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Wedevelop a theory in which a consistent account is taken both of the change of the initial
spectrum of a sample by interaction with the tip of a tunnel microscope and of the relaxation time
of the nonequilibrium electrons. We show that in many investigations of electron systems of low
dimensionality tunneling between the banks of the junction lead to formation of a localized bound
state that makes an additional contribution to the tunnel current.

INTRODUCTION

Contemporary developments in scanning tunnel mi-
croscopy (STM) call for descriptions of phenomena outside
the scope of standard tunneling theory. Thus, an important
role can be played in a tunneling microjunction by localized
states due to various impurities and defects, or else to the
presence of an adsorbate, etc., and not only by the states of
the continuum. In STM and STS (scanning tunnel spectros-
copy) investigations of samples, even individual localized
states influence substantially the image obtained in the ex-
periment, in contrast to macroscopic junctions whose con-
tribution to the tunnel current is small if the density of the
localized states is low. "? In studies of tunnel microjunctions
in the presence of localized states, as well as investigations of
semiconductors and of poorly conducting samples by the
STM method, it is necessary to take into account various
relaxation processes that lead to the onset of a stationary
distribution of the electron density.’ The expression custom-
arily used for the tunnel current is*

I~2ne 5de Vi, (e)pu(e) [7,°(e)—n, (e—eU) ], (1)

where Vis the tunneling amplitude, p, (¢) and p, (&) are the
densities of the electron states at the edges of the tunnel junc-
tion, and 1) (¢) and n} (¢ — eU) are the Fermi functions of
the electron distribution.

This expression “works” well for metals when the re-
laxation rate I is large:

>V, -

This relation is far from always satisfied for semiconductors.

Allowance for the finite relaxation rate changes the tun-
nel current even in the absence of localized states. Starting
with a self-consistent system of kinetic equations with a re-
laxation term, the following expression can be obtained for
the tunnel current:

I~ 9me j‘ (npO(g)—nh"z(s—eU))V‘pk(e)pp(a)l’pl‘h &, ()
v Pprp+VzphPu+Pka
where T, ,, are the relaxation rates on the banks of the
junction.
If

Lo > VP0u, 4

this expression goes over into the standard equation (1).

It isimportant in addition to take into account in tunnel
microjunctions also the spectrum renormalization due to the
interaction between the electron states at the banks, since the
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distances between the electrodes are comparable with the
interatomic distances. Such an interaction can produce in
the energy gap of one of the electrodes collective localized
electronic states which contribute to the tunnel current in
the presence of relaxation (of interaction with the heat reser-
voir). An attempt to take into account the manifestation of a
bound state in an interaction between an STM tip and a sam-
ple was made in Ref. 5. The use of inconsistent methods,
however, made it impossible to obtain there a correct de-
scription of the tunnel microjunction.

We need thus a self-consistent description of the tunnel-
ing, with simultaneous account of the electron relaxation
processes and the renormalization of the spectrum via the
interaction of the electronic states on the banks. This is indi-
cated also by recent experiments in which current mappings
of surfaces of nonconducting samples was obtained at a junc-
tion voltage on the order of several mV, considerably lower
than the band gap, and also experimental observation of di-
electric molecules with energy levels significantly below the
Fermi level.

DESCRIPTION OF MODEL AND MAIN RESULTS

1. Consider a situation in which the sample’s electronic-
states spectrum has a gap on the boundary of which the state
density has a singularity (does not vanish). In addition, an
impurity state exists near the surface of the tip or of the
sample, with an energy located in the valence band (see Fig.
1). Such a system can be described by the Hamiltonian

o + N
H = Z‘akcko+cko+€d Zda+da+ Z Ep’ cp'acp'o+H1,
ko o p'o

Hi=gdz da+cpv,+VZ; ¢xotd,+ Ha, (3)
p'c ko

where ¢, and ¢, are the electron creation operators in the
states (k,o0) and (p’,0) on the different banks of the junc-
tion, d ;| is the operator of electron production on an impu-
rity, and ¥ is the tunnel matrix element of a transition be-
tween the states d, and (k,o).

