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Hydrodynamic fluctuations in a nonequilibrium semiconductor electron gas are analyzed under 
conditions such that an electron temperature can be introduced. Such a gas has two fluctuation 
degrees of freedom, which correspond to excitations of stochastic waves of the electron density 
and of the electron temperature. The corresponding length and time scales are the Maxwellian 
relaxation time r,, the electron temperature r,, and the respective diffusion lengths L,  and L , . 
Expressions are derived for the spectral densities of low-frequency, long-wave fluctuations for 
arbitrary relations among the fluctuation frequencies w and the times r ,  and r ,  and also among 
the fluctuation wave vectors q and the lengths L, and L,. In general, the spectra are not 
Lorentzian. This is true in particular of thermodynamic equilibrium. The mutual correlation 
function, which determines the relationship between the fluctuations of the electron density and 
of the electron temperature, is a nonmonotonic, sign-varying function of the frequency. This 
behavior indicates the existence of regions of correlation and of anticorrelation. At 
thermodynamic equilibrium, the mutual effects of the fluctuations reduce to simply a 
redistribution of their intensity over the spectrum, with no change in the integral intensity. In a 
nonequilibrium gas, the mutual effects of the fluctuations in the electron density and temperature 
are directly related to an additional kinetic correlation. This kinetic correlation arises from an 
electron-electron interaction and leads to a violation of the Price fluctuation-diffusion relations. 
This additional kinetic correlation leads to a radical violation of the similarity of the equilibrium 
fluctuation spectra and the nonequilibrium spectra with wave vectors perpendicular to the 
external electric field. In the absence of an electron-electron interaction, this similarity prevails. 
A theory for the scattering of light by hydrodynamic fluctuations of hot electrons is derived in the 
same approximation. An expression is derived for the differential cross section for optical 
scattering. It is shown that the additional kinetic correlation may either intensify or suppress the 
scattering of light. It also leads to a qualitatively new effect: a correlation-induced shift of the peak 
of the spectral line of the scattered light. Possibilities for experimentally studying the scattering of 
light by long-wave, low-frequency electron fluctuations are discussed. 

1. INTRODUCTION 

Hydrodynamic fluctuations are long-wave, low-fre- 
quency stochastic excitations of a physical system against 
the background of its steady state. It is assumed here that 
there are some characteristic microscopic spatial and tempo- 
ral relaxation parameters I and r such the following condi- 
tions hold for the typical wave vectors q and frequencies w of 
the fluctuations: 

o.t<l, qlc<l.  (1.1) 

In this case the system behaves as a continuous medium and 
can be described by a system of macroscopic equations.' 

This assertion does not, on the other hand, mean that 
the description of the fluctuations by such a system of mac- 
roscopic equations is exhaustive. The ultimate cause (or 
source) of any fluctuations consists of random microscopic 
processes, specifically, collisions of particles of the system 
with each other and with a heat reservoir. This circumstance 
leads to a two-step evolution of fluctuating excitations which 
arise under the influence of such random perturbations.2 

In the first step, the initial perturbation undergoes a 
rapid relaxation to a locally steady-state distribution. This 
relaxation proceeds as a relaxation in momentum space and 
is controlled by Boltzmann-Langevin equations.' A local 

steady state is established over times on the order of the mi- 
croscopic relaxation time 7.  This process occurs indepen- 
dently in each element of coordinate space. After a time on 
the order of T, the details of the original distribution in mo- 
mentum space are forgotten, and this momentum-space dis- 
tribution assumes a form corresponding to a steady state. In 
general, this distribution depends not only on the momenta 
of the particles but also on certain parameters which are 
macroscopic characteristics of the physical system. These 
macroscopic variables depend on the coordinates, since ran- 
dom fluxes which occur in momentum space in the first step 
of the relaxation process lead to local fluxes in coordinate 
space and thus to a coordinate dependence of the macro- 
scopic properties of the system. 

In the second step, the subsequent relaxation of the fluc- 
tuating excitation toward a final, spatially homogeneous, 
steady state is controlled by hydrodynamic equations for 
macroscopic variables. This process is an evolution of hy- 
drodynamic fluctuations. We can already see that although 
it is possible to breakup the fluctuation process into two 
steps-a fast (kinetic) relaxation and a slower (hydrody- 
namic) one-these two steps are closely interrelated. The 
first step shapes the initial conditions for the second step of 
the space-time evolution of the fluctuation. The develop- 
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ment of the fluctuation in this step is controlled by a Boltz- 
mann-Langevin equation, from which a closed system of 
stochastic equations of the hydrodynamic type should fol- 
low. This system of equations describes the evolution of the 
fluctuation in the second step of the process. The second step 
determines the specific nature of the space-time behavior of 
the fluctuations of the macroscopic characteristics of the 
physical system which appear as parameters in the expres- 
sions describing the kinetic step of the fluctuation process. 
These macroscopic parameters play the role of integrals of 
motion in the expressions for the first step. A complete de- 
scription of the hydrodynamic fluctuations thus generally 
also requires an analysis of the kinetic step of their evolution. 

