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We calculate the rate of nuclear relaxation and the Knight shift in the model of a layered 
superconductor, which is a stack of alternating superconducting (S) and normal (N)  layers 
(these may be, for instance, the Cu-0 planes and Cu-0 chains in a 1-2-3 compound). 
Superconductive pairing is present only in the S-layers, and superconductivity in the N-layers 
appears because of the proximity effect. We also show that within the framework of this model 
there is an explanation for the absence in high- T, superconductors of a peak in the nuclear 
relaxation rate near T, (this absence has been observed in experiments) and for the power 
dependence of the nuclear relaxation rate T ; ' on temperature at low temperatures. 

1. INTRODUCTION 

The nuclear magnetic resonance (NMR) method 
serves as an important tool for extracting information about 
the electronic structure and the properties of high- T, super- 
conductors. Recent experiments1-4 have confirmed that the 
temperature dependence of the nuclear relaxation rate in 
high-T, superconductors cannot be described within the 
framework of the standard BCS t h e ~ r y . ~  A common feature 
of high-T, superconductors is the absence of a jump in the 
nuclear relaxation rate T, ' immediately below T, and the 
fact that the formulas of the ordinary BCS theory do not 
describe the shape of the T; vs Tcurve (e.g., a power-law 
curve) at lower temperatures. There have been several at- 
tempts to describe theoretically the special features of NMR 
in high-T, superconductors (see, e.g., Refs. 6-8), where the 
ideas used to explain the anomalous behavior of the T , ' vs 
T curve range from antiferromagnetic correlations on cop- 
per atoms6 to nontrivial superconductive 

In the present paper we show that nuclear relaxation in 
high-T, superconductors can be explained without resorting 
to assumptions concerning nontrivial pairing or relaxation 
through additional degrees of freedom if one allows for the 
existence of different conducting layers in high- T, supercon- 
ductors. A large body of experimental data corroborates this 
assumption. The results of many experiments (see, e.g., 
Refs. 3, 4, and 9) show that in 1-2-3 and 1-2-4 compounds 
the pairing of carriers occurs in Cu-0 planes and is absent in 
chains (although the conduction in chains is metallic). 

Various types of conducting planes can also exist in the 
family of bismuth and thallium superconductors. For in- 
stance, the unit cell of 2-2-2-3 compounds has three succes- 
sively arranged Cu-0 layers. Since the middle Cu-0 layer 
has a structure that differs from that of the side layers, its 
superconductive properties may also differ from those of the 
side layers.I0 This assumption is supported by the results of 
experiments reported in Ref. 11 which registered two differ- 
ent Knight shifts on copper, from the Cu atoms in the middle 
layer and from Cu atoms in the side layers. At the same time, 
Ref. 12 reports on the discovery of a sheet of the Fermi sur- 
face related to Bi-0 layers in the Bi, Sr, CaCu, 0, + , , which 
attests to the metallic nature of the Bi-0 layers (although 
the carriers in these layers do not participate in supercon- 
ductive pairing). This suggests that the role of Bi-0 layers is 
to a certain degree similar to that of Cu-0 chains in 1-2-3 
compounds. 

Thus, there is ample experimental evidence of the exis- 
tence of alternating superconducting (S) and normal ( N )  
layers in high-T, superconductors. For this reason we pres- 
ent below the results of calculations of the nuclear relaxation 
rate and the Knight shift for a layered S /Nstructure. Models 
of this kind have been employed in Refs. 13-18. Although 
this model is considered within the framework of the ordi- 
nary weak coupling approximation, it successfully describes 
the results of tunneling measurements involving high- T, su- 
perconductors'~lh and of optical and Ra- 
man spectra of high-T, s~~e rconduc to r s . ' ~  

Superlattices with layers whose thickness is that of 
atomic separation, such as YBa, Cu, 0, /PrBa, Cu, 0, (Ref. 
20) and Y, Pr, , Ba, Cu, 0, /YBa, Cu, 0, (Ref. 2 1 ) , also 
belong to superconducting systems with alternating layers of 
two different types. Because in the Yo, Pro , Ba, Cu, O,/ 
YBa, Cu, 0, structure both layers, Y,Pr, .. , Ba, Cu, 0, and 
YBa,Cu, O,, are superconductors with markedly different 
critical temperatures, such a structure constitutes a very 
convenient object for studying proximity effects. 