We assume for simplicity that the second bank of the
junction is in thermodynamic equilibrium and serves as a
heat reservoir for the states (d,, ), while g, is the correspond-
ing matrix element of the interaction.

A correct description of the tunnel phenomena in such a
system calls for a self-consistent account of both the renor-
malization of the electron spectrum and of the relaxation.
We introduce to this end into the Hamiltonian an additional
interaction with the heat reservoir:
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FIG. 1. Diagram of states in a microjunction: d—impurity state, d—re-
normalized collective state, k. p'—states of continuum on the banks of the
junction, p—states of heat reservoir, ¥—tunnel matrix element.

= Zg(k—p) CxoTbpet+ Hoa,, (4)

kpo

where

gk-p) =7 | degexplik-pr],

g(r) is the effective potential of the interaction with the heat
reservoir, g(r) — 0 in the region of the tunnel barrier and on
its boundaries, and b .\, is the creation operator of a heat-
reservoir electron in a state (p,0). The heat reservoir is in an
equilibrium state that is not altered by the perturbation g(r).

For a self-consistent description of the tunneling in
such a system we use the diagram technique for nonequilibri-
um processes.® We take the perturbation to be

W=H,+Hg.

Note that in this technique the Green’s functions are matri-
ces over temporal indices. The equations for G” yield the
renormalized spectrum and the den51ty of states of the sys-
tem, while the equations for G- * yield the system of kinetic
equations from which one can determine the tunnel current.
The interaction W does not intermix the spin indices, which
can therefore be omitted. Taking standard Fourier trans-
forms with respect to the fast variables, the corresponding
equations acquire the form

Gt =G5 +Gis VG +Grr (3G ).
=GV Y GG S Gl
k

(5)
G =G"" VG +Gi" (27G") kas

Givl "‘thd +GH VZ de +Gd(i z:rM G'ld

For G ~ * (w,t) we obtain the system of kinetic equations

ad ~ ”
i 67 Gy =V Z (de~+“Gdk—+) + (BaaGaa) ~*F (Gddzdd) -4,
Kk

0 - -
i_a_tck:+<ek-—akv)0k3
=V (Gar~Cra )+ (26) m +(62) v,
0
i‘g?de—*’-*-(Ek"‘ed) Gyt
=V( Gdd~+_2 C;:" ) +(Gi)kd-++ (’\zékd)-"-, (6)
=
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0
i— Gu~*+ (ea—8x) Gax™™
at
=V ( Zﬁ Gk—l—(.'*.—Gd(i—*.) + (Gi)d;-‘k'*"(’}’\z)dk"*'-
" .

In these equations 2 is the self-energy part due to the interac-
tion with the heat reservoir H, and is, just as G, a matrix in
temporal indices:

o-- oyt
—xy  =xy

Z+~ i+
Xy =Xy

A‘ —
o=

See= 2 g(k—-p)g(K'—p)Gpp' (0,
3 (7

Bu= D) 18 G (@), oy B -+,
-

2o =i|ga|*v, (@) =iTs(m),

where v, () is the density of the electronic states p’.

It is reasonable to assume that the heat reservoir is a
system of scatterers randomly placed at points R, [or that
g(r) is a random function]. Then

]
2(k—p)g(K'—p)=N-' Y, ¢* expli (k—K)R.].

For continuum states with a random distribution of such
centers we have

[+1 -1
S =g e DGy (),

P

where n(r) = N, /N is the average density of the scattering.
With the heat reservoir so defined, a particular form is as-
sumed by the kinetic equation for the relaxation of the occu-
pation number n, of each mode:

7]
a”‘+zv Jdo (Gt (0) —Cuit (0) ) 2Ty (me—ny?),
Ti=ginv, (o),

v, (@) is the density of states of the heat reservoir p.