In the present paper we analyze hydrodynamic fluctu- 
ations in a nonequilibrium semiconductor electron gas. We 
assume that in the steady state the state of the gas is charac- 
terized by an electron temperature T different from that of 
the heat reservoir, To. We know that the following inequal- 
ities must therefore hold: 

where rp and r ,  are the relaxation times of, respectively, the 
momentum p and the energy of the electrons in the course 
of their scattering by the heat reservoir, and r , ,  is the time 
scale of electron-electron collisions. 

Electron fluctuations in such systems have been studied 
in several places.3-6 

Gantsevich et uI. ' .~ found kinetic equations for the cor- 
relation functions of fluctuations of distribution functions. 
They took both electron-phonon scattering and electron- 
electron interaction into account. Their approach might be 
called the "moment method." Because of the intense inter- 
particle scattering, an additional, collisional correlation 
arises in the fluctuations in the distributions function, and 
the Price fluctuation-diffusion relation is violated. That rela- 
tion asserts that the spectral densities of spatially uniform 
fluctuations in the current and the diffusion coefficient are 
proportional. This is clearly a nonequilibrium effect. Using 
kinetic equations for the fluctuations, Gantsevich et a1.3,4 
derived the basic equations of fluctuation hydrodynamics. 
They used those equations to study long-wave, low-frequen- 
cy fluctuations about a spatially uniform, nonequilibrium 
steady state. The sole macroscopic variable, which ultimate- 
ly determined the hydrodynamic fluctuations completely, 
was a fluctuation of the electron density, S n ( r , t ) ,  which de- 
pended on the coordinates r, of the point, and the time t .  
Correspondingly, hydrodynamic fluctuations were de- 
scribed in Refs. 3 and 4 by only a single equation: a stochastic 
continuity equation. 

Under conditions ( 1 .2 ) ,  however, the steady-state dis- 
tribution of the electrons in a semiconductor is characterized 
by a macroscopic parameter in addition to the electron den- 
sity: the electron temperature. In general, an electron gas 
thus has two fluctuation degrees of freedom. The hydrody- 
namic fluctuations are described in this case by a system of 
two stochastic equations. Still, there can be situations in 
which the intensity of concentration fluctuations is well 
above the intensity of temperature fluctuations, and the re- 
sults of Ref. 3 and 4 are sufficient for describing hydrody- 
namic fluctuations. For the particular macroscopic param- 
eters selected, the dynamics of this electron gas is 

characterized by two time scales: the Maxwellian relaxation 
time rM and the relaxation time r ,  of the electron tempera- 
ture. Corresponding to these two time scales are two length 
scales: the Maxwellian relaxation length L,  = (Dr,)"'2 
and the electron cooling length L ,  = (DrT)"* ,  where D is 
the diffusion coefficient. Under the conditions 

fluctuations of the electron density thus play the leading 
role. This statement does not, however, mean that fluctu- 
ations of the electron temperature can be completely ig- 
nored. As we will see below, it is specifically in the case in 
which inequalities ( 1.3) hold that the contribution of the 
fluctuations in the electron temperature reduces, under non- 
equilibrium conditions in the system, to a renormalization of 
the kinetic coefficients in the dispersion relation for a hydro- 
dynamic mode. In  this case, the latter mode is an electron 
density wave. 

A theory for kinetic and hydrodynamic fluctuations 
was derived in Refs. 5 and 6 by a Langevin approach. That 
approach starts with the introduction of background ran- 
dom fluxes in linearized kinetic equations for occupation- 
number fluctuations. The correlation function for the occu- 
pation numbers is ultimately expressed in terms of 
correlation functions of the random fluxes, which are calcu- 
lated both for the interaction of the electrons with the heat 
reservoir and for the case of binary collisions. These results 
can be used to calculate the spectral densities of the fluctu- 
ations of any physical quantity whose average value can be 
found from the known steady-state electron distribution. 
The fluctuation spectra found by the moment methodL4 and 
by the Langevin p r o ~ e d u r e ~ , ~  are identical, indicating that 
the two approaches are equivalent (that they are equivalent 
was shown in a general way in Ref. 7).  A system of stochastic 
transport equations was derived in the electron-temperature 
approximation in Ref. 6 for the general case in which low- 
frequency, long-wave fluctuations are represented as fluctu- 
ations of the electron density and the electron temperature. 
The hydrodynamics of the fluctuations in that general case 
was not studied there, however. As in the situation discussed 
in Refs. 3 and 4, there may be conditions such that fluctu- 
ations of the electron temperature play the leading role, 
while fluctuations in the electron density simply renormalize 
the kinetic coefficients. This situation requires satisfaction 
of the inequalities 

Kogan and ShadrinX used this approximation in the general 
procedure developed in Refs. 5 and 6 to calculate the intensi- 
ty of the fluctuations in the electron temperature, integrated 
over the spectrum. This intensity was then used to calculate 
the differential cross section for quasielastic scattering of 
unpolarized electromagnetic radiation in an electron plas- 
ma. 