A characteristic feature of the S / N  model is the loga- 
rithmic nature of singularities in the density of states, in con- 
trast to the common square-root behavior of singularities in 
BCS theory. As demonstrated below, this type of singulari- 
ties can explain the absence of a jump in the nuclear relaxa- 
tion rate near T,. The density of states inside the gap in the 
S/Nsystem may be nonzero because of the effect of proxim- 
ity of the N- and S-layers even in the case ofs-pairing, which 
leads to a deviation of the nuclear relaxation rate at low tem- 
peratures from the value predicted by the BCS theory (in 
this case T , ' ( T) is a power function of temperature). Such 
a temperature dependence is indeed observed for T , ' ( T) 
in the majority of cases (see, e.g., Refs. 1-4). In the present 
paper we also list the results of calculating the temperature 
dependence of the Knight shift in S- and N-layers. Within 
the framework of our model, the nuclear relaxation rates in 
S- and N-layers exhibit different temperature dependencies, 
which agrees with the experimental data of Refs. 3 and 4. 

Since our main goal is to qualitatively describe NMR in 
high-T, superconductors, we do not consider the exact 
structure of the hyperfine interaction Hamiltonian responsi- 
ble for nuclear relaxation and the Knight shift. The similar- 
ity of the temperature behavior of the Knight shifts in cop- 
per, oxygen, and yttri~m22,23 shows that the characteristics 
features of NMR for a given conducting layer can be ex- 
plained on the basis of the electron spin susceptibility com- 
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mon to the layer. The differences between the values of the 
nuclear relaxation rate and the Knight shift in Cu and 0 
nuclei are, apparently, due to different form factors for cop- 
per and oxygen. Thus, for our goals it is enough to calculate 
the dynamic and static spin susceptibilities of the conduction 
electrons in S- and N-layers. 

2. FORMULATION OF THE MODEL 

Let us start by discussing the characteristic features of 
the S / N  model. We consider a set of equidistant metallic 
layers coupled by a weak bond, with superconductive pair- 
ing occurring only on S-layers. We also assume that the elec- 
tronic spectra of all the layers are the same and that 
k = k ,  = 1. 

To describe the electron motion from layer to layer 
(along the z axis) in the tight-binding approximation, we 
change to the Wannier representation24 in the direction per- 
pendicular to the layers. Since we are considering an S / N  
structure with two layers per unit cell, in the electronic spec- 
trum there appear two bands corresponding to two different 
eigenfunctions $,, (z) and $,, (z), where q is the quasimo- 
mentum in the direction perpendicular to the layers. From 
these functions we go to the Wannier functions 

with d the distance between the layers, m the number of the 
unit cell, and N the total number of cells (periods) along the 
z axis. Using the functions 5, and iii,, we can build two 
linear combinations, one of which vanishes at all N-layers 
and the other at all S-layers. We denote these new functions 
by w, and w, , respectively. 

In the second-quantization representation the electron 
operator in the S / N  system can be written as 

4:. (r. z )  = --- I ,- . ,-,{cL~,. y esp (~kr+2iqrnd) w, ( z -2md)  
1 )  k,, 

where c,,,, is the electron annihilation operator, r and k the 
two-dimensional position and momentum vectors in the lay- 
er plane, and R the normalization area in this plane. 

