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On the basis of an analysis of the interference of different orders n, we have established that in low 
orders n (2 the predictions of the classical and quantum theory can differ only quantitatively: 
Only the visibility of interference in the quantum case exceeds the classical visibility. The 
situation changes radically for n> 3: Significant qualitative differences between the classical and 
quantum interference structures appear; for example, for n = 4 the interference maximum 
appearing in the quantum description becomes a minimum in the classical description. 

INTRODUCTION 

Interest in different experiments on the observation of 
light interference (n = 2), performed, as a rule, in the pho- 
ton-counting mode using parametric sources of two-photon 
radiation (see, for example, Refs. 1-5 and the review Ref. 6) ,  
has increased in the last few years. In these experiments, 
two-channel detection is used and only cases in which two 
photons appear simultaneously in the channels, the proba- 
bility for which is proportional to the moment G; ,  
= (n, n, ), where n, =a,+ a, is the photon number operator 

for the channel j and the prime refers to the output of the 
interferometer, are used in the calculations. 

This interest is motivated by endeavors to observe pure- 
ly quantum effects which do not have classical analogs. 
However, the interferometers employed are linear systems 
which cannot introduce into the experiment any specifically 
quantum features: The interferometers are adequately de- 
scribed classically and they are only linear transducers of the 
input moments of the radiation fed into For n = 2, 
for example, G ;, is a linear combination of three moments 
GI,, G,,,= (:n::), and Go,= ( x i : )  of the input radiation. If 
the starting beams are symmetric, then Go, = G,,. Thus the 
"quantumness" or classicality of the observed effects lies 
only in the relation between the two moments GI, and Go, at 
the input to the interferometer, whose relative values in the 
classical and quantum cases can differ very substantially."' 
As a result, the only manifestation of specifically quantum 
nature gives rise to a purely quantitative difference: an in- 
crease in the visibility Vof the interference pattern as a result 
of the strong inequality GI, ) GO2. We recall that by interfer- 
ence, in this case, we mean the dependence of the counting 
rate of coincidences of the photons recorded in the channels 
on the phase delay 2p that is introduced. This dependence 
has the form 

R,(cp) -G,,'(cp) -l+lr cos 4 q = f  ( r ~ )  

By classical description we mean here a theory that em- 
ploys Maxwell's equations with stochastic classical fields 
(the brackets (...) denote an average weighted with some 
nonnegative distribution function of the field) and the semi- 
classical theory of the process of photoionization in the de- 
tectors. A more general classical description of the correla- 
tion of the photocounts, separated by space-like intervals, 
with the help of hidden variables { A )  (see, for example, 
Refs. 9 and 101, is also of great interest. In this approach 
there exists a critical value of the visibility, values above 
which can be interpreted with the help of Bell's inequalities" 

as an indication of nonlocality and (or) nonpositiveness of 
the distribution function P ( { A ] ) .  These three approaches- 
quantum, stochastic, and hidden-variable-were recently 
compared by Su and Wodkeiwich." 

It should also be noted the degradation of the classical 
visibility V,, when the finite triggering time of the detection 
system is taken into account can be quite dramatic; i.e., it 
results in virtually complete vanishing of interference within 
the limits of sensitivity of the measuring channel of the aet- 
up. But interference modulation itself is always present in 
both the classical and quantum descriptions. 

A somewhat different situation obtains when multiphc- 
ton processes are used and when moments of higher orders 
are recorded instead of the interference of amplitudes or in- 
tensities (n = 1,2). The formation of G ;, ( K  + L>3) now 
involves a larger number of input moments GKL, the ob- 
served consequences of whose superposition, remaining lin- 
ear as before, can nonetheless manifest qualitative differ- 
ences from the classical and quantum treatments. We 
discovered this possibility in an analysis of the two-mode 
interference of three- and four-photon states and it is the 
subject of the exposition given below. It is interesting that 
the analysis of the correlation of three or more phs~dars t Isc  
reveals a new type of contradiction between the quantum 
theory and the concept of hidden variables (see Rds .  9 and 
am. 