There is a wide range of experimental situations in 
which conditions ( 1 . 3 )  or  ( 1.4) may prove rather restric- 
tive. In addition, the relaxation parameters r, and r ,  may 
behave in different ways as an electron gas is heated by an 
external field. For example, when electrons are scattered by 
acoustic lattice vibrations, the Maxwellian time increases 
with increasing electric field, while the electron cooling time 
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decreases. As a result, the sign of the first inequalities in 
( 1.3) and ( 1.4) may change. If the properties of the semi- 
conductor are instead such that T, and T, are comparable in 
magnitude, then the results of Refs. 3,4, and 8 are inapplica- 
ble for studying hydrodynamic fluctuations, even at equilib- 
rium. Furthermore, as is shown below, it is worthwhile to 
carry out a special study of the hydrodynamics of fluctu- 
ations under conditions such that inequalities (1.3) and 
(1.4) do not hold. In particular, as we have already men- 
tioned, the Price fluctuation-diffusion relation is violated in 
a gas with an intense electron-electron interaction. A mea- 
sure of the extent of this violation is the correlation tensor 
introduced in Ref. 3. In intermediate situations, that tensor 
can contribute substantially to measurable properties; this 
circumstance should be of assistance in experimentally ob- 
serving this effect. 

New features for fluctuation hydrodynamics in such 
situations are effects of a mutual correlation between the 
fluctuations in the electron density and those in the electron 
temperature. As we will see below, these effects contain ad- 
ditional information about microscopic processes in the sys- 
tems of interest and about the nonequilibrium states of these 
systems. 

Our purpose in the present paper is to study the fluctu- 
ations in a semiconductor electron gas for the general case in 
which restrictions ( 1.3) or ( 1.4) are not imposed. 

We also derive a theory for the scattering of electromag- 
netic waves by low-frequency, long-wave fluctuations of a 
nonequilibrium electron gas in a semiconductor. We derive 
expressions for the differential cross section for the scatter- 
ing of unpolarized electromagnetic radiation, for arbitrary 
relations between the space-time characteristics of the fluc- 
tuations ( w  and q)  and the properties of the semiconductor 
(T,, T,, LM, and L,). As we will see, a study of the scat- 
tering of electromagnetic radiation under these conditions 
adds to the capabilities of fluctuation spectroscopy of semi- 
conductors and of nonequilibrium states of the electron gas 
in semiconductors. 

2. SPECTRUM OF LONG-WAVE LOW-FREQUENCY 
FLUCTUATIONS IN AN ELECTRON GAS WITH AN INTENSE 
INTERPARTICLE INTERACTION 

To describe the electron fluctuations we introduce the 
correlation function 

where 

6 F ,  (r, t) =F, (r, t) -F, ( i s ,  t )  (2.1) 

is a fluctuation in the one-particle electron distribution func- 
tion in the state with momentum p at point r at time t. In 
other words, this is the deviation of the exact distribution 
function F, (r,t) from the average function (r,t). In a spa- 
tially uniform steady state of the system, the correlation 
function 

depends on only the differences r - r ,  and t - t,, and its 
Fourier transform gives, according to the Wiener-Khinchin 
theorem the spectral density of the fluctuation process 

1 
(SFp SF..),. =--If (6F,(r, t)6Fp.(r,, t,) ) 

V" 

where V, is the volume of the crystal. One can work from the 
known spectral density of fluctuations in the occupation 
numbers, (SF,SF,, ),, , to calculate the spectrum of electron 
fluctuations in any physical quantity. 

The most direct way to find the spectral density 
(SFpSFp, ),, is to work directly from an equation for this 
quantity, using the moment m e t h ~ d . ~  In the case at hand, 
however, the specific realization of this approach turns out 
to be rather complicated. Furthermore, it is necessary first to 
calculate the simultaneous correlation function which ap- 
pears as a source in the equation. It is thus more convenient 
to use the Langevin to calculate spectrum 
(2.2). 