The Hamiltonian of the S / N  system in the mean-field 
approximation is 

where Z,,,, is the electron creation operator and [(k) the 
energy of quasiparticles in the normal state measured from 
theFermi level, the subscript a = 1,2 numbers the layers in a 
unit cell (a = 1 for the S-layers and a = 2 for the N-layers), 
and the constant t is specified by the overlap integral for the 
Wannier functions localized at neighboring layers, 

a. 

with E, the Fermi energy. The superconducting gap is deter- 
mined by the self-consistency condition 

where A is the electron-electron coupling constant. 
The temperature Green functions for the S / N  system 

have the following form:25 

1 
Gum.,,,. (kq, t-a') = - < T r e k q a n ( ~ ) c k q z ~ r . ~  (if) ), ( n ~ )  

The functions F and G satisfy the following Gor'kov equa- 
tions (in Matsubara frequencies) : 

i - :; ( k  - t (4 )  h 
- 1 (9) ice - 3 (k) 0 

0 io + 5 (k) 
0 t (q) LW -t 5 (k) 

Proceeding from these equations, we can easily determine 
the energy of the quasiparticle in the superconducting state: 

c ~ ; ~ ( k ,  q)=tn (k)+t2(q)+A2/2 

j = [ / ~ t ' ( ~ ) ~ '  (li) + ~ ' / / 4 + t ' ( q )  A21'!'r (8 

The excitation spectrum (8)  has a gapless branch w, (k,q) 
[w, = 0 at f = t(q) = 0] because of the presence of N-lay- 
ers. The gapless nature of superconductivity manifests itself, 
for one thing, in the fact that the temperature dependence of 
such quantities as the nuclear relaxation rate in IR absorp- 
tion for T< T, (in contrast to the ordinary behavior predict- 
ed by the BCS theory) is represented by a power function. 
The characteristic features of spectrum (8)  also lead to an 
unusual (logarithmic) nature of the singularities in the den- 
sity of states. The density of states in theS/Nmodel has been 
stidied in Ref. 16. 

Bulaevskii' and Zyskin14 noted that in the case of Jo- 
sephson coupling of the layers ( t<  T, ) there are two distinct 
temperature regimes for the N-layers. Although Cooper 
pairing is absent in the N-layers, superconductivity is in- 
duced in these layers because of the proximity effect. For this 
reason the anomalous Green function of the N-layers is f i -  
nite: 

1 
F s a t l  (k, q, @I=---- 

At2(q) 
(NQ)'" [co'+o12(k,  q) ] [0'+022 (k. q )  ] ' 

( 9  

At low temperatures ( T <  T, ) only small f and t(q) are es- 
sential. Hence, w ,  = A  and the expression for w, (k,q) can be 
written in the approximate form 
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oz" (k. q) =E2 (I<) + t1 (q) /A2.  (10) 

As follows from Eqs. ( 9 )  and ( lo ) ,  at low temperatures the 
quantity A(q) = t 2(q)/A acts as a gap for the N-layers. At 
temperatures higher than t '/A superconductivity practical- 
ly does not penetrate the N-layers, but when T< t 2/AN, the 
N-layers become fully "superconductive." Hence, at 
T=: t */A the nature of the temperature dependencies of all 
superconductive properties of the S / N  system changes. 

In the opposite limiting case, t)  T,, there is averaging 
of properties of separate layers and the S / N  model loses its 
specific features. In this paper we give the results describing 
NMR for both the case of Josephson coupling of layers 
( t<  T, ) and at intermediate values of the overlap integral 
(t=: T, ). The latter case is the most interesting. The t-to-Tc 
ratio can be estimated, for instance, from measurements of 
the torque in an external fieldz6xz7 and measurements of the 
upper critical According to the data listed in Refs. 
26 and 27, in bismuth superconductors the ratio of the corre- 
lation lengths along and across the Cu-0 layers, 6 :,/{ f , is 
approximately A f /A :, =: lo4, with A,, and A, the respective 
London penetration depths, and the condition t < Tc is sure 
to be met. At the same time in 1-2-3 compounds the elec- 
tronic anisotropy is smaller. It can be hoped that in the vast 
family of high-T, superconductors there are compounds 
both with t<  T, and with t=: T,. 