1. INTERFERENCE OF THREE-PHOTON STATES 

The proposed experiment can be conducted i r  two 
equivalent modifications, illustrated in Fig. 1. Version a em- 
ploys a Mach-Zehnder (M-Z) interferometer, while var- 
iant b employs its polarization version. There are no funda- 
mental differences in the description of such  system^,^ but 
their actual implementation, of course, has definite rpeaific 
features. 

In both cases the following fundamental possibilities 
exist for preparing three-photon states 12 I),  i.e., two pho- 
tons in the mode a and one photon in the mode 6. First, it is 
possible to use a three-stage transition of the atom from the 
excited state into the ground state, in which two of the three 
emitted photons are degenerate (they belong to the same 
mode). An alternative method is to use parametric scatter- 
ing either in a medium with cubic nonlinearity x ' ~ '  (Ref. 13) 
or as a result of a cascade process, analogous to that de- 
scribed in Refs. 6 and 14. In the latter case, two photons are 
generated at the first stage in the course of nondegenerate 
parametric scattering in a piezoelectric crystal, for example, 
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of the type 3w - 20 + o, while in the second case splitting of 
one of these photons in a degenerate parametric process is 
used, i.e., generation of the subharmonic 2w + w.  

The modes a and b formed in this manner are then fed 
into the interferometer. Of course, the modes must have the 
same carrier frequencies and in the polarization variant they 
must differ only by the polarization state. The phase delay in 
one arm of the M-Z interferometer can be controlled by 
displacing one of the mirrors (see Fig. la) ,  while in the po- 
larization interferometer it can be controlled with the help of 
a rotator of the Faraday (F)  rotator type (Fig. lb).  

The output beams are recorded with photodetectors, 
the signals from which are processed by a coincidence sys- 
tem and averaged, and as a result the required moment G & 
is calculated. For example, in order to measure G ; ,  it is 
convenient to use three photodetectors, as shown in Fig. 1. 

The four-photon process of formation of a three-photon 
state, which consists of a decay of one pumping photon into 
three photons, is described by the following Hamiltonian: 

where a and b are operators which annihilate a photon of the 
corresponding modes, a+ and b + are creation operators, 
and the coefficient x characterizes the nonlinearity of the 
system (when parametric scattering in a medium with cubic 
nonlinearity is employed, x is proportional  to^'^' and to the 
pump amplitude; the pumping is assumed to be classical and 
inexhaustible). 

In the Heisenberg representation the evolution of the 
operators is determined by the following equations of mo- 
tion: 

FIG. 1.  Possible variants of schemes for observing two-mode 
three-photon interference: a )  two-arm Mach-Zehnder (M-Z) 
interferometer; b) polarization type interferometer. F is a Fara- 
day rotator of the polarization plane. All beam splitters have the 
same (50%) transmission and reflection. The coincidence 
scheme fixes only the cases of simultaneous detection of a pho- 
ton by each of the three photodetectors. 

to second order in r. 
At the input of the parametric system we prescribe ther- 

mal noise with the average photon number 

Then the nonzero normally ordered operators of order S 
equal 

<: (ao+ao)s:>=(: (bo+bo)s:>=SINos. (1.6) 

We employ the initial thermal noise mainly because this 
makes it possible to switch completely from the quantum 
model to the classical model. Indeed, the case No = 0 corre- 
sponds to a vacuum at the input of the amplifier, i.e., a purely 
quantum situation. In the opposite limit N o s  1 the fact that 
the operators a,, a$ and b,, b ,+ do not commute no longer 
has any effect on the result and we arrive at the classical 
description of the system. 

