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We develop a theory in which a consistent account is taken both of the change of the initial 
spectrum of a sample by interaction with the tip of a tunnel microscope and of the relaxation time 
of the nonequilibrium electrons. We show that in many investigations ofelectron systems of low 
dimensionality tunneling between the banks of the junction lead to formation of a localized bound 
state that makes an additional contribution to the tunnel current. 

INTRODUCTION 

Contemporary developments in scanning tunnel mi- 
croscopy (STM) call for descriptions of phenomena outside 
the scope of standard tunneling theory. Thus, an important 
role can be played in a tunneling microjunction by localized 
states due to various impurities and defects, or else to the 
presence of an adsorbate, etc., and not only by the states of 
the continuum. In STM and STS (scanning tunnel spectros- 
copy) investigations of samples, even individual localized 
states influence substantially the image obtained in the ex- 
periment, in contrast to macroscopic junctions whose con- 
tribution to the tunnel current is small if the density of the 
localized states is low. ',' In studies of tunnel microjunctions 
in the presence of localized states, as well as investigations of 
semiconductors and of poorly conducting samples by the 
STM method, it is necessary to take into account various 
relaxation processes that lead to the onset of a stationary 
distribution of the electron d e n ~ i t y . ~  The expression custom- 
arily used for the tunnel current is" 

where Vis the tunneling  amplitude,^, ( E )  andph ( E )  are the 
densities of the electron states at the edges of the tunnel junc- 
tion, and n: ( E )  and n: ( E  - e U )  are the Fermi functions of 
the electron distribution. 

This expression "works" well for metals when the re- 
laxation rate r is large: 

This relation is far from always satisfied for semiconductors. 
Allowance for the finite relaxation rate changes the tun- 

nel current even in the absence of localized states. Starting 
with a self-consistent system of kinetic equations with a re- 
laxation term, the following expression can be obtained for 
the tunnel current: 

where r,,,,, are the relaxation rates on the banks of the 
junction. 

If 

this expression goes over into the standard equation ( 1 ). 
It is important in addition to take into account in tunnel 

microjunctions also the spectrum renormalization due to the 
interaction between the electron states at the banks, since the 

distances between the electrodes are comparable with the 
interatomic distances. Such an interaction can produce in 
the energy gap of one of the electrodes collective localized 
electronic states which contribute to the tunnel current in 
the presence of relaxation (of interaction with the heat reser- 
voir). An attempt to take into account the manifestation of a 
bound state in an interaction between an STM tip and a sam- 
ple was made in Ref. 5. The use of inconsistent methods, 
however, made it impossible to obtain there a correct de- 
scription of the tunnel microjunction. 

We need thus a self-consistent description of the tunnel- 
ing, with simultaneous account of the electron relaxation 
processes and the renormalization of the spectrum via the 
interaction of the electronic states on the banks. This is indi- 
cated also by recent experiments in which current mappings 
of surfaces of nonconducting samples was obtained at a junc- 
tion voltage on the order of several mV, considerably lower 
than the band gap, and also experimental observation of di- 
electric molecules with energy levels significantly below the 
Fermi level. 

DESCRIPTION OF MODEL AND MAIN RESULTS 

1. Consider a situation in which the sample's electronic- 
states spectrum has a gap on the boundary of which the state 
density has a singularity (does not vanish). In addition, an 
impurity state exists near the surface of the tip or of the 
sample, with an energy located in the valence band (see Fig. 
1) .  Such a system can be described by the Hamiltonian 

g,=gd1E d,+ep. .+li~ ck.+d.+ H a ,  
ka 

( 3 )  
P'O 

where c& and cd,, are the electron creation operators in the 
states (k , a )  and ( p l , a )  on the different banks of the junc- 
tion, d ,+ is the operator of electron production on an impu- 
rity, and V is the tunnel matrix element of a transition be- 
tween the states d, and ( k , ~ ) .  

We assume for simplicity that the second bank of the 
junction is in thermodynamic equilibrium and serves as a 
heat reservoir for the states (d, ), whileg, is the correspond- 
ing matrix element of the interaction. 