Since, however, we are mainly interested in the contri-
bution made to the current by bound states localized near the
microjunction, we can choose for the heat-reservoir model
another limiting case, viz., local switching on of the heat
reservoir. In this limiting case 2,,. is independent of k and
k', ie.,

zki‘f=gZZ,G,‘;”°(m), e =ig™vp (@) =iT:(0).

4

We consider in greater detail the latter model. The results for
the first model of the heat reservoir are given in Appendix 1.

The system (5) can be solved exactly and the explicit
form of G” can be obtained. For example:

Gu (0)=(1-T)/Z(0),

Z(0)=(1-T) (0—e+ils(w) ) —V?N (),

where

P. 1. Arseev and N. S. Maslova 576



N(o)= ZGn'o(m),
j 8)
I‘=il‘k(m) Z Gkkro(ﬁ)).

Recall that
Gu™ ((1)) = ((D_‘Sk+i6) -

G > G 1y, and G, aresimilar in form. Explicit expressions
for these functions are given in Appendix 2.

Note that the energies of all the states must be reckoned
from a single level E, — eU, where U is the applied poten-
tial. Therefore £, becomes £, — eU in the presence of an
applied voltage.

If w is outside the boundaries of the £, spectrum, then
N(w) is pure real and I' (w) pure imaginary.

2. In the absence of relaxation (I'; =0, T =0), the
energy of the collective bound state located in the band gap is
given by the expression

0—e,—V*N(0)=0 9)
or

o—ei—V? Sdspo(e) (o—e)~'=0,

where p, = dN /de is the nonrenormalized state density of
the continuum. Equation (9) has a pure real solution in the
regions w > €, and w <&, where £, and &, are respectively
the lower and upper boundaries of the £, spectrum. This
value of w corresponds to a localized state located in the
band gap. The energy of this state depends on ¥ and on the
actual form of the nonrenormalized density of states p,(¢).
For example, the onset of a localized state in the gap of the
spectrum of a superconductor was investigated in Ref. 7.
If

po(e) =(g.—¢0) Y,

which is valid for a two-dimensional electronic system, we
have in the region w > ¢,
O=8=01&,,

0o=(e,~&0)exp[—(e,—&,) (&a—ea)/V?].
If p,(€) is quasi-one-dimensional near the spectrum bound-
ary

gi=e,+(V?/(e,—eq) )’ W,
(W, is the effective width of the quasi-one-dimensional re-
gion). It is easily seen that the amplitude of the wave func-

tion of a bound state 9, directly in the junction region is
determined by the residue of the function

6 (0, 00= 3 Gui (0)

kk’

inpointw = &,.
This yields

|¢o'z=[ .{ dep, (e) (Ea—e) ™" ]2/[ dep, (e) (24—e)%  (10)

In the case of a two-dimensional band
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[bo|*= (£c—24)* Wawo V=, (11)

where W, = g, — €, is the width of the 2D band.

It turns out that even though the exponential decrease
of the tails of the wave function takes place over a character-
istic length

Roza (W/(l)o) b

where a is the lattice constant, the dimension of the effective
localization region is determined not by R, but by the value
ofa( I¢O| —2)1/D.

In the general case, when there is not one impurity state
£, but two bands with a bounded spectrum

€01<€1 <€y and €0, <€, <&y,

localized states can also appear at the boundary of the spec-
trum. In this case one can obtain in lieu of Eq. (9) a more
general equation for the energies of the localized states:

v [ j de,poy (€41) (0—e4) ™ ][ jdezpoz(s«z) (0—e,)* ] =1,

(12)

Let py, (£,) have a singularity at e, = ¢, and g, = ¢, .

a) If gy, < €yp <€, <€, twWo localized states are pro-
duced for any form of p,,(&,) and for any value of V; one of
them has an energy o, > ¢,, and the other w, < &,.