The transformation of the radiation by the interferome- 
ter (both the two-arm and polarization versions) in the 
course of the mixing of two modes in it is described by the 
following unitary transformation in the Heisenberg repre- 
~entation:~" 

where the primes correspond to the output operators after 
mixing and t and rare the amplitude coupling coefficients of 
the interacting modes. In the simplest case of an interferom- 
eter in the form of only one beam splitter, t and r are the 
transmission and reflection coefficients. If, however, the in- 
terferometers shown in Fig. 1 are employed, then 

where the corresponding intensity coefficients have been in- Mere r = xt, where t is the interaction time. 
troduced and p is one-half the relative phase delay in the The solution of the system of equations ( 1.2) in second- 
Mach-Zehnder interferometer (Fig. la)  or, in the polariza- order perturbation theory in T has the form 
tion variant (Fig. lb) ,  the rotation angle of the polarization 

a=ao+ 2'"zao+bo++ T~ (aO+a0+2bO+b0+2) ao/2. ( 1.3) plane, introduced by the rotator (F) . 
b=b,+za,+2/2"~+~Z(2ao+ao+1) b0/2, ( 1.4) For an output moment of order 2S = K + L successive 

applications of the transformation ( 1.7) 
where the index "0" corresponds to the initial operators at 

2s 
T = 0. It is easy to verify that these solutions satisfy the stan- 

G ~ L  3 j , D ( ~ )  L . D L ~  (s' (a+ pa; bi hq) . (1.9) 
dard commutation relations for bosons: 

7 1 ,  q=0 

[a, a+] = [b ,  b+] =1, [a ,  b ]  = [a,  bi] =O (1.5) where 
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and D izq are the matrix elements, of which we require 

D ( ~ ) -  l o  --tr', L , ,  (11 =T-R,  LJ,, (1) =t'r, (1.10) 

~ : f '  =2(T-R)  t'r, D::' =ta2f .  (1.12) 

Thus, using Eq. ( 1.6), we obtain 

The remaining input moments of second to fourth orders 
with the initial thermal noise are equal to zero. In order to 
analyze the interference of three-photon states, we require 
only G ;, . We employ the other moments in the subsequent 
analysis. 

According to Eqs. ( 1.3), ( 1.4), and ( 1.6) the required 
moments at the input of the interferometer equal 

Substituting these expressions into Eq. ( 1.14) gives 

Here 

In the purely quantum case, when a "squeezed" vacu- 
um (No = 0) exists at the input of the interferometer, 

It is interesting to compare this result with the case 
when the state at the input of the interferometer is described 
by the vector 

i.e., two photons in the first mode and one photon in the 
second mode. In this case, the only nonzero moment at the 
input is G,, = 2, and G ;, is identically equal to the moment 
( 1.20) with T = 1. Thus our Hamiltonian ( 1.1 ) indeed de- 
scribes the process of preparation of two-mode three-photon 
states. 

A plot of G ;, /2 as a function of q, constructed in accor- 
dance with Eq. (1.20), is presented in Fig. 2. One can see 
that the moment G;, has two zeros, and in addition the 
second zero corresponds to the absence of mixing in the 

FIG. 2. Evolution of the interference curve G ;, (q) with a transition from 
the quantum (No = 0) to the classical ( N o -  m ) limit. The constant ped- 
estal 2N is neglected. Normalization to the maximum value is performed 
everywhere. For comparison the dashed line illustrates the case of inter- 
ference mixing of two independent identical coherent sources. 

channels ( T = 0, R = 1 ), when the first mode is directed 
completely into the second channel and the second mode is 
directed completely into the first channel. The contrast of 
the interference pattern is thus equal to unity. 

