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The critical-state problem is solved exactly for a Josephson junction with a periodic array of 
closely spaced defects under the assumption that the interaction between vortices is exponential. 
A surface barrier for the vortices is taken into account. The complete profile of the magnetic field 
penetrating into the junction is found. The field dependence of the critical current and the 
dependence of the penetrating flux on the external field are also found. Possible generalizations to 
a multidimensional Josephson structure and a granular superconductor are discussed. 

1. INTRODUCTION 

Most papers reporting experimental studies of the criti- 
cal state in hard type-I1 superconductors make use of the 
well-known phenomenological approaches of Beanlv2 and 
Kim and A n d e r ~ o n . ~ , ~  Those approaches start from a func- 
tional dependence of the critical current on the magnetic 
induction, J, (B), which is specified on the basis of general 
considerations. This dependence, which is usually the end 
result of the corresponding experiments, can be derived only 
on the basis of a microscopic theory. The results found ex- 
perimentally on the behavior of the critical current as a func- 
tion of the magnetic induction for many granular supercon- 
ducting systems differ sharply from the standard Bean 
dependence (J, = const) or the standard Kim-Anderson 
dependence [ Jc  a B - ' or Jc a (B, + B) - ' I .  For high T, 
superconducting ceramics, the experimental dependence 
found in Refs. 5-7 is described by J, a exp [ (B,/B)"], 
where a =: 0.5. Other functional dependences have also been 
used. 

In the present paper we determine the conditions under 
which the various functional dependences apply, using as an 
example the very simple model of a Josephson junction with 
a periodic array of closely spaced defects. We take a micro- 
scopic approach. 

We consider a "ID model": a long Josephson junction 
on which pinning centers are arranged periodically at a 
small period. This model was discussed in Refs. 9-13. Re- 
sults for corresponding sparse structures, in which the lat- 
tice constant is much greater than the dimensions of a vor- 
tex, were found in Refs. 11 and 13. 

The critical-state problem is generally classical and can 
be outlined as follows: An external magnetic field is turned 
on. We watch how the magnetic flux begins to penetrate into 
the hard type I1 superconductor. Because of a pinning of 
vortices by defects, the rapid initial relaxation is followed by 
the establishment of an extremely nonuniform spatial distri- 
bution of the magnetic induction, B(x) ,  in the sample. This 
"critical" distribution undergoes an extremely slow (loga- 
rithmic) relaxation to a uniform distribution which mini- 
mizes the free energy. At each point on the critical profile, 
the total force exerted on a vortex by the other vortices and 
by the external field is equal to the maximum pinning force 
at which a defect still confines a vortex. 

To find the critical profile, we also need to solve the 
problem of the penetration of Josephson vortices (fluxons) 

through the surface barrier into the structure.'"" This part 
of the problem corresponds to finding a boundary condition 
for one of Maxwell's equations: determining the abrupt 
change near the surface due to the onset of surface currents. 
One can work from this abrupt change in the field and from 
the observed J,  (B) dependence to reconstruct the critical 
profile B(x)  with the help of Maxwell's equations. 

In the present paper we will therefore do the following: 
(a )  Solve the surface-barrier problem for the type of prob- 
lem under consideration here and determine the relationship 
between the external field and the flux which penetrates into 
the system. (b)  Find the overall shape of the critical profiles 
B(x)  and the field dependence of the critical current. In 
particular, we show that in strong fields this behavior is of 
the Bean type. 

We take two approaches below. We first carry out an 
analysis by a discrete approach, in which the critical profile 
is found from a system of equations for the coordinates of 
individual vortices. The critical state is then analyzed by 
means of an integral equation for the density of vortices. 

We conclude with some estimates which generalize our 
results to the case of a multidimensional Josephson structure 
and a granular superconductor. 

2. DISCRETE APPROACH 

We consider a plane Josephson junction which lies in 
the xz plane, with pinning centers arranged periodically 
along the x axis at intervals of L. Each of these centers is 
parallel to the z axis. The external magnetic field H, and the 
fluxon field are both directed along the z axis. The junction 
occupies the half-plane x > 0. 