3. CALCULATING THE NUCLEAR RELAXATION RATE IN A 
LAYEREDS lN SYSTEM 

Since our main goal is to clarify the basic features of 
NMR in a layered S / N  system with Josephson coupling of 
the layers, we choose a simplified model to describe the cou- 
pling of nuclear spin with the conduction-electron spins. The 
rate Tc;, of relaxation of a nucleus localized at the a 
(a = 1,2) layer is3' 

- 1 
T i ( a ,  = [A' ~m x+- (a, we)  

2 (gpI,)?o, 

wherep, is the Bohr magneton and A the hyperfine coupling 
constant, we =p,B, with B the external field, g is the g- 
factor of electrons in the crystal, and X+ (a,w,) is the 
transverse spin susceptibility of conduction electrons at the 
a layer. The first term on the right-hand side of ( 11 ) de- 
scribes the isotropic contact interaction of the conduction 
electrons and nucleus in the same layer. The second term 
allows for the anisotropic dipole-dipole interaction of the 
nuclear spin in layer a with electrons that can be in either the 
same layer (P = a)  or in neighboring layers (P # a ) .  Equa- 
tion ( l l ) does not allow for crystal field effects, which intro- 
duce nothing new into the calculations. Note that since the 
electron magnetic moment is much larger than the nuclear, 
Eq. ( 1 1 ) must contain just the electron frequency we and not 
the nuclear frequency w, = p,B, with p, the nuclear mag- 
n e t ~ n . ~ '  But since both frequencies, we and @,, are low, it is 
unimportant which is used in ( 1 1 ) . 

It is convenient to write Eq. ( 11 ) in the form 

where the parameters A describe the contact and aniso- 
tropic dipole-dipole interactions of electrons in layer a with 
a nucleus in the same layer, and the parameters A $ (a #P) 
describe the dipole-dipole interaction of a nucleus in layer a 
with electrons in layer 8. 

The transverse spin susceptibility x + - (a,@, ) is given 
by the temporal Fourier transform of the retarded spin 
Green function 

<S+ (a. t l )  S- (a,  tz) -S- (a, t 2 )  S+ (a ,  ti) ), tl>tz, , 
tl<t, , 

(13) 

where S + = $,+ $, and S + = $: $, are the ordinary elec- 
tron spin operators in the second quantization representa- 
tion. 

Thus, x + - (a,w,) can be obtained as a result of an 
analytic continuation (iw- we + is) of the polarization op- 
erator 

T 
G+-(u,o)= - - - - I~u~(o)  l 4  

N62 

+Tm,,, (k ,  4, a')TD.,,,, k', q', w+of)1, (14) 

where wa (0) is the value of the electron wave function at the 
nucleus. Equations ( 1 1 ), ( 12), and ( 14) are valid provided 
that the binding energy t of the layers is much lower than the 
Fermi energy E, an electron moving in a layer. It is the 
condition that E, ) It 1, which apparently must hold true in 
high-T, superconductors, that makes it possible to ignore 
the off-diagonal (in layer indices a and 0) Green functions 
in the polarization operator and retain in ( 14) only the diag- 
onal functions Gaa and Fa, (see the Appendix). 

To analytically continue the polarization operator 
( 14), it is convenient to employ the spectral representation 
of the Green functions:25 

-a 

1 Im G~R,-,,, (li, q,  X) dx 
Gas,,, (I;, y, 0) = - j t 

* -- x-io 
(15) 

c.a 

1 ~ r n ~ ~ ~ ~ , , ~ ( k , q , x ) d x  
F..,,. (k, a, w )  = -j 

n-- x-iw 

Using this representation, we can easily sum over w in ( 14), 
with the result that the spin susceptibility can be written as 

xi- (a, we)  = - 
( ~ P B ) '  I WCZ (0) I ' 

n 'NQ 

where f(x)  = [exp(x/T) + 1 ] ' is the Fermi distribution 
function. Since we is much lower than the temperature, we 
have 
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+ 1m F~: , ,  (k ,  q, x) ID F.L.+, (~' ,  ql, 1.4-0.) I(-2) ax. (17) 

In contrast to the ordinary result of the BCS theory for 
an isotropic (three-dimensional) ~uperconductor,~ in our 
case Imx , (a@, ) and T do not diverge as w, -0. 
This is due to the logarithmic nature of the singularities in 
the density ofstates of theS/Nsystem (contrary to the usual 
square-root nature of the singularities in the BCS theory). 