The Boltzmann-Langevin equation for the fluctuation 
SF, (r,t) is6 

a 8 aF, GP (r. I) SFp (r, I)-[- + v - + LP] 8 ~ .  (r, t )  +eSE (r, t)- dt dr dp 

where yp (^r,t) is a random Langevin source; v is the electron 
velocity; L, is the linearized kinetic-equation operator, giv- 
en by 

d 
Lp=eE, - + l'p'h+f ,"{F,) 

dP 
(2.4) 

(E, is the external electric field, the operator it represents 
the interaction of electrons with the reservoir, 2 :@,) is the 
linearized operator representing electron-electron interac- 
tions), and SE(r,t) is the self-consistent fluctuation electric 
field, which is determined by a Poisson equation, 

div 6E (r, t)  = - "ne z6~~~ (r. t), 
EVO ,' 

where E is the dielectric constant of the lattice. 
It is convenient to take Fourier transforms in (2.3) and 

(2.5). As a result we find 
,. 
9, (q, (0)8F,  (q, a)= -io+iqv+L,] fiF, (q, o) 

where 

We seek a solution of Eq. (2.6) in the low-frequency, 
long-wave approximation ( 1.1 ), using the Chapman-Ens- 
kog pro~edure .~  This method was used in Ref. 3, but it was 
modified through the incorporation of conditions ( 1.3 ) 
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there. For that reason, it cannot be applied directly to the 
case at hand. 

In the electron-temperature approximation, ( 1.2), the 
nonequilibrium steady-state distribution function is 

where n,, is the electron density, T, is the momentum relaxa- 
tion time, and N, ( T )  is the effective density of states, given 

by 
m 

It can be seen from (2.9)-(2.10) that the function de- 
pends on the two parameters n, and T, which are external 
with respect to the kinetic-equation operator (in its nonlin- 
earized form), since these parameters do not appear directly 
in this operator. They are instead determined from boundary 
conditions imposed on the distribution function Fp (the nor- 
malization condition and energy balance). In other words, 
the parameters no and Tare integrals of motion for the %net- 
ic operator. It follows that the linearized operator L, in 
(2.4) has two eigenfunctions which correspond to zero 
eigenvalues: 

That this is tru%can be verified directly by using the explicit 
expression for L, in (2.4) and the expression for the two- 
particle collision integral, 

Here W!!; is the probability for a transition of the particles 

from states p, p, to states p', pi in the course of the electron- 
electron collision. 

The "zeros" of the operator L, [see (2.12) ] mean that 
the result of the application of this operator to an arbitrary 
function V, remains invariant with respect to the transfor- 
mation 

-where C, and C, are arbitrary constants. 
We now rewrite Eq. (2.6) in a form convenient for car- 

rying out an %erative procedure. We use property (2.14) of 
the operator L, : 

where we have introduced the new constants Sn(q,o) and 
ST(q,w). As we will see, these constants determine the fluc- 
tuations in the density and electron temperature. We have 
also made use of the circumstance that the equation 

aPp F p  
-=- 
an0 no 

holds for distribution function (2.9)-(2.10). We then write 
SF, (q,w) as a power series in the parameters in ( 1.1 ) : 

6Fp(q, o ) = 6 ~ : 0 '  (q. ~)+GF;"  (q, o )  + ... (2.16) 
h 

Since the operator L, is characterized in order of magnitude 
- by the quantity 1/rP, and since I=: UT,, the left side of Eq. 

(2.15) is predominant. In the first step of the iterative proce- 
dure we find 

6n(q, - aF, 6~:' (q, o ) = F,+GT (q, o )  - . 
no d T 

The quantity SFT'(q,w) includes both a spherically sym- 
metric part and an antisymmetric part with respect to the 
variable p. 

Substituting (2.16), (2.17) into (2.15), we find an 
equation for SF:" (q,w) : 

&,6Fi1) (q, a )  = z ~ ( B F ~ ( ~ '  (q, a )  ), (2.18) 

where 

z,{~F,'~' (q, w))=i[o-qv]6~;0' (9, o )  

Since the property of the operator in (2.14) was taken into 
account in the first step of the iterative procedure, the func- 
$on S F  :'' (q,w) does not contain the "zeros" of the operator 
L, [and the same is true of all the following terms in series 
(2.16) 1; furthermore, the function SF:'' (q,w) in (2.17) 
completely determines the spherically symmetric part of the 
solution of the original equation, (2.15). The latter conclu- 
sion follows from the circumstance that ̂ under approxima- 
tion (1.2) the last term in the operator L, in (2.4) is pre- 
dominant in the equations for the symmetric part of the 
solution in each step of the iterative procedure. That term 
yields as a result a spherically symmetric function 

upo (a,) 
fp+=aF,, (8,) +b (2.20) 

dT ' 

which has already been incorporated in (2.17). We are thus 
to determine from Eq. (2.18) the function which is antisym- 
metric with respect to p. Using conditions (1.2), we find 

GFp(') (q, o )  =T~Z~-{BF,(~) (q, o ) )  . (2.21) 

On the right side of (2.21 ) we need to discard the term con- 
taining the frequency w, along with the term containing the 
wave vector q. For these two terms we find the following 
estimates from (2.19) and (2.17), using (2.9)-(2.10): 

i[ ( o - q ~ r ) ~ ~ j o '  (q, o) l--i[oF, '-qvFo(~p) I 

Since eEorp/P< 1, this result justifies the discarding of the 
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term containing o. From (2.21 ) and (2.17)  we then find the 
solution of Eq. (2.18)  which we are seeking: 

Expressions (2 .16) ,  (2 .17) ,  and (2.22)  determine the solu- 
tion of the original equation, (2 .6) ,  in the low-frequency, 
long-wave approximation. The constants S n ( q , o )  and 
S T ( q , o )  which appear here should be found from the condi- 
tions under which Eq. (2 .6)  can be solved. These conditions 
are the continuity equation and the energy transport equa- 
tion for the fluctuations, namely, 

In (2.23)  we have used the following property of a random 
source: 

This property means that the number of particles is con- 
served in collisions. 