As the defects (the pinning centers) we could use, for 
example, cavities of areas which are parallel to the z axis, or 
we could use Josephson junctions with a finite length 21 
along they axis, which intersect the main junction in the 
planes x = mL, y, z (Refs. 11-13; see Fig. 1 of the present 
paper). The relationship between these two models is speci- 
fied by s = 21d, where d = d '  + 2A, is the effective thick- 
ness of the junction, A, is the London depth, and d ' is the 
thickness of the insulating layer of the junction. In other 
words, the relationship between the two models is estab- 
lished by equating the areas through which the flux pene- 
trates. Here we are assuming 146, where S is the Josephson 
length. (There are other pinning-center models which we 

558 Sov. Phys. JETP 75 (3), September 1992 0038-5646/92/090558-08$05.00 @ 1992 American Institute of Physics 558 



L L L L  - - 
s 

FIG. 1. Model of a linear (planar) Josephson junction with periodic de- 
fects. The line is the projection of the plane of the junction onto the xy 
plane. Herex, = k t  are the coordinates of the pinning centers, which are 
cylindrical cavities with an area s = 21d ( d  = d '  + 2/2,),which are ori- 
ented parallel to the z axis. The magnetic field is directed along the z axis. 

Q.,=452E, 'exp ( - 8 / 6 ' ) .  (5) 

This expression is valid, strictly speaking, under the condi- 
tion Y/S*  > 1. The introduction of the additional numeri- 
cal factor off 2, where 71/4 < c < 1, is discussed in the Appen- 
dix. The vortex-antivortex interaction energy is the same as 
( 5), aside from a change in sign [see (A8) 1. 

The force exerted on vortex i by all the other vortices is 
[cf. (AlO)] 

could use.'' ) In all cases we assume that the conditions 
A, g L  and I g S  hold. I, ,=-4EJ'~26*-' z e r p l -  (r,+q) / t i ' ] .  (6a) 

This problem can be solved explicitly in the two limiting i 

cases ( 1 ) i g L ,  which is the case of"weakw pinning, and (2) 
I>)L, which is the case of "strong" pinning. 

Case 1 is analyzed in detail in the Appendix. In this 
case, the pinning centers cause a slight renormalization of 
the solitons (magnetic vortices) in comparison with isolated 
solitons in a uniform junction. The solitons are character- 
ized in this case by an energy E, = 4fijCS/e, by a length 
S = (+k2/8z-j,ed) and by a lower critical field 
Hcl = 4n-E,/@, = 2@,/r2Sd = l6jCS/c, where j, is the 
critical current density for the uniform junction, e is the 
charge of an electron, and @, = &/e is the flux quantum. 

Case 2 is characterized by a pronounced renormaliza- 
tion of the solitons. As was shown in Refs. 12 and 15, this 
case can be described by the Frenke1'-Kontorova model: 

Here 0, is the phase difference between the superconducting 
wave functions at the banks of the junction, averaged over 
the intervals between pinning centers, and A is given by 
A = 2LI/S 2. As was shown in Refs. 12 and 13, under the 
condition A g 1, in the lowest-order approximation, Hamil- 
tonian ( 1 ) corresponds to ordinary Josephson vortices with 
a renormalized length S* = S(L /21) = L / A  an ener- 
gy E f, and a lower critical field H ,*, , found from 

In the Frenke1'-Kontorova model, the vortex energy 
can be writtenh9 

where x is the distance from the center of the vortex to the 
pinning center. The corresponding maximum pinning force 
[cf, the corresponding expression (A  13) for model 1 ] is 

Since the lattice of pinning centers is assumed to be 
dense in both models, the size of a vortex is greater than the 
distance between defects: L 4 S  (for model 1 ) and L <S* (for 
model 2). Below, where we deal with multivortex configura- 
tions, we also require that the field H, in the junction not be 
too strong, so there is less than one flux quantum between 
pinning centers; i.e., Hg@,/Ld or H<H,, S/L (for model 
1 ) and H<H ,*, S*/L (for model 2). 

The case of a sparse lattice, with L >) S,S*, was studied in 
Refs. 11 and 13. The critical state in the Frenke1'-Kontorova 
model with large values of A was studied by a dynamic-mod- 
eling method in Ref. 2 1. In each of the last two situations, the 
critical field profile has turned out to be approximately lin- 
ear (approximately a Bean profile) 

Finally, a force c.H is exerted by the external field H, on 
a fluxon near the surface. For model 1, this force is given by 
expression (A1 1). To go over to model 2 all we have to do is 
make the substitutions E, +Ef, 6-S*, Hcl -+ H,*, . 