A correct description of the tunnel phenomena in such a 
system calls for a self-consistent account of both the renor- 
malization of the electron spectrum and of the relaxation. 
We introduce to this end into the Hamiltonian an additional 
interaction with the heat reservoir: 
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FIG. 1. Diagram of states in a microjunction: d-impurity state, d-re- 
normalized collective state, k. p'-states of continuum on the banks of the 
junction, p--states of heat reservoir, V-tunnel matrix element. 

t= g (k-p) ekbbp.+ H.r., 
 PO 

where 

g ( r )  is the effective potential of the interaction with the heat 
reservoir, g ( r )  - 0 in the region of the tunnel barrier and on 
its boundaries, and b &, is the creation operator of a heat- 
reservoir electron in a state (p ,a) .  The heat reservoir is in an 
equilibrium state that is not altered by the perturbationg(r) . 

For a self-consistent description of the tunneling in 
such a system we use the diagram technique for nonequilibri- 
um processes.' We take the perturbation to be 

Note that in this technique the Green's functio%s are matri- 
ces over temporal indices. The equations for G' yield the 
renormalized spectrum andihe density of states of the sys- 
tem, while the equations for G -+  yield the system of kinetic 
equations from yhich one can determine the tunnel current. 
The interaction W does not intermix the spin indices, which 
can therefore be omitted. Taking standard Fourier trans- 
forms with respect to the fast variables, the corresponding 
equations acquire the form 

A 

For G - +  (w,t) we obtain the system of kinetic equations 

a 
i - G,-+=v z ( ~ k d - + - ~ ~ k - + )  + ( & a d d ) - + +  ( ~ d i d d ) - + ,  

a t  k 
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In these equations Z is the selkenergy part duefP the interac- 
tion with the heat reservoir H, and is, just as G, a matrix in 
temporal indices: 

where v ,  (a) is the density of the electronic statesp'. 
It is reasonable to assume that the heat reservoir is a 

system of scatterers randomly placed at points R, [or that 
g ( r )  is a random function]. Then 

For continuum states with a random distribution of such 
centers we have 

where n(r)  = N , / N  is the average density of the scattering. 
With the heat reservoir so defined, a particular form is as- 
sumed by the kinetic equation for the relaxation of the occu- 
pation number n, of each mode: 

v, ( w )  is the density of states of the heat reservoirp. 
Since, however, we are mainly interested in the contri- 

bution made to the current by bound states localized near the 
microjunction, we can choose for the heat-reservoir model 
another limiting case, viz., loczl switching on of the heat 
reservoir. In this limiting case Z,,, is independent of k and 
k', i.e., 

We consider in greater detail the latter model. The results for 
the first model of the heat reservoir are given in Appendix 1. 

Th%system (5)  can be solved exactly and the explicit 
form of G" can be obtained. For example: 

where 
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Recall that 

G I;,. , G I;,, and G i, are similar in form. Explicit expressions 
for these functions are given in Appendix 2. 

Note that the energies of all the states must be reckoned 
from a single level Ef - eU, where U is the applied poten- 
tial. Therefore E, becomes E, - eU in the presence of an 
applied voltage. 

If w is outside the boundaries of the E, spectrum, then 
N(w ) is pure real and r ( w )  pure imaginary. 

2. In the absence of relaxation (r, = 0, r = O), the 
energy of the collective bound state located in the band gap is 
given by the expression 

where pO = dN/d& is the nonrenormalized state density of 
the continuum. Equation (9)  has a pure real solution in the 
regions w > E, and w < E,, where E, and E ,  are respectively 
the lower and upper boundaries of the E, spectrum. This 
value of w corresponds to a localized state located in the 
band gap. The energy of this state depends on V and on the 
actual form of the nonrenormalized density of states p , , ( ~ ) .  
For example, the onset of a localized state in the gap of the 
spectrum bf a superconductor was investigated i n ~ ~ e f .  7. 

If 

which is valid for a two-dimensional electronic system, we 
have in the region w > E, 

I f p , ( ~ )  is quasi-one-dimensional near the spectrum bound- 
ary 

&=en+ ( v2/ ( E , - E ~ )  )'Wt-* 

( W,  is the effective width of the quasi-one-dimensional re- 
gion). It is easily seen that the amplitude of the wave func- 
tion of a bound state $, directly in the junction region is 
determined by the residue of the function 

kk' 

in point w = 2,. 
This yields 

In the case of a two-dimensional band 

where W, = E,  - E, is the width of the 2 0  band. 
It turns out that even though the exponential decrease 

of the tails of the wave function takes place over a character- 
istic length 

Ro=a (Wlo,)  ' / D .  

where a is the lattice constant, the dimension of the effective 
localization region is determined not by R, but by the value 
of a(l$,I-2)1'D. 