b) If £gy <€q1 <€p <€, (OF €lse £y < gy <€y <E42),
there exists only one state with energy o > ¢,, (or with ener-
gy w <&y, ) for any V. The second localized state in the re-
gion o < £y, (or w > €,, ) occurs only if V> V. if p,,(&,) has
no singularities in the density of states. If p,, (¢,) has a singu-
larity at £ = g,, (or € = £,, ) the situation is similar to case
a).

c) If &y, <€, <€p2 <€, While py,(£,) and py,(€,)
have singularities at the spectrum boundaries, then two lo-
calized states are produced for any value of ¥, with energies
w <€y and w > €,,. Note that no localized states are pro-
duced in the band gap €,, <€ < &g,.

When account is taken of the interaction with the heat
reservoir, when I'; (w) and I'; (o) differ from zero, but
r,(&,) <&, —¢, and T, (§,) <&, — €,, the split-off level
£, acquires a finite width y:

_ Tu(8a) (Ba—ea)*V*+Tu(d)
= 1— VN (20) '
In the specific case of a two-dimensional electron density

'Y=Ph (Ed) (Ed—ed) 2 (éd——e") V“”po“+I‘d(éd) (%‘d——e.,) V_zpo-‘.

(13)

The condition for the existence of a split-off state is

YLEg—Ey. (14)
It should be noted that I';, (£,) can be much smaller than
', (w) at w<¢, (the relaxation rate for the continuum
states). In the selected heat-reservoir models the effective
potential g(7) tends to zero in the region of the tunnel bar-
rier. In fact,

tuo) ~ | Jg ey, G-ryar

At o = £, the function ¢, (f —T,) describes a state local-
ized in the region of the barrier, where g(r) tends to zero, so
that the effective-potential matrix element g(#) which enters

z'Vp((D)~
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in 'y (§;) can be very small if g(r) decreases rapidly
enough, and the condition (14) will be met even if

Th(0)>Vpo(w)

for the states of the continuum:

Eo<w<Eg,.

3. We proceed now to the kinetic equations (6) for the
Green'’s functions G ~*, which determine the tunnel cur-
rent. We investigate the stationary case

0G™~

=0.
at

Recall that the G*# are related by
G ~=G"+G ",
Gtt=—G+G+.
In the stationary state, furthermore, since we are interested

in the contribution to the tunnel current from a bound state,
we can assume that

G (0)=2n, (0) Im Gy (@),
G(]d_+((1)) =2n2((1)) Im Gddr((l)) ,

(15)

where n,(w) and n,(w) are the occupation numbers for the
states k and d, respectively.
After summation over k, the equation for G, * yields

Y, (Ga*—Gu™)
k
==2T'(0)Im G (0,0) (n,(0) —n,* (o)), (16)

where ng (w) is the Fermi distribution function for the states
of the heat reservoir p with energy w, while

Im G (0,0)=ImG (0, 7) |r=o=Im ZGk;' (o).
kk’

From the stationary equation for G ,; * it follows that

|4 Z (Gdk~+—Gk¢—+) =2le((D) Im Gddr (nz ((1)) _np'()(m) )y
k
(17)

n). (w) is the Fermi distribution function for the states p’
with energy w; n, (@) and 1), (@) have Fermi-level positions
that differ by eU, where U is the applied voltage.

It follows from (16) and (17) that

Ti(o)Im G (0) (n(0) —n,"(w))
=-Tw(0)Im G (o, 0) (n(0)—n,(0)). (18)

From the stationary equations for G ;, * and G, *
tain after summing over k

we ob-

V2 (Im X (0)Im Gy'n.— Im Y (o) ny) +2T Im A (@) 7y’
—2I, Im B (@) n,"=—2T4 Im Gu' (m.—1p"),  (19)

where we have introduced the notation
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X(0)= Z (ex—est+ily) 'S (0),

-1

S(m)=[1—iFk(m)Z (ex—eat+ily) ™" J )

Y(o)= Zlm Gix (o) (ex—eatHil) 'S (w),
Kk’

AMo)= Z VG (@) (ex—eatils) 'S (w),

B(w)= ZV (ZG;,;((») )(ek_Sd—iF(1)_lS((D).