We turn now to the construction of a balance equation 
for the forces exerted on vortex i by the other vortices, by the 
image antivortices, and by the external field and also for the 
maximum pinning forces. As was mentioned back in the In- 
troduction, this balance is realized in the critical state. (The 
reasons why it is legitimate to introduce image antivortices 
in this problem are discussed in the Appendix.) Using 
(AlO), (AlOa), (A l l ) , and  (A13), formodel 1 or (4), (6), 
and (6a), for model 2, we find the equilibrium condition in 
the critical state for vortex i (Fig. 2) :  

I 
(4) 

FIG. 2. Configuration of the vortex structure penetrating into the junc- 

The interaction energy of two vortices separated by a t ion The field-H~, which is parallel to z, is applied from the left. i = 0- 
Coordinate of the surface; x,-coordinates of the vortices; x,--coordi- 

distance is2' [cf. the corresponding for nate of the rightmost vortex (the front of the critical distribution); 1,- 
model 11 distance between vortices. 
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The dimensionless maximum pinning force, Solving this quadratic equation, we find 

for model 1 or 

for model 2, stands on the left side of this equation. We see 
that p is an exponentially small quantity in both models. In 
(7)  we have used the notation a, = exp( - I,/&) [or 
exp( - I , / & * ) ,  for model 21, where 1, is the distance between 
vortices i and i + 1 (Fig. 2). We assume that there are N 
vortices in the system and that the coordinate (x, ) of vortex 
i = 0 determines the front of the field distribution. The dis- 
tance 1, describes the depth to which the first vortex pene- 
trates into the interior of the junction. 

The expression in the first set of braces on the right side 
of (7)  corresponds to an interaction with vortices (the mi- 
nus sign corresponds to vortices to the right of the i th vor- 
tex, and the plus sign corresponds to vortices to its left). The 
term proportional to h in the second set of braces corre- 
sponds to the interaction with the external field: 

for model 1 or 

for model 2. The other terms in the second set of braces 
describe the interaction with antivortices. 

Although the system of N equations in (7) is highly 
nonlinear, an exact solution can be found. The decisive cir- 
cumstance which makes this possible is the exponential na- 
ture of the interaction, which allows us write the quantity 
exp( - Ix, -x,l/&) astheproducta,a ,-,... a,-, (j<i). 

We introduce the two quantities Gi+ , and K, 
( i  = O,1, ..., N - 1 ), which are determined from the recur- 
rence relations 

supplemented by the conditions Go = K, = 0. Equations 
( 7 )  can then be rewritten in the compact form 

We now sum both parts of expression ( 1 1 ) over i from 0 
to m - 1. On the left we find the pinning force acting on m 
vortices adjacent to the front, and on the right we have the 
forces exerted on this group of vortices by all other vortices, 
by all antivortices, and by the field. In the course of this 
summation, the forces acting between the vortices of the 
group from 0 to (m - 1) of course drop out. As a result, 
using ( l o ) ,  we find (m = 1,2 ,..., N) 

pm= ( I+  G,-,) [K,f a,. . .an (h-G,)] . (12) 

Now setting i = m - 1 in ( 11 ), we find the quantity K, - ,  
from this relation for m = 1,2, ..., N -  1, and we substitute 
the result into ( 12). We find a closed equation for G,, - , : 

Since G, > 0, we should use only the plus sign. Since we have 
a, = G,  /( 1 + G,  _ , ) according to ( lo) ,  we find 

form=1,2  ,..., N-1.  
We are left with finding the quantity a,, which deter- 

mines the distance from the leftmost vortex to the surface. 
For this purpose we set m = N in ( 12), and we use K, = 0 
anda,(l + G , _ , )  =G,. Asaresultwefind 

