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We use the WKB-approximation to treat the problem of the stabilization by an inhomogeneous 
convective current of the Rayleigh-Taylor instability developing in the ablation zone when the 
plasma of laser targets is accelerated by ablation. The problem of the eigenvalues-the instability 
growth rates-is reduced to the solution of an algebraic equation with coefficients which depend 
on the structure of the unperturbed profiles of the hydrodynamic variables. We show for the 
practically important case of subsonic flow of an incompressible plasma that the instability 
growth rate vanishes for k = k ,  = max [2  (gl V In p1 112/v]. The condition for the self-consistency 
of the model is that the local Froude number be small in the region where the instability develops; 
however, comparison with numerical calculations shows that the model is also applicable in the 
case of rather steep density gradients when the Froude number is of order unity. 

1. INTRODUCTION 

The process of the acceleration by ablation of the plas- 
ma formed from planar foils and spherical laser targets 
through the action of strong laser radiation is hydrodynami- 
cally unstable due to the development of a Rayleigh-Taylor 
(RT) instability, for the existence of which the density and 
pressure gradients must be in opposite directions. Just such a 
situation is realized in the ablative acceleration of a target 
near the ablation surface where the laser radiation absorbed 
in the corona is transferred by thermal conductivity to the 
deep layers of the target. The RT instability is the subject of 
intensive numerical and analytical studies, since it is this 
instability, developing in the inhomogeneous laser plasma, 
which restricts the maximally obtainable degree of spheri- 
cally symmetric compression and thus the limits of energy 
build-up, in particular for the implosion of thin spherical 
shells in the schemes for laser ICF, considered at the present 
time. 

Experiments carried out in recent years on ablative ac- 
celeration of thin and also the results of two-dimen- 
sional numerical s i m ~ l a t i o n s ' ~ ~ ~ ~ - ' ~  demonstrate that the in- 
stability growth rate is much smaller than that predicted by 
classical theory, ''." up to complete stabilization of the insta- 
bility in the short-wavelength limit. This difference is caused 
by a large number of physical factors such as the convective 
efflux of matter from the instability region, the structure of 
the unperturbed profiles of the hydrodynamic variables, 
electron thermal conductivity, and the compressibility of the 
plasma, and in the nonlinear regime also the generation by 
thermal currents of strong magnetic fields.13 

According to the results of recent series of numerical 
calculations4~7-'0 the main stabilizing factor in the linear 
stage is evidently convection, and the dispersion relation for 
the growth rate a ( k )  is well described by an approximate 
formula proposed by Takabe:l4.I5 

where k is the wavenumber and v the convective velocity of 

the plasma particles near the ablation zone in which the un- 
stable modes are localized. 

The possibility of an analytical solution of the problem 
of the growth of the RT instability taking convection1620 
and thermal conductivity20 into account has been consid- 
ered in a number of papers. The great majority of analytical 
approaches are based on a discontinuity model, in which the 
unstable region in the ablation zone with large gradients of 
the hydrodynamic quantities is replaced by a surface of dis- 
continuity separating uniform plasma currents. In a model 
with a surface of discontinuity attempts to solve the problem 
encounter a fundamental difficulty first indicated in Ref. 16: 
the number of boundary conditions on the perturbed discon- 
tinuity surface is insufficient to solve the problem uniquely. 
To obtain the dispersion equation one needs additional 
boundary conditions (for subsonic flow only one) which are 
not a consequence of the conservation laws on the surface of 
discontinuity. 

It is pointed out in Ref. 2 1 that the additional boundary 
condition needed for an analytical solution of the problem in 
the discontinuity model follows from the assumption of the 
evolutionarity of the unperturbed flow. The evolutionarity 
of a flow with a surface of discontinuity is a necessary and 
sufficient condition for the existence of a discontinuity struc- 
t ~ r e , ' ~  which itself is caused by dissipation. The variation of 
this additional condition guarantees in principle an addi- 
tional relation for small perturbations, necessary to obtain 
the dispersion equation, which, however, cannot be written 
in analytical form in the discontinuity model. 