The temperature curves for the rate T 6,; of nuclear 
relaxation on superconducting layers for different values of 
parameter tare depicted in Fig. 1. For these curves the tem- 
perature T has been normalized to the critical temperature 
T,, which depends on land is therefore different for different 
curves. Note that to obtain a finite value of T ,:, (T)  there 
was no need to allow for the broadening of quasiparticle lev- 
els, in contrast to the ordinary ~ituation. '~ At t = 0.01 T, 
the T 6,; vs T curve has a sharp peak near T,, since in the 
case of small t /T, the effect of the N-layers on the S-layers is 
low. Here the temperature dependence of the rate of relaxa- 
tion on N-layers, T 6;) , follows the Korringa relation almost 
exactly [see Fig. 2(a)  1. As t increases, the peak on the T 6,: 
vs T curve practically disappears. If, in addition, we take 
into account the energy-level broadening caused by the finite 
quasiparticle lifetimes, the peak in the nuclear relaxation 
rate near T, characteristic of the BCS theory is absent (as 
observed, for instance, in experiments reported in Refs. 1- 
4).  The low-temperature (for T <  t ,/A) behavior of the 
T ,: vs T curve at t /T, = 0.36 and 0.5 differs from linear 
(characteristic of normal metals), since superconductivity 
is induced in the N-layers because of the proximity effect 
[Fig. 2(a)  1. 

FIG. 1. (a)  T,,' (T)/TcI:  (T, )  as a function of temperature at 
the superconduct~ng layer at smaIl (a)  and Iarge ( b )  values of the 
overlap integral t: ( 1 )  t = 0.01 T,, (2) t = 0.15 T, ,  ( 3 )  
t = 0.36 T,, (4) t = 0.5 T,, ( 5 )  t = 0.75 T,, (6) t = 2 T,, and 
( 7) t = 3 T,. In this figure and in Fig. 2 we ignore the off-diagonal 
elements of tensor A, in Eq. ( 12) in view of their smallness. 

As t grows, the system becomes ever more three-dimen- 
sional and the properties of the S- and N-layers undergo ef- 
fective averaging [see the curves corresponding to t > T, in 
Fig. 1 (b)  1.  For this reason there again appears a peak near 
Tc on the T 6,: vs T curve. It must be noted that for suffi- 
ciently large t (i.e., at such values of the overlap integral at 
which the correlation length gc in the direction perpendicu- 
lar to the layers exceeds the distance between the levels), 
there also appears, because of the proximity effect, a peak 
near T, on the temperature curve of the rate T 6:) of nuclear 
relaxation on an N-layer. The S / N  system in this case be- 
haves practically like an anisotropic three-dimensional su- 
perconductor [the curve for t = 2Tc in Fig. 2(b)  1. 

Thus, in two limiting cases, when the coupling of layers 
is very weak ( t g  T, ) and when it is strong ( t  > T, ), the be- 
havior of the rate of nuclear relaxation on S-layers is ordi- 
nary. The values of t at which the peak in the T ,,\ vs T 
curve near Tc practically disappears lie within the 0.3Tc to 
0.5Tc range. It is quite possible that this situation is realized 
in some high-T, superconductors. 

