individual even mode 
are written in the following form: 

Ez=v,-' ~ A . E . ~ .  s i n ( k . q , x )  e r p  ( - ihz ) ,  

EIJ=[BI exp (--kosi 1x1 ) f Bz exp ( i k , s 2 ( x l ) ]  e x p  (-ihz),  
E =  - 1  ' 

z VR sign x [ B , n l s l  exp( -k , s ,  1x1) 

where 

qrn2=qrnZ(~, ~ i ) ,  s1'=-qi2(1), vB ), ~ 2 ' = q 2 ~ ( / ) ,  uB 1, 

f i r n= l l r n  ( p ,  U I ) ,  nm=nm ( p ,  uR 1, m= i, 2, 
(10) 

and A ,  and B, are constants. In Eqs. (9), the first term 
(q, ) corresponds to a large-scale whistler trapped in the 
channel, while the second term (q, ) corresponds to fine- 
scale waves that leak from the waveguide. The choice of sign 
of ReS, in (9) ,  i.e., ReS, > 0, is determined by the radiation 
condition corresponding to leakage of energy from the wave- 
guide. The dispersion equation for the even modes can be 
obtained from Eq. (8) if we make the replacements 
J(Q,)-( -ctgQ,>/Q,, K(S,)-S;', K(S2)-iS,', 
uo - v, , u, - v, , and d -. a, and use Eq. ( 10). Due to loss of 
energy the propagation constant p becomes complex: 
p = p t - i p " , ~ " > O .  

Let us show that in certain special cases the losses of 
these waves due to radiation from the waveguide can become 
extremely small, so that p" gp'. Let us consider a region of 
parameter values 

for which the corresponding transverse characteristic scales 
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of whistlers trapped in the channel differ considerably from 
those of the fine-scale waves leaking from the waveguide 
( 19, I ) I q, ( ) for a rather small drop in the plasma density at 
the boundary 1x1 = a. In this case the dispersion equation 
takes the following form: 

where 

A solution to Eq. ( 12) is conveniently sought in the 
formp = 9 + Ap, where 9 is the propagation constant of a 
whistler along the external magnetic field in a uniform plas- 
ma with density N,  When condition ( 1 1 ) holds the quanti- 
ties il (p) and p (p) are small parameters, and 

If Ap is not too small, so that we have 

Eq. ( 12) can be solved quite easily by perturbation methods 
to determine the propagation constantp' (w), along with the 
upperp;,, (w) and lowerp;, (0) boundaries of the region 
in which the whistler damping ratep" (w) for the waveguide 
lies, i.e., p;,,, (w ) <p" ( a )  (p:,, (w ) . It turns out that for 
even modes the maxima and minima of the function p" (w) 
correspond to Re Q, = ~ ( k  - 1/2) and Re Q2 = ~k re- 
spectively, where k = 1, 2 ,... . 

Let us begin by calculating the real part p' of the com- 
plex propagation constant p. For lil (p) I 4 1, Ip (p) 1 4 1, in 
zero-order perturbation theory we obtain from ( 12) the fol- 
lowing equation for the quantity p': 

It is easy to show that Eq. ( 14) has a solution for any 
width of the channel. 

For sufficiently wide waveguides, when 

the so l~ t ionp '~ '  of Eq. ( 14) can be written in the form 

where is the dimensionless propagation constant of a 
whistler parallel to the external magnetic field in a uniform 
plasma with density N, . 

For a narrow channel, when 

only the fundamental mode (n = 0) can propagate, for 
which we have 

In order to calculate the quantities p;,, ( a ) ,  p;,, (o)  
we make a series expansion of the left and right sides of Eq. 
( 12) in powers of Ap'O' = p - p'O' at the pointp = p"' such 
that Re Q2 ( p'"') = ?rk and Re Q2 ( p"') = ~ ( k  - 1/2), as- 
suming that p" 4 [koau"2] - '. Neglecting small terms of 
order ilAp'O' and retaining terms proportional to the first 
power of Ap'O', we find (taking into account the relations 
Iil 14 1, Ipl4 1) that Ap'O' = - ip", and 

where 

Equation (17) implies the inequalities p;,, <pry p:,, 
( [ k g ~ ' / ~ ] - ' .  From (18), when (u,/v, - 1 
(2y( ~ ' O ' / U ' / ~  w e find that p;,, (p', pi,, 4 [ k , a ~ " ~ ]  - I ,  

and 
Thus, under the conditions ( 11 ) and Re Q, > ~ / 2  the 

leakage of energy from a waveguide with increased density 
turns out to be very slight (even in the case of a rather nar- 
row channel, i.e., k , a 9  5 1 ), while the dependence of the 
damping rate p" (w) on frequency has a pronounced reso- 
nant character. This character of the functionp" (w) may be 
interpreted as a resonance of the fine-scale waves caused by 
their multiple reflections from the boundaries of the wave- 
guide 1x1 < a. If we choose a smooth profile N, ( x ) ,  the re- 
sonances of the functionp" ( 0 )  are smoothed out. Note that 
the behavior of the functionp" (w ) for odd modes of a planar 
waveguide is analogous to the function p"  (w) for even 
modes, with the only difference that in the case of odd modes 
the maxima and minima of the quantityp" ( a )  correspond to 
the conditions 