The explicit introduction of a discontinuity structure 
into our considerations makes it possible to state and unique- 
ly solve the spectral problem, since then the additional vari- 
able-the amplitude of the perturbation of the position of 
the front of the discontinuity-is not introduced. In the stat- 
ic case the RT instability was considered in Refs. 11 and 23 
to 25, where the structure of the unperturbed density and 
pressure profiles was taken into account. The results ob- 
tained in those papers demonstrate the saturation of the in- 
stability growth rate at perturbation wavelengths on the or- 
der of the size of the inhomogeneity, but they cannot explain 
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the total suppression of the RT instability in the short-wave- 
length limit, observed in experiments and numerical calcula- 
tions. One can describe this behavior of the instability 
growth rate only by consistently taking into account both 
the structure of the profiles of the density and of the hydro- 
dynamic acceleration and the inhomogeneous material con- 
vection current in the unstable region together with the ther- 
mal conductivity and up to the present time this has not been 
done. I '  

We show in this work that it is possible to use a semi- 
classical approximation to obtain a solution of the problem 
of the convective stabilization of the RT instability for any 
density profile structure of a stationary plasma and to ex- 
plain the suppression of the RT instability in the short-wave- 
length limit of the perturbations: il = 2n-k - ' g L  (L is the 
scale of the inhomogeneity ) . 

Let us consider the growth of the RT instability mode in 
the plasma formed when thin foils are ablatively accelerated, 
restricting ourselves therefore to planar geometry of the un- 
perturbed flow. We discuss in Sec. 2 the linearized equations 
of ideal hydrodynamics describing the growth of small per- 
turbations and the conditions for the applicability of the 
model. In Sec. 3 we obtain in the quasiclassical approxima- 
tion the instability growth rate-the maximum eigenvalue 
(for a given wavenumber k)-and also the spectrum a, (k)  
( n  = 0,1,2, ... ) for a steady inhomogeneous plasma with ar- 
bitrary density and acceleration profiles. We consider in Sec. 
4 the stabilization of the short-wavelength RT instability by 
convection and find the values of the wavevector for which 
the growth rate vanishes, and we make a comparison with 
the results of a numerical simulation. 

2. HYDRODYNAMICAL MODEL. EQUATIONS FOR THE 
PERTURBATIONS 

Under conditions when the laser radiation energy ab- 
sorbed at the critical surface is distributed over the interior 
of the target much faster than the plasma expands hydro- 
dynamically, a practically steady regime of motion for the 
plasma of the target is reached after the shock wave has left 
the free surface of the target and the rarefaction wave has 
pas~ed.~"'' The characteristic features of this steady mo- 
tion, the shape of the unperturbed density, temperature, ve- 
locity, etc., profiles, are determined by the relative role 
played by such physical processes as convection, inertia, and 
thermal conductivity in the ablation zone, and also the inten- 
sity of the absorbed laser radiation. The main property of the 
quasisteady plasma flow is, on the one hand, the presence of 
a localized ablation front and, on the other hand, a maxi- 
mum density in the transition region which separates the 
ablation zone from the accelerated part of the target and in 
which the condition for the development of the RT instabil- 
ity is satisfied, i.e., the hydrodynamic acceleration and the 
density gradient are in opposite  direction^.^^ 

We assume that the small perturbations of the flow are 
two-dimensional in the xz-plane, where the z-axis is directed 
parallel to the gradients of the unperturbed quantities so that 
g(z) > 0. Because the unperturbed flow is one-dimensional 
and steady we shall look for small deviations of the system 
from the equilibrium position in the form 

Y ( t ,  x, z )  =V ( 2 )  exp(ikx+at) . 