Because of the complexity of the excitation spectrum 
(8), the analytic temperature dependence of T c:, can be 
obtained only for low temperatures (T<  T,). In this tem- 
perature range only the gapless branch w, ( k , q )  of the exci- 
tation spectrum (8)  plays the leading role. Also, when 
T& T,, the approximate expression ( 10) for w, can be used. 
All this makes it possible to establish, when T< T,, approxi- 
mate expressions for Imx + - (a,w,), which together with 
( 12) determine the temperature dependence of T <:, : 

-- 
L a,. L.'b "-1aJL.L , 

( n " ~ l r )  'me 2~7 A%' 1 1 9 )  

in the N-layer , 

FIG. 2. T ,:, ( T)/T ( T,) as a function of temperature at the 
normal layer at small ( a )  and large (b)  values of the overlap inte- 
gral t: ( I )  t =  0.01 T,, (2)  t = 0.36 T,, (3) r =  0.5 T,, (4) 
t = 0.75 T,, and ( 5 )  t = 2 T,. 
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when T< t */A and 

[lll y_-  (a= 1. w ,  ) 2x.v- (0) 1 u;, (I)) 1 ,t4 T-:-------- - - . 7' in the S-layer , 
(grlil) 'me 1' 

(20) 
Lm X ,  - (v,=='2, n,) zS"0) I = 71' (0)  I 4  7 in the N-layer. 

(?L(B) 'O< $ 

when T, $ T$ t '/A. Here N(0)  is the density of states in the 
layer. As Eqs. (18)-(21) show, gapless excitations in an 
S / N  system lead to a relaxation rate that depends on tem- 
perature for T< T, as a power function (in contrast to the 
standard result of the BCS theory). This behavior of T ; ' as 
a function of T agrees with the experimental data (see 
Sec. 5 ) . 

4. THE KNIGHT SHIFT IN THE SINSYSTEM 

The hyperfine interaction of conduction electrons and a 
nucleus generates an additional magnetic field AH on the 
nucleus that is proportional to the static spin susceptibility 
X, of the conduction electrons in layer a (Ref. 3 1 ) : 

All  8n 
-=- 
H 3 

~a 1 lfia(0) I+', 

where n is the electron number density. Thus, the Knight 
shift is directly linked with the temperature average of thez- 
component of the electron spin operator on the nucleus. In 
layer a the average value of the z-component of the electron 
spin operator is given by the following expression: 

I Wa(0) r [Gnat: ( k q w ) - G  ( k q w )  1. (S, (r=O. a )  )= - 
2 ("1Q)'" ,gu 

Using Poisson's summation formula 

1 G,,,, ( k .  q ,  " e'"' 
dz, 

where contour C encompasses the zeros of the denominator 
but not the poles of the function G,,, , (k,q,z)  in the complex 
z plane, we can easily perform the summation over the Mat- 
subara frequencies in (23). 

As noted in Sec. 2, there is a gapless branch in the exci- 
tation spectrum of a layered S / N  system with overlap inte- 
grals that are the same for all pairs of layers. This must lead 
to a discrepancy between the actual temperature dependence 
of the Knight shift and the one predicted by the BCS theory, 
which manifests itself, however, only at temperatures much 
lower than T,. In our model the ratio of the Knight shift in 
the superconducting phase, K,, to that in the normal phase, 
K , ,  depends on the temperature (for T& Tc) as a power 
function. As does the ratio of the relaxation rates in the S- 
and N-states, the temperature dependence of K,/KN 
changes at temperatures of the order of t */A. Calculations 
show that for T< t 2/A and t < T,, 

in the S-layer and 

in the N-layer; in the opposite limiting case where 
T, 3 T 3 t  '/A, 

in the S-layer and 

in the N-layer. 
At higher temperatures [ T >  T,/ln(T,/t) ] the tem- 

perature dependence of Ks/KN is close to the ordinary result 
of the BCS theory.'3 At sufficiently small values of param- 
eter t /A the discrepancy between the value of K,/K, at the 
S-layer and the standard result manifests itself only when the 
contribution of conduction electrons to the Knight shift is 
practically nil. 