Re Q,==nk and Re Q2=n(k-I / , ) ,  k = l ,  2,  . . . 
There is one important difference between the disper- 

sion properties of even and odd modes of a planar wave- 
guide. For even modes, in contrast to odd modes, there is no 
minimum critical value for the channel width. This implies 
that even as a -. 0 (in this case Ap +O, S, -0) a single slight- 
ly lossy mode can still propagate in the planar layer. In fact, 
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ass-0 (IQ, I < /Q21g1) Eq. (12) has thesolution 

where 

Solution ( 19) is valid under the condition 

which [see ( I ) ]  can be fulfilled even for a rather small 
dropoff in plasma density in the channel (v ,  > v, ). Addi- 
tional analysis shows that Eq. (20) is the condition for the 
existence of a weakly damped mode in a planar layer with 
thickness a -0 for all frequencies w that satisfy the inequal- 
ities w,, g w  < w,/2 g w,, [compare with ( 1 ) 1. The solu- 
tion ( 19) matches the results of Ref. 1, whose authors were 
the first to investigate energy leakage from narrow wave- 
guides with increased density. In contrast to our paper, only 
the special case /Q,,, 141 was investigated in Ref. 1, for 
which the whistler damping rate was determined numerical- 
ly." 

The results obtained above apply to the case v, 2 v,. 
However, it can be shown that slightly lossy whistler modes 
also exist in channels that are narrow on the scale of the 
propagation wavelength (k0ap1< 1 ) with an appreciable de- 
creaseindensity ( v ,  $v,) ~ h e n u $ l , p ' > 2 ( v , / u ) " ~ .  

We now present the results of our numerical calcula- 
tions, which were carried out for a planar layer using the 
exact dispersion relation. For the fundamental even mode 
and values of the parameters N, =4.8.1012 ~ m - ~ ,  
NB = 4.10" ~ m - ~ ,  a = 2 cm, corresponding to the condi- 
tions of our experiment (for which the quantities w, w, are 
the same as in Fig. 5), our numerical calculations give 
p' = 98.436, p" = 1.171.10 - (note that in this case the 
wavelength in the channel A, = 4.92 cm). The structure of 
the field for this mode is shown in Fig. 7. On these plots it is 
easy to see the different spatial scales in the field distribu- 
tions in the transverse direction corresponding to large-scale 
whistlers and fine-scale leaking waves. The analogous func- 
tions for the components Re Ex,  Im E ,,=, Im H,, Re H ,,*, 

E arb. u n ~ t s  

2 

4 

0 

- 3 R e E Z  

- 4 

which are appreciably smaller in absolute value than the cor- 
responding field components Im Ex,  Re E .",=, Re H,, Im H,, , 
are not shown in this figure. Note that decreasing the plasma 
density has the same effect as making the waveguide smaller; 
i.e. the propagation constant p' of a fixed mode decreases. 
For example, for N, = 3.4- 10" cm-3, N, = 4- 10" cm-" 
(with values of w, w,, a the same as in Fig. 7)  we find that 
p' = 89.596, p" = 3.158. 10W2, and A, = 5.40 cm for the 
even fundamental mode. 

3. These calculations make the analysis of guided prop- 
agation of whistlers in an annular layer with increased plas- 
ma density much easier. When conditions (5) and ( 11) 
hold, the leakage of energy from an annular layer is small as 
before, and it is sufficient to investigate the dispersion equa- 
tion in zero-order perturbation theory [compare with ( 14) ] 
in order to determine the propagation constant p': 

Here 

8 , = k , d q 1 ,  Q,=kn(d+2a) q , ,  S,=k,ds,, 

where Y,  (6) is a Neumann function and I, (c) is a modified 
Bessel function; the remaining notation is the same as in 
( 12). In expression (2 1 ) we have used a simplifying assump- 
tion N, = NB, which in the present case has negligible influ- 
ence on the results of the analysis of the dispersion equation. 

It is not difficult to show that for 1 Q, I > 1 Q, I Eq. (2 1 ) 
has solutions that correspond to individual slightly lossy 
whistler modes. For the special cases 
k, ( d  + a)q ,  = n-(m + 1\41, k, (d  + a)q ,  _= n-(m + 3/4), 
m = 0,1,2 ,..., and the additional condition S ,  $1, Eq. (2 1 ) 
separates into a pair of zero-order equations for the even and 
odd modes of a planar waveguide with width 2a [compare 
with (14)]:  

In this case the dispersion properties of the waveguide 
formed by the annular channel are practically the same as 
those properties of the planar waveguide investigated above. 