After rather unwieldy transformations we obtain for ® > ¢,
V2Im X (0)Im Gy (0)=V?*p, Im(Z(w)) !,

ImA(e)=Im(Z (o))",
(20)
ImB(w)=Im(Z(o))"'},

f=Be( 2 (Ba—e4) (ex—eqtily) ™ )v

VImY(0)=Imn(Z(0)) " (Vpe+Twf+T.),

where Z(w) is the denominator of G .

From Egs. (18)-(20) we can determine n,(w) and
n,(w). The tunnel current is then determined by the expres-
sion

= Sdm{ZI‘d(m)Im Gu (®) [nz(m)—npvo(ﬁ))]}. (21)

Taking into account the explicit form of n, (), we obtain

I= 5 do4T T Im (Z7Y) [(TeIm A—V2Im X Im G,") np®
— (T Im B—V?Inm Y)n,"1[2V* (Im Gy’ /Im G (0, 0) ) Im YT,
+(2V:T, Im X+4T.0) Im Gaa™) .

We have to notice that Egs. (18)—(20) can be written in the
following form:

Lona+Tingctyo n’+n, Yo=Yz (R2—1,°),
0 0 €22)
T1(r—n,") == (na—n2’"),
where n§ = nj,, n{ = n. The tunnel current is given by
I ~ Sdm [l (T Fye) (' —np") (14T |+ Vil ey ]) 7
(23)

Note that it suffices to determine only one of the coefficients,
of nj. or of ny, since the current depends only on the differ-
ence between the occupation numbers. The following rela-
tion is then satisfied:

I +yo=— (1‘2""‘{0' )s

which can be verified by direct substitution of the explicit
expressions for I'|, T',, ¥,, and 7, from (18)—-(20).

We are interested in the contribution made to the tunnel
current by a localized state, i.e., when w ~£,. It can there-
fore be assumed that
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Z((l))=Z, (’8}) ((1)_‘5.1"}‘1:7) .

For the specific case of a two-dimensional system of elec-
trons, recognizing that for o ~£, we have

Z Im Gk;' ((1)) =Im Gddr((l)) (evfsd)zV‘z,

kk’

we obtain for the tunnel current the expression
41T (VPpot+2I) [n,° (8a) —np° (£4) ]

, , (24)
(V0o 2TV (e,—ea) "+ 20, ] HATWT,} 27 (24)

I~

where
[Z' (82) 17'=(Vpo) 2 exp[—(eo—ed) e. V7).

When V%p,> Ty, T, it follows from (24) that

_ 2Tl (n,° (82) —ne° (80)). (25)
Z'(80) (TaV*(eo—ga) 2+Ty)

The values of I'; and I';, in (24) and (25) are defined for
o =E,.If, is located between E, and E, — eU, the tunnel
current differs from zero because of the appearance of a new
collective state £,.

Recall once more that the position of €, relative to the
band boundary depends on the applied voltage U, since the
difference of all the characteristic energies is changed addi-
tionally by an amount eU.

It is shown in Appendix 1 that the results are qualita-
tively unchanged when another limiting case is chosen for
the model of the heat reservoir, when

zkl:’ () ~6u'g.~2r“w, ().

POSSIBLE GENERALIZATIONS OF THE INVESTIGATED
MODEL

It is possible to take into account the direct interaction
of the electronic states in different banks of the junction:

H'=V, cho*c,.,,+ H.a. (26)
kop’

The situation does not change here if ¥, € V¥, except that it is
necessary to replace ', (£,) by I (£;) in expressions
(21)-(25) for the tunnel current:

T (8a) =T (&) +V.vpr (£4).