In the general case, when there is not one impurity state 
E, but two bands with a bounded spectrum 

E ~ , < E ~ < E ~ I  and E ~ ~ ~ < E ~ < E ~ ~ ,  

localized states can also appear at the boundary of the spec- 
trum. In this case one can obtain in lieu of Eq. (9)  a more 
general equation for the energies of the localized states: 

Let pol ( E ,  ) have a singularity at E ,  = E,, and E ,  = E,, . 
a )  If E,, <E,, < E , ~  < E , , ,  two localized states are pro- 

duced for any form o fp02 (~ , )  and for any value of V; one of 
them has an energy w, > E,,, and the other w, < E,, .  

b) If E , , < E ~ , ,  < E ~ ~  <&,I (or else E O I  < E O ~  < & " I  <&,,z ), 
there exists only one state with energy w > E,, ,  (or with ener- 
gy w < E,,) for any V. The second localized state in the re- 
gion w < e02 (or w > &,* ) occurs only if V >  v,, ifp,,, (&, ) has 
no singularities in the density of states. Ifp,,(&,) has a singu- 
larity at E = E,,, (or E = E,, ) the situation is similar to case 
a ) .  

C )  If &,I <&,I < & 0 2 < & o ~ ,  while p0,(&,) and p,,(&,) 
have singularities at the spectrum boundaries, then two lo- 
calized states are produced for any value of V, with energies 
w < E", and w > E , ~  . Note that no localized states are pro- 
duced in the band gap &,, < E < &,,,. 

When account is taken of the interaction with the heat 
reservoir, when r, ( r d )  and r, (w) differ from zero, but 
r, (2, ) < t, - E,, and r, (5, ) < 5, - E,,  , the split-off level 
t, acquires a finite width y: 

In the specific case of a two-dimensional electron density 

The condition for the existence of a split-off state is 

It should be noted that r, (2, ) can be much smaller than 
I?, (w ) at w < E,,  (the relaxation rate for the continuum 
states). In the selected heat-reservoir models the effective 
potential g ( r )  tends to zero in the region of the tunnel bar- 
rier. In fact, 

At w = t, the function qb,, (7 - ?,) describes a state local- 
ized in the region of the barrier, whereg(r) tends to zero, so 
that the effective-potential matrix element g( r )  which enters 

577 Sov. Phys. JETP 75 (3), September 1992 P. I. Arseev and N. S. Maslova 577 



in r, (2 ,  ) can be very small if g ( r )  decreases rapidly 
enough, and the condition ( 14) will be met even if 

r k ( ~ ) )  D v 2 p 0 ( ( ~ )  

for the states of the continuum: 

&O<(O<E, . .  

3. We proceed>ow to the kinetic equations ( 6 )  for the 
Green's functions G -+, which determine the tunnel cur- 
rent. We investigate the stationary case 

dC;-+ -- = 0. 
d t p(o) = EV ( ~ G ~ : , ( W )  ) ( t k - e d - i r , i ) - t ~ ( a ) .  

k I:' 

Recall that the Ga" are related by 

e - - = ~ r + G - +  
G++=-@+C-' 

After rather unwieldy transformations we obtain for w  > E ,  

In the stationary state, furthermore, since we are interested 
in the contribution to the tunnel current from a bound state, 
we can assume that 

G;,C. (o )  =2n, ( 0 )  Im Glk- (a), 

Gid- '(o)  =2n2 (o )  Im G,,,' ( t o ) ,  

where n ,  ( a )  and n 2 ( w )  are the occupation numbers for the 
states k and d, respectively. 

After summation over k, the equation for G & + yields 

VZ (Gdk-+-Gkd-') 
k 

where Z ( w )  is the denominator of G 2,. 
From Eqs. ( 18)- (20)  we can determine n ,  ( w )  and 

n , (w) .  The tunnel current is then determined by the expres- 
sion 

Taking into account the explicit form of n , ( w ) ,  we obtain 

where nz ( w )  is the Fermi distribution function for the states 
of the heat reservoir p with energy w, while 

kk '  We have to notice that Eqs. ( 1 8 ) - ( 2 0 )  can be written in the 
following form: From the stationary equation for G ,  + it follows that 

where n: = nj . ,  ny = n;. The tunnel current is given by 
n:. ( 0 )  is the Fermi distribution function for the states p' 
with energy o; nz ( w )  and ni. ( w )  have Fermi-level positions 
that differ by eU, where U is the applied voltage. 