At present there is no clarity concerning the experimen- 
tally determined values of Ks/KN: some researchers (see, 
e.g., Ref. 34) report observations of power dependences of 
K,/K,, on temperature for T <  T,, while other researchers9 
obtained K vs T dependences closer to those predicted by the 
BCS theory. It  must be noted in this connection that in cer- 
tain conditions the temperature dependences of K obtained 
within the framework of theS /Nmodel may not obey a pow- 
er law at low temperatures. As shown in Ref. 14, impurities, 
which are always present in samples, mix the trajectories of 
electrons moving in S- and N-layers and, therefore, restore 
the gap in the excitation spectrum. In this case, for T< T, 
there should be no power dependences in the Knight shift, 
but because of the proximity of N- and S-layers the peak in 
the nuclear relaxation rate near T, is still suppressed. 

5. DISCUSSION 

In no experiment in high-T, superconductors known to 
us has a peak on the T , ' vs Tcurve near IT, been observed. 
This allows us to conclude, at least in principle, that there is 
no true gap in the excitation spectrum, which may be the 
case in nontrivial ( d )  pairing (see, e.g., Refs. 7 and 8).  At 
the same time, the gapless nature of the excitation spectrum 
can appear in the model with s-pairing, too. Such a possibil- 
ity has been discussed in the present work. In our model the 
gapless branch of the excitation spectrum is related to the 
group of electrons moving along the normal layers. As 
shown above, in a layered S/Nmodel the effect of proximity 
of the N- and S-layers effectively suppresses the peak in the 
T , ' vs Tcurve near Tc. Below we compare the main results 
obtained within the framework of the S / N  model with the 
experimental NMR data on high- T, superconductors. 

In our model the rates of nuclear relaxation on N- and 
S-layers depend on temperature differently. If the coupling 
of neighboring layers is sufficiently weak, the T , ' vs T de- 
pendence for N-layers behaves in the usual Korringa manner 
near Tc . In 1-2-3 and 1-2-4 compounds the Cu-0 planes act 
as S-layers, and the Cu-0 chains possibly act as N-layers. 
This is corroborated, for one thing, by recent experiments's4 
involving YBa, Cu,O, , in which markedly different tem- 
perature dependencies of T ; ' at copper sites Cu( 1 ) (in 
chains) and Cu(2)  (in planes) were registered. Moreover, 
in the T, ' vs T dependence for copper in chains the linear 
term is predominant, a property preserved down to the low- 
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est temperatures possible. At the same time, the rate T , ' of 
relaxation on copper nuclei in Cu-0 planes decreases with 
temperature much faster than in Cu-0 chains, which sug- 
gests strong superconductivity in planes and much weaker 
superconductivity in chains. The same difference in the tem- 
perature dependences of T, ' at copper sites Cu(1) and 
Cu(2) in YBa, Cu, 0, was registered in Refs. 35 and 36 and 
is related to the formation of two different superconducting 
gaps, on planes and on chains. 

The gapless nature of the excitation spectrum leads to a 
power-law dependence of T, on temperature at low tem- 
peratures, instead of the activation-type dependence charac- 
teristic of the BCS theory. This agrees with the experimental 
results listed in Refs. 1-4. For instance, the authors of Ref. 2 
discovered that the rate of nuclear relaxation at the copper 
sites Cu(2) in the YBa,Cu,O, in the entire temperature 
range from zero to T, is described fairly well by the product 
Texp( T / T  *), where T * (H) is a characteristic temperature 
depending on the external field H. For T g  Tc the depend- 
ence transforms into a power law. In earlier papers (see, e.g., 
Ref. 37) temperature dependences of T ; ' that did not agree 
with the formulas of the BCS theory at low temperatures 
were also reported. 

At the same time, a number of experiments suggest 
(see, e.g., Ref. 38) that for the completely oxygen-saturated 
YBa, Cu, 0, compound the T ; ' vs T dependence follows 
the ordinary Korringa relation. This points to a metallic 
conduction in Cu-0 planes and to the fact that the nuclear 
relaxation rate is basically determined by the ordinary con- 
tact interaction of a nucleus withs-electrons, which has been 
assumed in the present paper. 

Thus, the crude model discussed here does, apparently, 
reflect some features of NMR in high-T, superconductors, 
although it is based on simplified assumptions concerning 
the mechanisms of nuclear relaxation in high- T, supercon- 
ductors and is considered in the weak binding approxima- 
tion. 