Substituting the explicit expression for the operator 
2, ( q , o )  in ( 2 . 6 )  into (2.23)-(2.24) ,  we find the equations 

- i o 6 8  (q, o)  +iq6j8 (q, o) -eEo6j (q, o)  -enou6E(q, o )  
+Gp(q, o ) = o ( q ,  0) .  (2.27)  

Here S j ( q , o )  and Sj ,  ( q , o )  are fluctuations in the particle 
flux density and the energy flux density, respectively; u is the 
electron drift velocity: S F  (q ,w)  is a fluctuation in the aver- 
age electron energy in a unit volume; S P ( q , o )  is a fluctu- 
ation in the power transferred to the lattice by the electrons; 
and @(q,o) is the Langevin source of energy fluctuations. 

Using expressions (2 .16) ,  ( 2 . 17 ) ,  and (2 .22) ,  we find 
the following expressions for these quantities: 

Here we have introduced the following notation for the 
"complex velocities" of the excitations: 

N 
W=W1-iq- U ( q ) D , ,  

T 
W,=u-iqn,, 

and 

is the ordinary diffusion coefficient, N = n,V, is the total 
number of particles, and the coefficient B ,  is given by 

(2.33)  

For the fluctuations 6 9  ( q , w )  and GP(q,w) we have 

- 1 
6 8  (q. a)= - E i * . b ~ ~ ( q .  w) ="/,*On (q, o)+7,n0OT (q, o)  

v~ P 

bT (q, w ), + n o  
dT 

where 

is the power transferred to the lattice by one electron in the 
steady state. 

- The Langevin sources of fluctuations of the energy 
U ( q , o ) ,  the particle f l u ~ i ( ~ , w ) ,  and the energy flux Q ( ~ , u )  
introduced above are given by6 

Although the spectral densities of the fluctuations in 
the hydrodynamic parameters of the electron gas, Sn(q,ccj) 
and S T ( q , w ) ,  are the topics of primary interest below, it is 
worthwhile to briefly analyze system of equations ( 2 . 26 ) -  
(2 .27)  for the fluctuations Gn ( q , o )  and S T ( q , o )  themselves 
in certain limiting cases. 

Let us assume that conditions ( 1 . 3 )  hold and that they 
are supplemented in the nonequilibrium situation by the in- 
equality 

Here r, is the relaxation time of the electron temperature, 
which arises in Eq. (2 .27)  in a natural way: 

(p,  is the electron mobility). In this case, we can ignore 
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terms -iqGT(q,w) in the expressions for the fluctuations in 
the fluxes, (2.28)-(2.29), and also in (2.22).  In other 
words, we can ignore effects of thermal diffusion and of the 
electron thermal conductivity. Combining Eqs. (2.26)- 
(2.27),  we find an expression for ST(q,w):  

2TT 
6 ~ ( q ,  o) = - { [ ~ ( q ,  3% o ) + e ~ , i  (q ,  o)  1 

where 

is the Maxwellian relaxation time. 
The first term in braces in (2.42) is the leading term. It 

determines the fluctuations in the electron temperature in a 
spatially homogeneous nonequilibrium system, since Lange- 
vin sources do not have a space-time di~pers ion.~ We also see 
that the size of the relative temperature fluctuations, 
S T ( q , w ) / T ,  is small in comparison with the size of the rela- 
tive density fluctuations, Sn (q,w)/n,, because of inequal- 
ities ( 1.3) and (2.40).  On the other hand, the dispersive part 
of the fluctuation, ST(q ,w)  "tracks" the fluctuation 
Sn(q,w) exactly. However, ST(q ,w)  cannot be ignored, al- 
though it is relatively small. Substitution of (2.42) and 
(2.28)--(2.29) leads to a renormalization of the kinetic coef- 
ficients D,(T) ,  p , (T ) ,  etc., and also of the Langevin 
sources. For i), ( T ) ,  for example we have 

2 dpo B T  1 
Ba, (T) =Do (T) [I + -  re^^' -(,- - -) ha,] hap, 

3 dT DOT 2 

where we have assumed E, = e,E,. It is important to note 
that this renormalized diffusion coefficient can be intro- 
duced only under conditions (1 .3)  and (2.40).  The operator 
expression found in Ref. 3 for the "nonequilibrium" diffu- 
sion coefficient, 

which gives us (2.44) when the operator is inverted, should 
thus also be supplemented with these conditions. A renor- 
malization of the diffusion coefficient arises in a similar way 
in the problem of a drift electrical instability." 