The distribution of field components of the fundamen- 
tal mode of an annular layer are analogous to the functions 
shown in Fig. 7: the radial and azimuthal components E , ,  , 

10-2.H, arb. units 
I 

FIG. 7. Distribution of the field components in the trans- 
verse direction for the lowest mode in the layer with in- 
creased plasma density: w = 3.9.10' sec - ', 
o,,=4.2.1OY s e c ' ,  a = 2  cm, N, =4.8.10'* cm-3,  
N ,  = 4.  1012 cm-'. 
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H , ,  reach their maximum values within the layer and van- 
ish on the axis r = 0, while the longitudinal components E,, 
HZ reach their maximum values for r + ~ l r d  + a , a and 

- 

vanish within the layer. 
We will not analyze Eq. (21 ) in detail, since the results 

of solving the model problem investigated above are com- 
pletely adequate to explain all the essential features of chan- 
neling of whistlers observed in the experiment. 

4. DISCUSSION OF RESULTS 

We now compare the experimental and theoretical re- 
sults. However, let us note at the outset that in comparing 
the transverse distributions of IH, l 2  found in experiment 
(Fig. 4) with the corresponding theoretical functions (Figs. 
6 and 7 ) ,  it must be kept in mind that in the experiments we 
measured the total field, i.e., the sum of the field of the dis- 
crete waveguide modes and the "background" field of the 
fine-scale quasipotential waves which were also excited by 
the antenna. 

A comparison of the results of theoretical calculations 
of the field Hz in the channel with decreased plasma density 
(Fig. 6) with the experimental data (Figs. 4b and 4c) shows 
good qualitative agreement between them (and even quanti- 
tative agreement: compare Figs. 4b with Fig. 6).  The experi- 
mental value A ,  ~ 9 . 5  cm for the wavelength for a wave prop- 
agating in the near-axis part of the channel also corresponds 
to the theoretical value A, = 10.06 cm. 

There is also satisfactory agreement between the value 
of the wavelength measured in experiment ( A ,  5 5.5 cm) 
and the results of the theoretical calculations (A, = 5 to 5 .4  
cm) for the layer with increased plasma density as well. As 
for the radial distribution of the field in the layer, we clearly 
discern a maximum of Hz ( on the plots of 1 Hz l 2  (Figs. 4c 
and 4d, at the pointsz = 20 cm, r=: 5 cm and z = 30 cm, r ~ 4  
cm, respectively), which are located in the vicinity of the 
inner boundary r = r - of the annular layer, in agreement 
with theoretical predictions. The maximum of (Hz  / near the 
external boundary of the layer r , z 10 cm is small and can- 
not be seen in Fig. 4. Note that according to the theoretical 
calculations, for the casep' 2 9, N, L N ,  > No (see Fig. 21, 
the magnitudes of the fields Ez,  Hz of the fundamental axial- 
ly symmetric mode of the layer at the maximum r -  Ed  
should exceed the corresponding magnitude of this field at 
r + =d + 2a in absolute value. The fine-scale oscillations of 
the whistler field in the layer are averaged during the mea- 
surement (the oscillation scale A, = 2n;/(koq, ) -0.5 cm, 
and the diameter of the receiver antenna 2a, = 1 cm), and 
therefore are not visible on the experimental plots (compare 
Figs. 4c and 4d with Fig. 7 ) .  

The slow dependence of the field amplitude in the chan- 
nel on the longitudinal coordinate z (see Figs. lb-ld) is ex- 
plained by the variation of the channel parameters in space 
and time during the thermal diffusion of the plasma. 

From the discussion given here we can draw a number 
of conclusions: 

1. As a result of electron heating by the quasistatic field 
of the antenna and thermal-diffusion-driven redistribution 
of the plasma it produces, it is possible for a nonuniform 
channel to form near the radiator which acts as a waveguide 
in the whistler-frequency region ( 1 ) for two types of inde- 
pendent modes. 

2. Guided propagation of localized conical refraction 
waves occurs in the central part of the low-density channel, 
while the high-density annular layer that surrounds this cen- 
tral part supports guided propagation of quasilocalized 
whistlers. 

3. When the high-density channel has a width compara- 
ble to the characteristic wavelength of whistler waves, leak- 
age of quasilocalized whistler modes is small under the con- 
dition w,, Sw,  for which the transverse scales of the whistler 
modes trapped in the channel and the leaking waves differ 
significantly. 

In conclusion, we note that the waveguide structures we 
have discussed here allow us to vary the coefficients of exci- 
tation of quasilongitudinal whistler waves and conical re- 
fraction waves, as well as the directivity diagrams of radi- 
ation with respect to a uniform (background) plasma. 

" Unfortunately, there are some erroneous assertions in Ref. 1 ,  in particu- 
lar regarding the frequency region w > w,,/2. 
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