In the case where the unperturbed flow is unsteady with 
a characteristic time scale .r we must understand a = u( t )  to 
be the instantaneous growth rate, characterizing the rate of 
growth of the perturbations at a given time, provided a ~ > )  1. 
The growth of the perturbations after a finite time to can be 
estimated to be 

1" 

In the adiabatic approximation the linearized equations of 
ideal hydrodynamics, describing small perturbations, have 
the form 

wherep, P, v, andg are, respectively, the unperturbed values 
of the density, the pressure, the hydrodynamic velocity, and 
the acceleration in a frame of reference fixed to the rear of 
the foil, the value of the adiabatic index y = (a ln P/ 
a In p),  is assumed to be constant, and the small perturba- 
tions are indicated by the index 1. 

The adiabaticity condition means that the wavelengths 
of the perturbations cannot be too small. Assuming that the 
effects connected with thermal conductivity are small we 
obtain a lower limit for the wavelength of the perturbations 
in the form 

where I ,  is the electron mean free path and M the Mach 
number. 

In what follows (except in Sec. 3 we shall consider the 
development of perturbations in the limit of an incompress- 
ible medium: y- co . This assumption, which is valid for the 
plasma of targets irradiated by sufficiently strong and long- 
wavelength laser radiation when the plasma flow in the abla- 
tion region is strongly subsonic (Mz0.1-0.2), is not funda- 
mental for the solution considered here, but it permits 
considerable simplification of the calculations. It was shown 
in Ref. 20 that the compressibility of the plasma in the pres- 
ent problem can be neglected when the following conditions 
are satisfied: 

where c ,  = (P/p)1'2 is the isothermal sound velocity. We 
note that in the WKB approximation one can also consider 
the development of RT perturbations taking the finite com- 
pressibility of the plasma into account in the limit of a super- 
sonic flow in the unstable region; this can occur in the case of 
short-wavelength low-power laser radiation when the criti- 
cal surface is close to the ablation zone.30 
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In the y- cc limit the adiabaticity equation takes the 
form 

The instability growth rate is an eigenvalue of the boundary 
value problem consisting of Eqs. ( 2 ) - ( 4 )  and ( 6 )  and the 
boundary conditions corresponding to the actual physical 
statement of the problem. As is usually done, we shall as- 
sume that the inhomogeneous ablation region in which the 
instability develops separates two plasma flows for which 
the flow may be assumed to be uniform. In that case the 
boundary conditions reduce to the evanescence of the per- 
turbations as z -  k cc . That in the quasi-classical limit con- 
sidered here, where the eigenfunctions are strongly localized 
in the inhomogeneous region, the actual form of the bound- 
ary conditions has little effect on the eigenvalues. 

3. SPECTRUM OFTHE RT INSTABILITY GROWTH RATE FOR 
A STATIONARY PLASMA 

To illustrate the WKB approximation we consider the 
case of a plasma which is stationary in the unperturbed 
~ t a t e . ~ '  In that case the complete set of equations ( 2 ) - ( 5 )  for 
the perturbations can be reduced to a single equation for v,, : 

Considering perturbations with wavelengths smaller 
than the gradient length of L  -c2/g, c = ( yP /p )  ' I 2 ,  we can 
drop in Eq. (7)  terms which are small in the parameter 
( k L )  -2: 

[a  ( z )  = - d  In p/dz is the slope of the density profile] and 
thus arrive at a Schrodinger equation for the problem of sta- 
tionary states of a particle with zero energy in a one-dimen- 
sional potential well: 

We find the eigenvalues a, ( k )  from the condition that there 
exist stationary localized states. 