Using (2.42),  we find the following result for the den- 
sity fluctuation from continuity equation (2 .26):  

where 

515 Sov. Phys. JETP 75 (3), September 1992 

The last term in (2 .42)  did not contribute to the Doppler 
frequency shift of the fluctuation in terms of the parameter 
r T / r M  < 1 .  

Expression (2.46) was derived in Refs. 3 and 4 by a 
modified Chapman-Enskog procedure. That procedure was 
based on a simplified version of transformation (2.14),  in 
which only the first of Eqs. (2.12) was taken into account. 
Accordingly, it can be seen from the discussion above that 
the algorithm proposed in Refs. 3 and 4 for studying the 
hydrodynamic fluctuations implicitly assumes that condi- 
tions ( 1.3) and (2.40) hold. Those conditions determine the 
range of applicability of that algorithm. The physical mean- 
ing here is that effects of the electron thermal conductivity 
are being ignored, as are cross effects in the fluctuating 
fluxes of particles and energy. 

In the opposite situation, in which conditions (1.4) 
hold, along with the inequality 

we can completely ignore the density fluctuations, i.e., the 
terms -Gn(q,w), in all the expressions for GF,, (q ,w)  
[ (2.16),  (2 .17) ,  and (2.22) 1,  in balance equations (2.26) 
and (2 .27) ,  and in the expressions for Gj (q,w ), G j ,  ( q ,w) ,  
S P  (q ,w)  and GP(q,w) which appear in them. The effect is to 
substantially simplify the problem. However, we cannot ig- 
nore in all the expressions, the contribution from fluctu- 
ations SE(q,w) of the self-consistent electric field, despite 
the fact that GE(q,w) and Sn (q ,w)  are proportional accord- 
ing to (2 .7 ) .  The reason is that the contribution of the self- 
consistent terms to balance equation (2.27) is proportional 
to the ratio Sn(q,w)/r,. The fluctuation Gn (q ,w)  itself, 
found from continuity equation (2 .26) ,  is proportional to 
the small parameter rjW, which cancels out upon substitution 
into (2.27).  From (2.26) we find an expression for S n ( q , o ) :  

We see that the relative size of the density fluctuation, 
Gn(q,w)/n,, is small, along with relative size of the fluctu- 
ation S T ( q , w ) / T ,  in terms of the parameters in (1 .4 )  and 
(2 .49) .  In contrast with the preceding case, the fluctuations 
in the density track the fluctuations in the temperature in 
this case. Using (2.50),  we find the electron temperature 
fluctuation from energy balance equation (2.27) : 

where 

and x, is the electron thermal conductivity per particle. It 
can be written in the form' ' 
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Expressions ( 2 . 46 )  and ( 2 . 5 1 )  completely determine 
the hydrodynamic fluctuations in the two limiting situations 
defined by inequalities ( 1.3) ,  ( 2 . 4 0 )  and ( 1.4) ,  ( 2 . 4 9 ) .  
Long-wave, low-frequency fluctuations of other physical 
quantities can be found under these approximations with the 
help of expressions ( 2 . 16 ) - (2 .17 )  and ( 2 . 22 )  for SF, ( q , w ) .  

In general, for arbitrary w and q,  crossover effects begin 
to play an important role in Eqs. ( 2 . 2 6 ) - ( 2 . 2 9 ) .  Corre- 
spondingly, a simple relationship between ST(q ,w)  and 
Sn ( q , w )  as in ( 2 . 42 )  or ( 2 . 50 )  does not hold, and the results 
do not reduce to a renormalization of the kinetic coefficients 
in the expressions for the basic fluctuating quantities. In this 
case the fluctuation spectra have some qualitatively new fea- 
tures even under thermodynamically equilibrium condi- 
tions. 

We make use of the known" relationship between the 
correlation function 

(6A ( q ,  o )  6B' (q'. a ' )  > 
of the fluctuations in the Fourier components of arbitrary 
quantities SA(q ,w)  and SB(q ,w) ,  on the one hand, and the 
spectral density (SASB) ,, of the fluctuation process, 

on the other. We also note that the operations ofiaking an 
average and applying an arbitrary linear operator T ( q , w )  to 
the fluctuating quantities commute: 

< F' ( q ,  0 )  6.4 ( q ,  o )  f * (q' .  o f ) 6 B * ( q ' ,  a ' ) )  
= f  (q, o) f ' (q' ,  o ' ) ( G A ( q ,  o)W(q', a ' ) > ,  ( 2 . 56 )  

We can then immediately write equations for the spectral 
densities of hydrodynamic fluctuations. From ( 2 . 26 ) -  
( 2 . 3  1 ) and (2 .34) - (2 .35)  we find the system of equations 