We have considered thus far a finite relaxation rate of
the continuum spectrum in only one bank of the junction.
The relaxation in the other bank can also be taken into ac-
count by introducing an additional interaction with the heat
reservoir for the states p':

A =Z p'CyroCeo + Haoa, (27)

qp’c

The interaction 1?3 is analogous to 1’[\12, and e, is the analog
of g(k — p). The energy and width of the localized level are
now determined by the equation

(1+Tevp ) (1—ilWN(0)) (0—e4) — V2N (0) —il'e=0, (28)
where

T, (0)=ap*ve(w®),
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and v, (w) is the density of state of the heat reservoir g.
I'; (w) and T, (w) were defined earlier in Eq. (7).

The energy of the new bound state can be found from
the condition

(JJ"—Sd—V:N(m) (1+rp’Vp')—‘=0= (29)

that is to say, allowance for the relaxation in the other bank
of the junction leads to effective renormalization of the inter-
action-matrix element

V: oma VE(L+Tpver) "

For a wide enough band ', however, v, <1, therefore £,
decreases only insignificantly. When T, is taken into ac-
count in expression (25) for the tunnel junction, I'; must be
replaced by I':

T4 (84) =Ta(8) [y (84) [Ta(8)+ Ty (80)] "

Note that the equation for the resonant tunneling with-
out allowance for a finite rate of electron-density relaxation
at

e[7§>IH, I;’

where I'; and I', are tunneling widths of the resonant level
due to the interaction with the left- and right-hand banks of
the junction, takes the form

I~T\ T (TAT,) " (rne—ny).

In our case I'; corresponds to ¥?p,, and T, corresponds
toI',. When relaxation is taken into account, I', must
bereplaced by I, I(,+T)~', and T, by
[T, (T, +T,)"". Asaresult we obtain

~ Vzpordrhrp'[nro(gd)—nqo(éd)] [Z (g) 1
V2p,Ta(Lpt o V2 (8,—€4) 72) + 0Ty (Vo +Ta) )

This expression agrees fully with the equation obtained for
the tunnel current by directly substituting in (24) the value
of I'; () from (30).

Let us finally dwell briefly on one simpler special case.
If the conduction band of the tunnel-microscope tip is re-
garded as quasi-one-dimensional, or if the electron spectrum
of the investigated sample has a two-dimensional character,
the appearance of tunnel transitions between the sample and
the tip can lead to formation of a new bound state. Thus, we
confine ourselves to the usual tunnel Hamiltonian:

H'—_- Z 8kckn+ck0+ Z Spcpo+cpa'i' Vl Z cku+cpa+ H.a.
ko po

kpo

We recognize, however, that the density of states of one of
the bands has a singularity. Recall that the new state spec-
trum is determined by the poles of the Green’s function
(12), where p,, and p, are the densities of the p- and k-states
in the junction banks. If Eq. (12) leads to the appearance of a
split-off bound state, then if account is taken of the relaxa-
tion in both banks of the junction this state makes an addi-
tional contribution to the tunnel current. A closed system of
equations for the Green’s function can be written in the form
(22), which is convenient for the determination of
n,(w) = n, and n, (0) = n,. The quantities 7,, ¥,, %o, and
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', needed to calculate the tunnel current are in this case
given by

'Y1=Fp Im Gnr(w) .
'Y:L:Fh Im Gzz'(m)e
Yo=V,Re Z, Im G,."(0) T,
T=V ImZ,1lm G, (o),

where

G (@)= D (0,2, D"), (1)

PP

Z,= Z, [ex—epti(T,+Tp) 1
kp

For bands that are not too narrow ( W > V) in the vicinity of
the energy €, + o, of the split-off state (¢, is the position of
the upper boundary of the band, with a singularity in the
density of states) we have 7,,7,>T",,7,. Integration of Eq.
(23) over w in the vicinity of €, + w, yields for the addi-
tional contribution to the current the value

I~b4geV 3 (T, A4-T5) %o |2 [n,’ (es+0) —n.’ (e, m,) | (Re Z,)?,

where ¢, is defined by Eq. (10).