pN=Gn (h-GN) , 

and thus 

Correspondingly, we find 

From ( 16) we find the equilibrium value of the distance 
I, from the leftmost vortex to the surface 
[a, = exp( - I,/S*) N ]  for the given dimensionless exter- 
nal field h. We now see that there is yet another special value 
of I,. To choose the correct solution, we draw an (extremely 
schematic) plot of the vortex energy U versus the distance 
IN for our model (Fig. 3).  There is a maximum here; it ap- 
proaches the point IN = 0 as h is increased. The position of 
this maximum is given by ( 16) when we choose the plus sign. 
The minimum on the curve corresponds to ( 16) with the 
minus sign. The increase in the energy at large I, is a conse- 
quence of pinning (p#O). As p-  0, the curve of U(IN) 
reaches saturation at large I,, and the minimum goes off to 
infinity (a,-0). The second solution (with the minus 
sign), like the first (with the plus sign), is thus not suitable 
for our purposes. However, there is yet another equilibrium 
point: IN = 0 ( a ,  = 1). This point does not correspond to a 
minimum on the curve of U(1,) [ (6'U/al,),,v,, #O], 
since in our approximation there is a break in the U(IN) 
curve at this point. This break results from the nonanalytic 
nature of the function describing the interaction of the vorti- 
ces with the external field and with each other [see (6),  
(AlO), and (A1 1 ) ] in the exponential interaction model 

FIG. 3. Energy of the system of vortices as afunction of the distance from 
the leftmost vortex to the surface for various values of the external field. 
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which we are using. The nonanalytic nature of the interac- 
tion, on the other hand, arises because of a central "core" of 
the model fluxon. In other words, the phase is discontinuous 
at this point. Because of this circumstance, the equilibrium 
value of a, in our model is always equal to one (I, = 0).  
This equilibrium is disrupted as the field is increased, at the 
point at which the maximum disappears from the U(IN) 
curve, after the point IN = 0 is reached. At this time, the 
system of fluxons "breaks through" into the junction, and 
the total number of fluxons increases by one. 

We can thus work from ( 16) to determine the relation- 
ship between the external field h and the number N of vorti- 
ces in the critical state. For this purpose we need to set 
a, = 1 in ( 16) and take the plus sign (i.e., we need to find 
the time at which the maximum disappears). As a result we 
have 

Relation ( 17) characterizes the height of the surface barrier 
for the fluxons, since they begin to penetrate into the struc- 
ture at h > (1 + p )  z 1, i.e., H, > ?r[H (for model 1 
H:, -+Hc, 1. 

To determine the spatial position of vortex m, we need 
tosumlna, [see ( IS) ]  ove rmf rommtoN-  l . A t p < l ,  
and in the continuum approximation, however, the problem 
simplifies dramatically. At p g l ,  but for arbitrary pm, 
expression ( 15 ) becomes 

where n, = 1; ' is the number density of vortices. In the 
continuum approximation, this number density is related to 
m by 

Differentiating ( 18) with respect to x, and using ( 19), we 
find 

wheren = n(x)=n,.  
We now need to relate the vortex concentration n (x)  to 

the local field a ( x )  in the continuum approximation. If a 
vortex carries a flux Q>, , then 

Substituting (21 ) into (20), we find an equation for the field 
profile: 

Comparing (22) with Maxwell's equation for the critical 
state, 

where Jc (H) is the critical current, we find 

FIG. 4. Field dependence of the critical current. The values o f B a t  which 
a transition from one regime to another occurs are shown for the particu- 
lar case of model 2. 

[Again, for model ( 1 ) we have H 3 + H,, . ] Figure 4 shows a 
plot of J,  ( a ) .  

We see from (23) that Jc (H) has two asymptotes: the 
transition between the two occurs at n-1/S* 
X (a- T'H ,*, /2). In weak fields, H <  lf?H ,*, /2, i.e., when 
the overlap of vortices is only slight (n < l/S*), we have 

Since the overlap of vortices is weak in this region, we could 
in principle derive (24) while restricting force balance equa- 
tion (7) to the interaction between nearest neighbors. 

Expression (24) has an applicability limit which is a 
lower limit o f p ,  since the relation J,  < j, obviously holds. At 
logarithmic accuracy we can write 

Since the pinning forcep in (8)  is exponentially small, the 
lower limit of is also small-much smaller than H . The 
mathematical reason why expressions (23) and (24) are not 
valid at very small values o f B  is that the continuum approx- 
imation breaks down near the front of the critical profile 
(where a vanishes). 