It follows from ( 16) and ( 17) that 

r , , ( o )  Im Gddr (o)  ( n z ( o )  -np." ( o )  ) 
=-rk(o) Sm G ' ( o ,  0 )  ( n ,  (o)  - n P 0 ( o )  ). ( 1 8 )  

Note that it suffices to determine only one of the coefficients, 
of n:. or of n;, since the current depends only on the differ- 
ence between the occupation numbers. The following rela- 
tion is then satisfied: From the stationary equations for G ,, + and G & we ob- 

tain after summing over k 

which can be verified by direct substitution of the explicit 
expressions for r , ,  r , ,  yo, and y; from ( 1 8 ) - ( 2 0 ) .  

We are interested in the contribution made to the tunnel 
current by a localized state, i.e., when w-2,. It can there- 
fore be assumed that 

V 2  (Im X ( o )  Im Gdd'nz- Im Y ( a )  n , )  +2rd  Im (o )  n,," 
-2r, Im $ (o)n;=-2rd Im GCldr ( n - ~ ) ~ , " ) ,  ( 19) 

where we have introduced the notation 
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For the specific case of a two-dimensional system of elec- 
trons, recognizing that for w  -2, we have 

we obtain for the tunnel current the expression 

where 

When V2p,$ I",, I",, it follows from ( 2 4 )  that 

The values of I", and I?, in ( 2 4 )  and ( 2 5 )  are defined for 
w  = 2,. If E ,  is located between Ef and Ef - eU, the tunnel 
current differs from zero because of the appearance of a new 
collective state E d .  

Recall once more that the position of E, relative to the 
band boundary depends on the applied voltage U, since the 
difference of all the characteristic energies is changed addi- 
tionally by an amount eU. 

It is shown in Appendix 1 that the results are qualita- 
tively unchanged when another limiting case is chosen for 
the model of the heat reservoir, when 

POSSIBLE GENERALIZATIONS OFTHE INVESTIGATED 
MODEL 

It is possible to take into account the direct interaction 
of the electronic states in different banks of the junction: 

kop' 

The situation does not change here if V, 4 V, except that it is 
necessary to replace I", ( E d  ) by I"; ( E d  ) in expressions 
(21)- (25)  for the tunnel current: 

We have considered thus far a finite relaxation rate of 
the continuum spectrum in only one bank of the junction. 
The relaxation in the other bank can also be taken into ac- 
count by introducing an additional interaction with the heat 
reservoir for the statesp': 

R, =z aP~cp~.c,,. f H.a. ( 2 7 )  
q P ' 0  

h h 

The interaction H,  is analogous to H,, and a,, is the analog 
of g(k - p) .  The energy and width of the localized level are 
now determined by the equation 

where 

r,. ( o ) = c c ~ . ~ v ~ ( o ) ,  

and v, ( w )  is the density of state of the heat reservoir q. 
I", ( w )  and I?, ( w )  were defined earlier in Eq. (7) .  

The energy of the new bound state can be found from 
the condition 

that is to say, allowance for the relaxation in the other bank 
of the junction leads to effective renormalization of the inter- 
action-matrix element 

For a wide enough band I",. , however, v,. 1, therefore 2, 
decreases only insignificantly. When I",, is taken into ac- 
count in expression ( 2 5 )  for the tunnel junction, I", must be 
replaced by I"; : 

Note that the equation for the resonant tunneling with- 
out allowance for a finite rate of electron-density relaxation 
at 

eUBr , ,  r,, 

where I", and I", are tunneling widths of the resonant level 
due to the interaction with the left- and right-hand banks of 
the junction, takes the form 

In our case I", corresponds to V2p,, and I?, corresponds 
to I",. When relaxation is taken into account, T, must 
be replaced by TIT, (I", + I", ) - I ,  and I", by 
I",I",. (I", + I",. ) - I .  As a result we obtain 

This expression agrees fully with the equation obtained for 
the tunnel current by directly substituting in ( 2 4 )  the value 
of I"; (2,)  from ( 3 0 ) .  