The results of calculations of the nuclear relaxation 
rates in a model that in a certain sense is close to our model 
has briefly been discussed by Tachiki and Takaha~hi, ,~ but 
they used, as they did in an earlier paper19 on optical absorp- 
tion, a far more cumbersome model in which the tight-bind- 
ing approximation is employed to describe the motion not 
only along the z axis but between separate ions in the Cu-0 
planes. The drawback of their model is the large number of 
arbitrary parameters. Obtaining analytic results within the 
framework of the model would seem to be very difficult. 

A somewhat different approach to describing NMR in 
high-Tc superconductors was developed in Refs. 6,40, and 
41, whose authors assume that antiferromagnetic fluctu- 
ations in Cu-0 planes play the leading role in the relaxation 
of nuclear spins. The mode16340*4' of an "almost antiferro- 
magnetic Fermi liquid" provides a good description of nu- 
clear relaxation in the oxygen-deficient YBa, Cu, 0, ,, com- 
pound,,, in which the T I  ' vs T dependence behaves in no 
special way near T, not only at Cu( 1 ) sites but also at Cu(2) 
sites in planes. At the same time, in completely oxygen-satu- 
rated 1-2-3 compounds the rate of nuclear relaxation at 
Cu(2) sites sharply drops directly below T,, which unam- 
biguously points to a transition to superconductivity. For 
this reason, nuclear relaxation in high- T, can hardly be de- 
scribed using the one concept of an "almost antiferromag- 
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netic Fermi liquid"; one must allow for the ordinary relaxa- 
tion mechanism. As Monien and Pines have shown by their 
ca l~ula t ions ,~~  the effect of antiferromagnetic correlations 
may considerably lower the peak in the T, ' vs T depend- 
ence near Tc, but allowing only for antiferromagnetic fluctu- 
ations cannot, apparently, explain the nature of the tempera- 
ture dependence of T; ' at Cu( 1 ) sites in chains (for a 
discussion of the model suggested in Ref. 6 for the case of 
YBa, Cu, 0, see Ref. 2). 

Thus, the question of the mechanisms of nuclear relaxa- 
tion in high-Tc superconductors has still to be answered. 
Our paper is devoted to nuclear relaxation in the S /Nmodel 
with weak coupling of the layers. We argue that such a model 
can indeed provide a good description of NMR experiments 
involving high-T, superconductors. 

The present work was done as a part of the 90062 "Mag- 
lok" project. One of the authors (D.A.K.) would like to 
express his gratitude to the Moscow Physical Society for 
financial support. 

APPENDIX 

Let us write the expression for S +  explicitly, allowing 
for the small overlap of the wave functions of electrons local- 
ized at neighboring layers. Since the action of operator S +  
leads to no electron transitions between neighboring layers, 
the spin density on layer a = 1 in the mth unit cell can be 
written as 

+ E ~ + ~ , ~ ~ + ~ ~ ~ ~  ( t ) c L r l P I ( t )  I w z  ( d )  1 ?2 cos (Q(i)Iesp(--ipr--2im clQ1. 

The second term on the right-hand side is connected with 
electrons localized at neighboring layers and is 
( I w2 (d) 1 '/I w, (0)  1 ') - '-fold smaller than the first term. 
Since the characteristic energy for the electron movement in 
a layer is the Fermi energy E,, the following order-of-mag- 
nitude estimate holds true: I w, (d) /'/I w, (0) / * ~ t  /EF. The 
characteristic energies in our problem are T, T,, and the 
overlap integral t ,  which is much smaller than E,. For this 
reason the second term in (29) can be discarded: this is pos- 
sible because the contact interaction is actually determined 
by the electron wave function at the nucleus. 

Since the retarded Green function ( 13) is given by the 
temperature average of two spin operators taken at the same 
layers, all the electron Green functions in the polarization 
operator ( 14) are diagonal in the layer indices a and 8, and 
we arrive at Eqs. ( 16) and ( 17). 
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