In strong fields, p> d H  3 /2, the vortices overlap to a 
great extent (n > 1/6* ), and the dependence becomes a Bean 
dependence: 

Since p < 1, we have J,  < j, in (26), as we should. In this 
region, we could not hope that the model of interacting iso- 
lated fluxons which we are using here would give us anything 
better than a qualitative description. 

We thus find the Bean form of J, cc e x p ( d H  ,*, /2H) in 
strong fields and the behavior Jc (n) in weak fields. Similar 
results were found in Ref. 22 for the model of a nonuniform 
Josephson junction on the basis of a theory of collective pin- 
r ~ i n g . ~ ~  Strangely enough, a similar functional dependence 
Jc (H) [the parameters were of course different from those 
in (24) and (26) ] was found in Refs. 11-13 for a fundamen- 
tally different model: for a nonuniform Josephson junction 
with sparsely distributed pinning centers (LBS).  

To find the critical profile B ( x )  from differential equa- 
tion (22) we need a boundary condition: the value of the 
field B a t  the x = 0 boundary. Generally speaking, this field 
value is not the same as the external field H,. It can be found 
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from ( 17) and ( 18) by setting m = N in the latter. Assum- 
ingpg  1, we find 

Using relation (21) at x = 0 along with definition (9),  we 
find the boundary condition to be 

where Hi r H ( x  = + 0) is the field at the boundary. Figure 
5 shows a plot of Hi (Ho ). 

This dependence has a threshold at Ho = ?r[H 5 due to 
the appearance of a surface barrier to the penetration of vor- 
tices. In strong external fields, the plot of Hi  (Ho ) becomes 
linear: H, z 6 / 4 5 .  From this form of the asymptotic be- 
havior we see the meaning of the factor [, ?r/4 < [ < 1, which 
is introduced in the Appendix. This factor depends weakly 
on the vortex concentration, i.e., on H(x) .  As is mentioned 
in the Appendix, at a high vortex concentration we have 
<- ~ / 4 ,  and in this region the asymptotic behavior assumes 
a reasonable form, H, z H o .  In other words, the abrupt 
change in the field the surface due to the onset of surface 
currents becomes negligible. 

We can now find the critical profile and its dependence 
on the external magnetic field, integrating Eq. (22) over x 
from 0 to x (or over H from Hi to H) : 

In particular, the field penetration depth xo is found by set- 
ting H = 0 here: 

In strong external fields, Ho =Hi )$Hz /2, we have 

In other words, the penetration depth increases linearly with 
the field. If the field is just slightly above the threshold value, 
(Ho - H I  ) /H, g 1, where H,  =[vH r l ,  the dependence 
xo (Ho ) becomes stronger: 

FIG. 5. The average internal field near the surface as a function of the 
external magnetic field H,,. 

so we have (dx,/dHo )Ho,,, + CQ . 
The profile itself, B ( x )  [see (28) 1, turns out to be lin- 

ear in strong fields: 

H ~ X ~ P H ~ ~ * ( X ~ - X )  146. 

(in accordance with the Bean model). Near the front, x,, the 
dependence becomes logarithmic: 

B a (x,-s)ln[(zO-%)-*I 

(Fig. 6 ) .  

3. INTEGRAL EQUATION FOR THE NUMBER DENSITY OF 
VORTICES 

Far from the front, where the vortex concentration is 
fairly high, the results of the preceding section could also be 
derived with the help of an integral equation for the number 
density of vortices, n (x) .  We take the standard approach 
(Ref. 24, for example), multiplying both sides of (7)  by 
8,6(x - x, ) and using the relations 

As a result we find the integral equation 

pn ( x )  = [ ~ x ' F  ( 2 - x l )  n ( 2 )  n ( 2 ' )  sign ( z ' )  

where the kernel is 

We denote by x = xo the position of the front of the critical 
profile, while x = 0 is the surface of the sample. We then find 

FIG. 6.  The critical profile H(x) .  Here x,, is the coordinate of the front. 
The values of the field and the coordinate at which the transition from one 
regime to the other occurs are shown for the particular case of model 2. 
The dot-dashed line shows the region of low values of Hin which the large 
distances between vortices rule out the use of an equation like (22). 
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A solution of Eq. (36) can be found directly; it is 

where x, is related to the dimensionless external field: 

Relation (37) leads to the asymptotes Jc (H) and g ( x )  
found in the preceding section of this paper. 