Expanding the potential U ( z )  near its minimum z  = z,,, 
in a Taylor series and assuming d 2 U ( z ,  ) /dz2#0 we can 
find the eigenvalues a, using the well known expression for 
the energy levels of an harmonic o~cillator:~' 

where we have taken into account the terms of zeroth and 
first order in (kL ) - I .  Equation ( 8 )  is valid for n & kL. The 
corresponding eigenfunctions have the form 

where the H,  ( x )  are Hermite polynomials. 
To zeroth order in the small parameter ( k L )  - ' we can 

neglect the splitting of the levels in the spectrum ( 8 )  and 
thus conclude that the RT instability growth rate-the max- 
imum eigenvalue for a given k-is 

We find the spectrum of the eigenvalues u, for n % kL 
by using the Bohr-Sommerfeld quantization rule: 

where z ,  and z2 are the turning points, i.e., the points for 
which U ( z )  = 0. 

Note that including the terms which were dropped in 
Eq. ( 7 )  would lead to corrections of higher than second or- 
der in ( k L ) - '  in the spectra ( 8 )  and ( 9 ) .  

To first order in ( k L )  -' the eigenfunctions corre- 
sponding to the eigenvalues ( 9 )  have the form 

Expressions (10)  for the eigenfunctions are valid every- 
where except in small regions near the turning points 
( (z - z,,, ( g k L ) ,  where the eigenfunctions are given in 
terms of Airy  function^.^' 

In particular, for an exponential unperturbed density 
profile p (2) a exp ( - a,+) ( 0  < z < L  ) and a constant accel- 
eration g = go in the limit y + oo Eq. (9) gives a spectrum of 
the form 

which for n, kL is the same as the exact result obtained in 
Ref. 24. 
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4. SUPPRESSION OFTHE RT INSTABILITY BY CONVECTION 

We consider the behavior of the perturbations in the 
case where there is inhomogeneous convective flow of mate- 
rial from the unstable region. In the WKB approximation we 
look for a solution of the linearized system of equations for 
the perturbations (2 )  to (4) and (6) in the incompressible 
limit in the form 

where \V = v,,,v,, , p, ,  and PI and the amplitudes $j are 
functions of z which change slowly compared to the expo- 
nential terms. Substituting solutions of the form ( 1 1  ) into 
Eqs. (2) to (4) and (6) and equating to zero the determi- 
nant of the resulting homogeneous algebraic system, we get a 
characteristic fourth-order equation in the pi ( j = 1,2,3,4): 

3, (9) = ( Z + C ~ ) ~  (cp2-l) - (X+cp) g-v - ( :) 

We have introduced here the following dimensionless pa- 
rameters: the dimensionless growth rate B(z) = u/vk, the 
dimensionless acceleration 

and the Mach number M(z) = v/c,. We have already men- 
tioned that we restrict ourselves to the case of a subsonic 
flow, M <  1 and hence we neglect the second term in the 
characteristic equation ( 12). 

The roots pi depend on the z coordinate parametrical- 
ly. In the regions where we can consider the flow to be uni- 
form we have 

and the roots p ,,, then describe acoustic modes and P,,~ 
entropic and rotational modes. A perturbation localized in 
the gradient region, i.e., evanescent as z+ co must for 
u >  0 have the asymptotic forms 

which corresponds to a sound wave in the limit z+ - w and 
a superposition of entropy, vortex, and sound waves in the 
limit z+ + a. The characteristic behavior of the roots p, of 
the dispersion relation (12) in the complex p-plane when 
one moves along the unperturbed profile in the direction of 
increasing z is shown in Fig. 1. One can find at most two 
roots simultaneously in the half-plane Re p > 0. The roots 
may intersect for some z = z, , becoming multiple. In order 
to select a localized perturbation, i.e., one which has the 
asymptotic behavior ( 13) and ( 14), it is necessary that there 
exist points on the profile in which a multiple root of Eq. 
(12) is formed through the intersection of the root p,(z) 
and one of the other roots pi (z) in the half-plane Re p > 0. 
This is possible if the value of the parameter u is less than a 
threshold value uo(k) (Fig. l a ) .  In the limiting case 
u = uo(k) there is one such point. The value go will then be 
the maximum eigenvalue for a given k (i.e., the instability 
growth rate) in zeroth order in the small parameter (kL) - I .  