In the classical limit (No$ 1 ) we have 

A normalized plot of the second interference term in Eq. 
( 1.22) is also shown in Fig. 2. One can see that in this case a 
very faded interference pattern with quite low contrast is 
obtained. It is difficult to compare it with the "quantum" 
curve (No = O), but it is obvious that only significant smear- 
ing of the latter curve can result in such a metamorphosis. 
Thus the differences are qualitative. The reason for this is 
that the "quantum" moment G ;, is determined only by the 
nonzero input moment G ;, , while in the classical descrip- 
tion all four moments ( 1.16)-( 1.19) play a role. As a result, 
significant "smoothing" of the interference minima occurs 
with increasing No; this is also illustrated by the plots in Fig. 
2. Does this indicate pronounced qualitative differences be- 
tween the classical and quantum models? Evidently yes, 
though only to the extent that the presence of interference is 
distinguished from virtually complete absence of interfer- 
ence. A distinct boundary between them is quite difficult to 
draw, in contrast to the four-photon states considered below. 

It is interesting to compare these results with the case of 
interference mixing of two identical independent coherent 
modes. All input moments G,,, G,,, G,,, and Go, are equal to 
NA, and 

The corresponding plot is also presented in Fig. 2 (dashed 
line). The symmetry in this case arises owing to the equiv- 
alence of the input modes; this is what distinguishes this case 
from interference mixing of thermal noise "squeezed" in the 
process of parametric amplification in both the classical and 
quantum approaches. 

2. INTERFERENCE OF FOUR-PHOTON STATES 

We now go up to the next step in the hierarchy of inter- 
ference experiments: We pass from three- to four-photon 
states. In so doing, as before, we shall deal with two modes, 
which, however, are now symmetric: Two photons are gen- 
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erated in each mode at the input. Thus the schemes shown in 
Fig. 1 are transformed in an obvious manner: The channels 
for the passage of both modes will be identical. Correspond- 
ingly, detection must be performed with an even number of 
photodetectors. As before, total coincidence, i.e., appear- 
ance of photocounts in each of the detectors simultaneously, 
will constitute a positive result. 

The fundamental possibilities of preparing four-photon 
states are the same as for three-photon states: multistage 
transitions of an atom from an excited state into the ground 
state accompanied by emission of four photons, parametric 
decay of the pump photon into two pairs in a medium with 
fourth-order nonlinearity x'~),  and two-stage parametric 
scattering in piezoelectric crystals with quadratic nonlinear- 
ity, when nondegenerate parametric generation of two 
beams (signal and idler beams) occurs under intense mono- 
chromatic pumping and the two beams in turn pump a sec- 
ond stage, but this time a series of degenerate parametric 
converters. Thus a two-mode four-photon state is formed 
and enters the interferometer. 

In the approximation of prescribed classical pumping, 
the process of formation of a four-photon state is described 
by the following Hamiltonian: 

where the coefficient x is proportional to x'~' (or x ( ~ ) ~  in the 
case of a two-cascade process) and to the pumping ampli- 
tude. 

In the Heisenberg representation the evolution of the 
operators is determined by the following equations of mo- 
tion: 

In second-order perturbation theory in 7 we have 

An expression forb follows from Eq. (2.3 ) by interchanging 
a, and 6,. It can be verified directly that the commutation 
relations ( 1.5) are satisfied for terms of order no higher than 
quadratic in 7. 

As previously, we assume that the noise at the input of 
the system is thermal. Under these conditions, we first ana- 
lyze the possibility of observing interference of intensities 
accompanying mixing of the modes which are generated. 
This requires only two photodetectors. 

The problem under consideration reduces to calculat- 
ing the moment G ; , , which, according to Eq. ( 1.13 ) , is de- 
termined by the input moments calculated with the help of 
Eqs. (1.6) and (2.3): 

Substituting these relations into Eq. ( 1.13) gives 

In the purely quantum case, when a "squeezed" vacu- 
um (No = 0) exists at the input of the interferometer, we 

have 

where the visibility of the interference pattern is V = 3/5. 
We now compare this result with the case of the conver- 

sion of the state 122) = 12), 12),. In this case, 
G,, = Go, = G,,/2 = 2 and G ;, is identical to Eq. (2.7) 
with T = 1. 