4. CRITICALSTATE OF GRANULAR SUPERCONDUCTORS 

We conclude with a rough estimate of the dependence 
of the critical current through a granular superconductor on 
the magnetic induction, J, (B). This problem might be 
thought of as a direct generalization of the problem dis- 
cussed above. We will not discuss the particular value which 
the dimensionless maximum pinning force reaches for one 
specific model or other (Ref. 25, for example); we simply 
treat it as a small parameter of the theory: p< 1. 

To derive at least a very crude estimate of the critical 
profile, we make use of the circumstance that the vortices 
penetrate into the sample along the normal to its surface 
(along the x axis). In this sense the problem is "one-dimen- 
sional." Proceeding as in Sec. 2, we find an estimate for 

near the front (the number of the vortex, m, is again counted 
from the front). We now allow for the two-dimensional na- 
ture of the vortex structure. Assuming that this structure is 
locally isotropic, we find n, = (x, - , - n, )2,  and the 
magnetic induction is B = n, @, . As a result we find an esti- 
mate for the critical profile, 

and for the critical current, 

This behavior of the critical current has been seen5-' in sev- 
eral granular superconductors, over an even broader range 
of the applied field than was considered in the derivation of 
(40). 

We wish to thank A. V. Goltsev and A. N. Samukhin 
for useful discussions. 

APPENDIX. ENERGY OF A SYSTEM OF VORTICES IN A 
BOUNDED JOSEPHSON JUNCTION WITH PINNING CENTERS 

The energy of a semi-infinite (x  > 0)  nonuniform JO- 
sephson junction in an external field H, can be written 

where 

Here a , ,  a,, and R, are the energies of the Josephson junc- 
tion, of the interaction with the field, and of the interaction 
with the pinning centers, respectively; Ej = 4ij,S/c is the 
fluxon energy; z = x/S is a dimensionless coordinate; S is the 
Josephson length; j, is the critical current of the junction; 
d = d '  + U, is the thickness of the junction; and 
H,, = 16jcS/c is the lower critical field. The pinning centers 
are at the points z, = x,/S. The parameter I, which has the 
dimensionality of a length, describes the pinning force (Sec. 
2). The choice of the pinning energy in the form in (A4) 
leads to an abrupt change in the phase 0 at a pinning center, 
A0 = 2101(z, ), and to a continuity of the fluxon magnetic 
field, H = (Q0/2rd)0 '  (Refs. 10 and 26). We will discuss 
below only model 1 (see Sec. 2 ) .  

The basic approximation of the present study is to 
choose the multifluxon phase 0(z) as a linear superposition 
of isolated solitons, each of which is centered at some point 
and is described by the phase 

8, (2-zi) =4 arctg [exp (2-2, ) I .  (A51 

This superposition of solitons does not satisfy the boundary 
conditions: the vanishing of the total fluxon magnetic field at - 
z = 0 and the vanishing of the normal component of the cur- 
rent at the same point. These conditions can be satisfied in 
the approximation which we are using here if we make use of 
a "mirror reflection," i.e., if we introduce a system of antiso- 
litons at the points - z, . As a result, the trial function which 
we are using becomes 

The introduction of antisolitons is analogous to the use 
of vortex-antivortex pairs in a study of the penetration of 
Abrikosov vortices into a type-I1 superconductor. In that 
case, the introduction of the vortex-antivortex pairs leads to 
the appearance of a Bean-Livingston barrier. In contrast 
with the linear problem of the interaction of an Abrikosov 
vortex with a surface, this mapping of the phase onto the 
z < 0 half-plane in the nonlinear problem for fluxons is only a 
very simple and convenient approximation (not an exact so- 
lution), even in the problem of the interaction of one fluxon 
with a surface. 

Another necessary condition for the validity of approxi- 
mation (A6) is that the deformation of the fluxon due to the 
interaction with pinning centers be weak (the pinning must 
be weak). As we will see below, this condition corresponds 
to the condition 1 / L g  1, where L is the distance between 
pinning centers. This condition corresponds to a situation in 
which the magnetic flux accumulated by a pinning center is 
small in comparison with the flux which is incident on the 
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section of the junction between centers. In this Appendix, we 
restrict the discussion to the case of weak pinning. 