Here we have introduced 

6R ( q ,  o )  = 
6n ( q ,  a )  , 6 T ( q ,  o ) =  

6 T ( q ,  o )  (2 .61 )  
no T '  

The spectral densities of the Langevin sources on the right 
sides of Eqs. ( 2 . 57 ) - (2 .60 )  are linear combinations of the 
spectral densities of the original sources, ( 2 . 37 ) - (2 .39 ) .  
The latter can be found easily from the correlation functions 
which have been found for them.6 As a result we find 

2 
(9:) q," = - Dogi, 

N 

where 

and T,  is the reservoir temperature. 
We first note that the "crossover" spectral density of 

the fluctuations, (SfiS?),,, is a complex quantity. Its real 
and imaginary parts can be found by making use of the sym- 
metry properties of the correlation functions.'' We find 

1 
He (6TitiT) ,, = -[ (6Z6T) ,,+ (6T6Fi) ,, 1, ( 2 . 71 )  

2 

Equations ( 2 . 57 ) - (2 .60 )  are solved in the Appendix. 
We move on to an examination of the solutions found there. 

3. THERMODYNAMIC EQUILIBRIUM 

Setting E, = 0  and T =  To, we find 5, = D,,, 
2, ( 0 )  = 0 ,  from ( A 1 ) - ( A 1 2 ) ,  since we have r ,  = T, and 
R ( T )  = 0 .  For this spectral densities of the fluctuations in 
the electron density and temperature we find 

where 

~~"=~.r-~/3y~D~~'. ( 3 . 5 )  

The first conclusion which we draw from ( 3 . 1 ) - ( 3 . 4 )  is 
that incorporating the cross correlation of the fluctuations 
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Sn(q,w) and ST(q,w) leads to spectra of a non-Lorentzian 
shape. In this sense, yo is a critical parameter. If the diffusion 
coefficient Do is independent of the temperature, we have 
yo = 0, and the spectra are 

According to (3.8), the condition yo = 0 is thus equivalent 
to the absence of a cross correlation. It is also interesting to 
note that spectra (3.6) and (3.7) are found from general 
expressions (3.1 )-(3.2), respectively, in limiting cases 
(1.3) and (1.4). 

In the spatially homogeneous situation (q-0), there 
are no fluctuations ofthe density, and the only nonzero spec- 
tral density is that of the temperature fluctuations: 

Yet another interesting feature of spectra (3.1 )-(3.4) 
follows from the frequency sum rules which these spectra 
satisfy. The intensity of the fluctuations of some arbitrary 
physical quantity, integrated over the frequency spectrum, 
(SA '), , is given by 

From this expression we find 

The results in (3.1 1)-(3.13) do not depend on whether the 
condition yo = 0 holds, nor do they depend on the specific 
relations among the parameters rT ,  rM, w and L,, L,, and 
q. They also hold for the spatially homogeneous situation 
(with q = 0).  Under equilibrium conditions, the effect of the 
cross correlation of the fluctuations in the electron density 
and temperature thus reduces to one of simply redistributing 
the fluctuation intensity over the spectrum, i.e., changing 
the frequency dependence of the intensity. The integral in- 
tensities (which are numerically equal to the areas under the 
spectral curves), in contrast, remain the same and are inde- 
pendent of the space-time parameters T, and L,, which de- 
termine the energy dynamics of the electron system. 

We also note some aspects of the crossover spectral den- 
sities of the fluctuations in (3.3)-(3.4). It follows from 
(3.3) that the real part of the spectral density is (first) an 
alternating-sign function of the frequency and (second) 
nonmonotonic. Figure 1 shows a rough sketch of this spec- 
trum. The basic parameters of the spectral curve are 

FIG. 1. Schematic diagram of the real part of the "crossover" spectral 
density of fluctuations in the electron density and in the electron tempera- 
ture at thermodynamic equilibrium. 

If y,, < 0, the curve in Fig. 1 should be the mirror image in the 
frequency axis. In the frequency interval - w , < w < w , the 
spectral density is negative, while outside this interval it is 
positive. The meaning here is that there exist regions of cor- 
relation and anticorrelation of the fluctuations Sn (q,w) and 
ST(q,w). In the first region, the signs of the fluctuations 
Sn(q,w) and ST(q,w) are the same, on the average, while in 
the second region they are opposite. The situation is shown 
schematically by the arrows in Fig. 1. According to the first 
of conditions (3.13), the area under the curve in the region 
of negative values of the spectral density is exactly equal to 
the area under the curve in the region of positive values. 