If we write down the condition for the multiplicity of 
the root: 

92, (q.) =0, d%!,/dq=O, 

we find the values p, and I;, corresponding to them: 

where s = ( 1 + G /27) ' I 2 .  

The maximum eigenvalue uo for a given k is determined 
by the solution of a set of algebraic equations: 

Z(Z) =z. ( z ) ,  (17) 

FIG. 1 .  Trajectories of the roots p, 
( j = 1,2,3,4) of the characteristic equation 
(12) in the complex plane found when moving 
along the profile in the direction of increasing z 
( a )  for u ( k )  <o,(k); the roots intersect, be- 
coming multiple in the Re p > 0 half-plane; and 
(b)  f o r d k )  > ~ , , ( k ) .  

622 Sov. Phys. JETP 75 (4), October 1992 A. B. Bul'ko and M. A. Liberman 622 



Using the explicit form of the functions 2 ( z )  and 2,  ( z )  we 
can eliminate the eigenvalue from the set ( 1 7 )  and ( 1 8 )  and 
find for the coordinate z, of the contact point the equation 

where p, = q,, (G(z, ) ) is given by Eq. ( 15 ) . The required 
growth rate uo will then be 

The problem of finding the instability growth rate as an im- 
plicit function of the wavenumber for given profiles of the 
hydrodynamic variables is solved in principle by Eqs. ( 1 9 )  
and ( 2 0 ) .  

The eigenfunction corresponding to the maximum 
eigenvalue has the form 

where p+ is that root of the characteristic Eq. ( 1 2 )  which 
for z > z ,  is shifted along the Im p = 0 axis from the point 
q, = p, in the direction of negative q, while p- is the root 
moving for z <z ,  from the point p = q,, to the point p = 1 
corresponding to a sound wave in the flow in front of the 
ablation front. The root p,, which is the asymptotic eigen- 
function in a low-density plasma behind the ablation front, 
can correspond to either a sound wave [for u , ( k )  > k v (  a, ) ] 
or an entropic mode [for a o ( k )  < k v (  a, ), the case shown in 
Fig. la].  

For G,,, < 1, we have I;, (z) < 0, and in this case there 
are no positive eigenvalues a and the growth rate vanishes at 
once for the condition G,,, = 1 when Z, (G,,, ) = 0. We 
emphasize that this result is exact in the quasiclassical ap- 

proximation and for a given form of the profile enables us to 
find the wavenumber ko for which the growth rate vanishes: 

Of course, it only makes sense to consider the vanishing of 
o o ( k )  for stationary unperturbed solutions. If the unper- 
turbed solutions are quasistationary with characteristic 
times T we must, as we noted already in Sec. 2, consider only 
growth rates which are larger than r- ' .  

Note that Eq. ( 2 2 )  gives a somewhat different scaling 
for the values ko than the approximate Eq. ( 1 ), although 
their numerical values for characteristic parameters of the 
dynamics of the plasma of the targets, 

(dln p1d.z)-'- (1-3) .lo-' cm, 

are rather close to one another. 
One shows easily that in the limit k<  (g/L)"2/v Eqs. 

( 1 9 )  and ( 2 0 )  reproduce the result of Sec. 3 for an incom- 
pressible fluid: a. = max ( - gd ln p / d z )  . In accordance 
with ( 2 2 )  the effective suppression of the RT instability oc- 
curs for k -  (g/L) '12/v. This means that the condition for 
the applicability of the quasi-classical approximation is that 
the local Froude number Fr ( z )  be small in the region where 
the instability develops: 