After we use a trial function in the form in (A6), the 
energy R, in (A2) becomes 

where s = 1, 2; Oil = 0,; (Z - Z, ); and 8, , = 0,; ( - z  - z, ). 
Here we have used the relations sine, = 8 &' and 
cose, = 1 - 8 ~ ~ / 2  for isolated solitons. The energy fl, can 
be written as a sum R,, + R,, + R,, , where a,, is the ener- 
gy of the interaction of the "particles"-the fluxons (s = 1) 
and the antifluxons (s = 2). The energy of the noninteract- 
ing particles is 

where N is the total number of fluxons. The quantity R,, 
merely shifts the origin of the energy scale and can be omit- 
ted. The two-particle interaction is 

where the prime on the summation sign means that the term 
with i = i ', s = sf is excluded. Using (A5), we then find 

The first term in braces is the contribution to the interaction 
between vortices, while the second is the contribution to the 
interaction between vortices and antivortices. This expres- 
sion can be simplified greatly if the distance between vortices 
and the distance between vortices and antivortices are large 
in comparison with their size (i.e., if \x i  - x ,  1 > S and 

xi + x i ,  > a ) :  

Strictly speaking, it is only in this case that the superposition 
of isolated vortices in (A6) is applicable. In the opposite 
case we should take account of three-body, etc., interactions; 
the problem becomes essentially unsolvable. In this paper, 
however, we use expressions like (A8) even in the case of a 
pronounced overlap of the solitons, in which case we could 
hope for no more than a qualitatively correct description by 
an expression in this form. This form is exact if the soliton 

phase in (A5) is written in the form 4exp( - / z  - z, I ). The 
phase difference, however, turns out to be 8, not 2ir. In other 
words, the magnetic flux of the soliton, @, , turns out to be 
equal to 4 W e ,  not the flux quantum d i c / e .  In order to con- 
serve the size of the flux quantum in the exponential approxi- 
mation of the phase we thus need to write 

The introduction of the factor of ir/4 in the approximate 
expression for the phase leads to the appearance of an addi- 
tional factor (7~/4) -- f in (A8). The reasoning behind the 
introduction of a factor f # 1 in the expression for the energy 
is discussed in the text proper. From (A.8) we can now final- 
ly find the force exerted on vortex i by the other vortices, 

as well as the force exerted by the antivortices, 

Pi ,,,,=-4E ,M-' orp(-2,-z,-). ( AlOa) 
t ' 

We now consider the interaction with the external field 
H,. Substituting (A6) into (A3), we find the following 
expression for the force exerted on vortex i by the field H, : 

Alternatively, switching to an approximation of the type in 
(A9),  we find 

4 Hn 
Fin = - fE36-' - exp (-z,). 

n Hct ( A l l )  

where < is again a factor which depends weakly on the vortex 
concentration, having the behavior f - l at z, > 1 and the 
behavior f -+ ir/4 at z, < 1. 

Finally, the interaction with pinning centers, (A4), 
takes the following form when we use (A6) : 

We restrict the discussion to the case of periodically posi- 
tioned defects: z, = Ln/S, n = 0, 1, ..., where L is the dis- 
tance between defects. In the case of a dense lattice, L /S < 1, 
which is the case of interest in this paper, it is convenient to 
sum over n by the Poisson method: 
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The terms of the series in m in (A12) fall off rapidly at 
S/L 1. The term with m = 0, 

renormalizes no,, which is the energy of a noninteracting 
soliton (8 ,  ), and also a,, , which is the energy of the soliton- 
soliton and soliton-antisoliton interaction (Z,!,,. ) [see 
(A7) 1. In the case of weak pinning, I / L  4 1, this renormal- 
ization is of minor importance; we ignore it below. The quan- 
tity R$' also has a contribution which describes the repul- 
sion of a vortex from a surface. This force acts at distances on 
the order of S from the surface, and we ignore this effect. 

The primary component of the actual pinning energy 
comes from terms with m = f 1, which are, for L /6< 1 
(and also lz, - z ,  I > 1 ), 

Correspondingly, the maximum pinning force (which is di- 
rected toward the surface) is 
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