Let us finally dwell briefly on one simpler special case. 
If the conduction band of the tunnel-microscope tip is re- 
garded as quasi-one-dimensional, or if the electron spectrum 
of the investigated sample has a two-dimensional character, 
the appearance of tunnel transitions between the sample and 
the tip can lead to formation of a new bound state. Thus, we 
confine ourselves to the usual tunnel Hamiltonian: 

We recognize, however, that the density of states of one of 
the bands has a singularity. Recall that the new state spec- 
trum is determined by the poles of the Green's function 
( 12) ,  wherep,, andp,, are the densities ofthep- and k-states 
in the junction banks. If Eq. ( 12 ) leads to the appearance of a 
split-off bound state, then if account is taken of the relaxa- 
tion in both banks of the junction this state makes an addi- 
tional contribution to the tunnel current. A closed system of 
equations for the Green's function can be written in the form 
( 2 2 ) ,  which is convenient for the determination of 
n, ( w )  = n ,  and n, ( w )  = n,. The quantities y,, y2, y,, and 
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T, needed to calculate the tunnel current are in this case 
given by 

where 

2 0  bands, the level splitting can then be comparable with the 
width of the band itself. 

An estimate of the actual values of the introduced relax- 
ation constants is in general quite complicated. We can point 
only to one qualitative effect. In samples containing thin lay- 
ers (for example in superlattices), the rate of relaxation from 
a bound state should increase abruptly if the layer thickness 
of the investigated material is less than the localization radi- 
us of this state. 

For bands that are not too narrow ( W >  V, ) in the vicinity of 
the energy E,, + w, of the split-off state (E,, is the position of 
the upper boundary of the band, with a singularity in the 
density of states) we have y,,y,)T,,y,. Integration of Eq. 
(23) over w in the vicinity of E, + w, yields for the addi- 
tional contribution to the current the value 

APPENDIX 1 

Note for a heat-reservoir model for which 

Z-4neT712 (rlii-rp).Jg012[n,o (~ ,+o , )  -n,O(e,+to,) 1 (Re 20)2. 

where $, is defined by Eq. ( 10). 
Cases are also possible in which the relative locations of 

the bands are such that in some interval of voltage only a 
bound state ensures the onset of a tunnel current. As a com- 
parison, the usual tunnel current for overlapping initial 
bands would be equal to 

Z-4neV,2U (Re 2,)'. 

Disregarding the change of the spectrum of the initial 
conduction bands, considering only the final rate of the re- 
laxation of T, and T, , expressions (23) and ( 3  1 ) lead to the 
modified equation (2 )  given in the Introduction for the tun- 
nel current. 

CONCLUSION 

Thus, when analyzing contemporary experiments on 
scanning tunnel microscopy (STM) and standard tunnel 
spectroscopy (STS) it is necessary to alter substantially the 
conventional description of tunnel junctions. I t  is no longer 
correct to state that the tunnel current is a measure of the 
initial density of states in the investigated material. Interac- 
tion of the sample with the nearby tip in the course of tunnel- 
ing distorts the initial density of states, and produces new 
bound states that play a particularly important role in the 
case of dielectrics or surface bands in semiconductors. In 
this case a nonzero current can occur at a potential differ- 
ence such that the initial bands do not overlap, and a contri- 
bution can be made to the current by impurities from energy 
levels deep below Ef. The fact that the location of the bound 
state depends on the tunnel matrix element Vshould lead to 
a nonexponential (and sometimes also nonmonotonic) de- 
pendence of the tunnel current on the distance to the sample 
in the regions of potentials corresponding to the energies of 
such states. 

Since the tip of a tunnel microscope can be located at  
distances on the order of interatomic from the surface of the 
investigated sample, the tunnel matrix element may not dif- 
fer strongly from the hop-over integral that sets the widths of 
the energy bands in the sample itself. For the case of 1D and 

where Ti is the average gumber of the scatterers per unit cell, 
the Green's functions G' take the form 

The changes mean in fact that the effective width of an ener- 
gy level y of a bound-state level is expressed somewhat dif- 
ferently in terms of the initial constants T, and T, : 

In contrast to Eqs. ( 18)-(21), in which the tunnel current is 
determined by the rate of relaxation of the local electron 
density 

the tunnel current now sets the rate of change of the total 
number of particles: 

I t  turns out that expressions ( A l )  and (A2)  differ near the 
energy of the split-off level by an amount ii / $(,I ' ,  where $,, 
is the amplitude of the wave function of the bound state at 
the point r = 0. Thus, if the density ii of the relaxation 
centers is such that within the region of localization of the 
bound state ( S -  I$,/ -') there is located on the average one 
such center, then the two expressions for the tunnel current 
simply coincide. Expressions of the type ( 18)-(23) for the 
tunnel current remain in any case, but the dependences of T, 
and T, on the initial constants g may differ. 

APPENDIX 2 

The Green's functions take the form: 
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