In the classical limit (No% 1 ) 

i.e., the difference from the quantum case reduces only to a 
decrease in the visibility of interference: In Eq. (2.8) it is at 
most 1/3. 

We recall that the moment G ;, describes standard in- 
tensity interferometry. We are mainly interested, however, 
in higher-order effects, in particular, the behavior of G ;, . In 
order to determine G ;, , we require moments, calculated 
with the help of Eqs. (1.6) and (2.3), of the form 

Substituting these relations into Eq. ( 1.15) gives 

Gz,'=4N,'+z2 [528N06+1056N05+972N,l 
+ 4 6 2 N ~ + 1 2 0 N ~ + 1 6 N o  

+ 1+6xZ (80NoB+ 168N05+168N,'+74N03+6N,2-4Nd) 
4-9s' (16NO6 

+48N05+68N04+46N,+28Nn2+8Nil+1) 1. (2.12) 

For No = 0 Eq. (2.12) becomes 

If the quantum state at the input of the interferometer is 
described by the vector 122), then the only nonzero moment 
G,, = 4 and G il acquires the form (2.13 ) with 7 = 1. 

Thus in the purely quantum case G ;, vanishes twice as 
7 varies from unity to zero (see Fig. 3). This result confirms 
the more general result of Refs. 6 and 7 concerning the mix- 

FIG. 3. Evolution of G;, (p) with increasing No for the case of the inter- 
ference of two modes of a four-photon state. The pedestal 4 N :  is neglect- 
ed. The curves are normalized to the maximum value. For comparison the 
dashed line illustrates the case of interference mixing of two independent, 
identical, coherent sources. 
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ing of the two-mode (2s)-photon state: The moment G & is 
proportional to the squared Legendre polynomial of order S, 
in particular, 

The fact that the normalized moment G ;, /G ;, ,,, os- 
cillates in the full range from zero to unity (Fig. 3 ) indicates 
that the interference pattern can have a maximum possible 
contrast of unity, which, in general, is typical for the purely 
quantum case. Why then does the interference of intensities, 
according to Eq. (2.7), give a lower value of the contrast 
V = 3/5? The point is that G ;, consists of the linear super- 
position of two input moments GzO and G, ,, and in addition 
both moments are different from zero. As a result some 
"smoothing" of the input minima, which is typical also of 
the classical description, occurs. On the other hand, the mo- 
ment G ;, is determined only by the input moment G,,, and 
this is what gives the maximum possible contrast of the inter- 
ference pattern. The general conclusion from this observa- 
tion is this. In order to obtain the optimal contrast the num- 
ber of photons of the quantum state 2 s  produced must be 
equal to the order K + L of the recorded moment G & . 

We now analyze the classical limit No% 1. In this case, 
according to Eq. (2.12), we have 

The normalized plot of the second interference term is also 
presented in Fig. 3. One can see that the two minima of the 
quantum case are replaced by a single, not so deep, dip of the 
classical case, and in addition it occurs in the region of the 
maximum of the first (quantum) case. Thus the differences 
become purely qualitative. The reason is still the same: In the 
classical description all input moments are nonzero. 

We now compare this result with the case of interfer- 
ence mixing of two identical, independent, coherent modes. 
In this case 

and 

The latter relation is identical to that obtained in Ref. 6. The 
corresponding plot, also presented in Fig. 3 (dashed line), 
exhibits an appreciable similarity with the case No= 1/2 ex- 
amined above. 

CONCLUSIONS 

The main result obtained in this work is that the transi- 
tion from the two-photon to three- and four-photon interfer- 
ence experiments with mixing of a pair of prepared modes 
and detection of the moment of the corresponding order 
G hL (K + L = 3, 4; K and L < 3) introduces, aside from 
quantitative differences, significant qualitative differences 
also between the classical and quantum descriptions. 

Thus each variant of interference considered above is 
interesting and possesses marked specificity. 
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