Cases are also possible in which the relative locations of
the bands are such that in some interval of voltage only a
bound state ensures the onset of a tunnel current. As a com-
parison, the usual tunnel current for overlapping initial
bands would be equal to

I~4neV *U(Re Z,)2.

Disregarding the change of the spectrum of the initial
conduction bands, considering only the final rate of the re-
laxationof I'y and I',, expressions (23) and (31) lead to the
modified equation (2) given in the Introduction for the tun-
nel current.

CONCLUSION

Thus, when analyzing contemporary experiments on
scanning tunnel microscopy (STM) and standard tunnel
spectroscopy (STS) it is necessary to alter substantially the
conventional description of tunnel junctions. It is no longer
correct to state that the tunnel current is a measure of the
initial density of states in the investigated material. Interac-
tion of the sample with the nearby tip in the course of tunnel-
ing distorts the initial density of states, and produces new
bound states that play a particularly important role in the
case of dielectrics or surface bands in semiconductors. In
this case a nonzero current can occur at a potential differ-
ence such that the initial bands do not overlap, and a contri-
bution can be made to the current by impurities from energy
levels deep below E,. The fact that the location of the bound
state depends on the tunnel matrix element ¥ should lead to
a nonexponential (and sometimes also nonmonotonic) de-
pendence of the tunnel current on the distance to the sample
in the regions of potentials corresponding to the energies of
such states.

Since the tip of a tunnel microscope can be located at
distances on the order of interatomic from the surface of the
investigated sample, the tunnel matrix element may not dif-
fer strongly from the hop-over integral that sets the widths of
the energy bands in the sample itself. For the case of 1D and
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2D bands, the level splitting can then be comparable with the
width of the band itself.

An estimate of the actual values of the introduced relax-
ation constants is in general quite complicated. We can point
only to one qualitative effect. In samples containing thin lay-
ers (for example in superlattices), the rate of relaxation from
a bound state should increase abruptly if the layer thickness
of the investigated material is less than the localization radi-
us of this state.

APPENDIX 1

Note for a heat-reservoir model for which
Zkaks'zakk'ﬁgiz Z Gpups
P

where 7 is the average Qumber of the scatterers per unit cell,
the Green’s functions G” take the form

Gui=| o—eatire—v? Y, et ]
k

G e =iy (0—&x+ily) !
V2 (0—extily) "t (0—ex+il\y ) G,
der=Gdkr= V(ﬁ)—sri'il-‘h) —iGddr.

The changes mean in fact that the effective width of an ener-
gy level y of a bound-state level is expressed somewhat dif-
ferently in terms of the initial constants I'; and T, :

7»{:[ I‘d+1‘_,¢V22 (m—ek)‘”] [(1-V*N"(eq) 1.

In contrast to Eqs. (18)—(21), in which the tunnel current is
determined by the rate of relaxation of the local electron
density

I~ jdw gV, (0)Im G (0, 0) [n,(0)—n"(0)], (A1)
the tunnel current now sets the rate of change of the total
number of particles:

I~ jd“) gzﬁv‘,(u))[n,(m)—npo((,))]ImZGu"(m), (A2)

It turns out that expressions (A1) and (A2) differ near the
energy of the split-off level by an amount 7 |¢,| ~2, where
is the amplitude of the wave function of the bound state at
the point r = 0. Thus, if the density 7 of the relaxation
centers is such that within the region of localization of the
bound state (S~ |1,| ~?) there is located on the average one
such center, then the two expressions for the tunnel current
simply coincide. Expressions of the type (18)-(23) for the
tunnel current remain in any case, but the dependences of ',
and '), on the initial constants g may differ.

APPENDIX 2

The Green’s functions take the form:

G =(1-T)/Z (o),
Gu=Gvi=VGu"|Z (o),

Gk;’=Gk.:)’ +V2Gkk’on,:‘:l' (Z ((0) .
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