In Fig. 2 we compare the dispersion relations obtained in 
Ref. 21 as a result of a numerical simulation of the growth of 
the RT instability in the plasma of an aluminum foil of thick- 
ness 10pm irradiated by the light from a neodymium laser of 
wavelengthil, = 1.06pm with an intensity I = 1013 W/cm2 
and results obtained in the quasiclassical approximation 
from Eqs. ( 1 9 )  and ( 2 0 )  for the same unperturbed solu- 
tions. For the numerical solution of the problem the bound- 
ary conditions on the eigenvalues for Eqs. ( 2 )  to ( 5 )  taken in 
the form of evanescence of the perturbations at z-t a, and 
leaving the point z = 0, corresponding to the backside of the 
foil, were implemented using the analytically calculated 

FIG. 2. Profiles (from Ref. 2 1 )  o f p ,  P (Mbar),  u (10' cm/s) ,  
and g ( 10j5 cm/s2)  in the quasisteady stage of  the expansion o f  
an aluminum foil of  10 pm thickness irradiated by light from a 
neodymium laser ( A ,  = 1.06 pm, 1 = 10'"WmZ) in the rest 
system of  the backside of  the target, and the dispersion curves of 
the RT instability growth rates obtained in the quasi-classical 
approximation using Eqs. ( 19) and (20 )  (curves 1 )  and as the 
result o f  solving the eigenvalue problem in Ref. 21 (curves 2 ) ;  
with ( a )  and without ( b )  including thex-ray emission from the 
corona. 
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asymptotic form.2' Here, however, we show the characteris- 
tic quasistationary unperturbed profiles of the hydrodynam- 
ic variables, established after the passage of the shock wave 
and the discharge wave, taking into account the x-ray emis- 
sion from the corona (Fig. 2a) and also in the case when the 
x-ray emission is neglected (Fig. 2b). The one-dimensional 
motion of the foil was simulated using hydrodynamic La- 
grangian "Impul's" code described in Ref. 32, taking into 
account the real equation of state, the separation of the elec- 
tron and the ion temperatures, and the ionization  kinetic^.^' 
The simulated suppression of the x-ray emission from the 
plasma corona leads to an increase in the Froude number in 
the unstable region (due to the large slope of the profile). 
For the flow parameters of the flow in Fig. 2b we have Fr - 1, 
i.e., condition (23) is not satisfied, but nevertheless it is clear 
from a comparison of the dispersion curves obtained in the 
WKB approximation and the exact solution that the agree- 
ment is very satisfactory even outside the formal region of 
applicability of the WKB approximation. 

5. CONCLUSION 

In the present paper we have solved in the quasiclassical 
approximation the problem of the convective stabilization of 
the RT instability in laser target plasma accelerated by the 
ablation pressure, taking into account the structure of the 
density, acceleration, and convective velocity profiles. The 
instability growth rate, which in the general case is an eigen- 
value of the boundary value problem, is found in the form of 
an implicit algebraic function of the wavenumber and the 
structure of the unperturbed hydrodynamic profiles. 

The formal self-consistency condition of the proposed 
model is that the local Froude number be small, but com- 
parison with the results of a numerical simulation demon- 
strates that the RT instability growth rates obtained in the 
WKB approximation agree very satisfactorily with the exact 
values obtained as the result of a numerical solution of the 
problem of the eigenvalues even for rather steep density gra- 
dients when the Froude number is of order unity. 

The calculations were performed in the subsonic-flow 
limit of an incompressible plasma, but the proposed method 
allows a direct generalization and makes it possible to in- 
clude in the considerations the finite compressibility of the 
plasma and also to calculate the effect of the electron ther- 
mal conductivity and other dissipative processes on the 
growth rate of the RT modes. 

"Note that Ref. 5 reaches a qualitatively incorrect conclusion about the 
saturation of the growth rate of the RT instability in the short-wave- 
length limit when convection is present. 

"FradkinZ3 was the first to use the WKB approximation for the problem of 
the hydrodynamic instability of an inhomogeneous quasi-isothermal 
plasma; he obtained spectra which are similar to the ones obtained by us 
in the present section. 

"For details about the one-dimensional numerical simulation of the foil 
dynamics see Ref. 2 1. 
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