4. SPECTRAL DENSITY OF TRANSVERSE FLUCTUATIONS 

Let us examine the spectra of nonequilibrium hydrody- 
namic fluctuations with wave vectors q transverse to the 
pump electric field: qlEo. In this case, general expressions 
(A3)-(A7) simplify substantially, and we find from (A1)- 
(A21 

4 0 2 v T + ~ M 2 v T 0 -  ( R  ( T )  /3NT2)  ( U ~ + V M ~ )  

(6!T2) goL = - 
3N ( 0 2 - ~ M ~ T o ) 2 +  o ~ ( v M + v T ) ~  7 

(4.2) 

(4.4) 

For fluctuations of this symmetry, there is usually a 
similarity between the nonequilibrium spectra with qlE, 
and the equilibrium spectra (with an arbitrary orientation of 
q).  In the case at hand, in contrast, the nonequilibrium na- 
ture of this system leads to a dramatic violation of this simi- 
larity, as can be seen from (4.1 )-(4.4). The reason for this 
violation is an additional kinetic correlation, caused by the 
electron-electron interaction. Under equilibrium condi- 
tions, we would have R ( T) = 0, and this additional correla- 
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FIG. 2. Frequency dependence of the imaginary part of the "cross" spec- 
tral density under nonequilibrium condition, for fluctuations with a wave 
vector qlE,,. 

tion would not exist. Depending on the sign of R ( T ) ,  this 
additional correlation may either increase the fluctuation 
intensity [if R ( T )  < 0 ]  or reduce it [if R ( T )  > 01 .  It can be 
shown3 that the sign of R ( T )  is given by 

When the sign of R ( T )  is changed, the imaginary part of the 
cross spectral density in ( 4 . 4 )  also changes sign. Figure 2  
shows a rough sketch of the frequency dependence of this 
imaginary part. 

The additional correlation also affects the integral in- 
tensity of the fluctuations. From ( 3 . 1 0 )  and ( 4 . 1 ) - ( 4 . 4 )  we 
find the following expressions for the integral intensities: 

Comparison of ( 4 . 6 )  with ( 3 . 1 1 )  shows that the additional 
correlation leads to a renormalization of the integral intensi- 
ty of the fluctuations in the electron density. It follows from 
( 4 . 7 )  and ( 3 . 1 2 )  that the renormalization is accompanied 
by the appearance of a spatial dispersion of the integral in- 
tensity of the fluctuations in the electron temperature; there 

FIG. 3. Sketch of the nonequilibriurn spectrum ~ e ( S i S f i ; , ,  for 
R(T)>O. 

is no such dispersion in the equilibrium case. The last term in 
( 4 . 7 )  also determines the contribution of the additional cor- 
relation in the spatially homogeneous situation (with 
q = 0 ) :  

The most noticeable change is in the cross spectral den- 
sities. We see from ( 4 . 3 )  and ( 4 . 8 )  that there is a shift of the 
frequency w ,  in the ~e (SiiS?) :, spectrum; this frequency is 
now 

There is also a change in the extreme value of the intensity at 
w = 0. The situation is shown qualitatively in Fig. 3.  

For the spectrum ~rn(SiiSF):, the integral intensity is 
again zero, as under equilibrium conditions. For the non- 
equilibrium system, this assertion is valid only for fluctu- 
ations with qlE,, the only fluctuations which we have been 
discussing in this section of the paper. 

5.CASES IN WHICH FLUCTUATIONS IN EITHER THE 
ELECTRON DENSITY OR THE TEMPERATURE ARE 
PREDOMINANT 

General expressions ( A 1 ) - ( A 7 )  take a particularly 
simple form in the limiting cases defined by inequalities 
( 1 . 3 ) ,  ( 2 . 4 0 ) ,  and ( 1 . 4 ) ,  ( 2 . 4 9 ) .  These are the cases in 
which the fluctuations in the density and the electron tem- 
perature, respectively, are predominant. These cases were 
studied in Refs. 3 , 4  and 5 , 6 ;  we will cite the final expressions 
here. A comparison of these expressions with the general 
results leads to a better understanding of intermediate cases. 

For the case defined by inequalities ( 1 . 3 ) ,  ( 2 . 4 0 )  we 
have 

These expressions can also be found directly from ( 2 . 4 6 )  by 
using ( 2 . 5 5 ) .  It can be seen from (5 .1  ) - ( 5 . 2 )  that with qlE, 
the nonequilibrium spectra in this limiting case have exactly 
the same form as the equilibrium spectra for E, = 0  and are 
Lorentzian. This is not true in the general case, as was shown 
above. 

For the situation defined by conditions ( 1 . 4 ) ,  ( 2 . 4 9 ) ,  
we find from the general expressions, or directly from 
( 2 . 5 1 ) - ( 2 . 5 2 ) ,  

vTO-H (T) /3NT2 
X (o-2/3aoq~)Z+ [VTO+'/~ (yo-2) ( ~ E ~ / ~ E ~ ) ' ~ ~ ~ E ~ ~ / T ] '  ' 

An additional correlation arises in the spatially homoge- 
neous spectrum (with q = 0 ) :  
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4 l/.c,-R (T) /3NTZ 
( 6 T Z ) ,  = - 

31v o z S ~ l / ~ T z  

The integral intensity in this case is the same as (4.10). The 
spatially homogeneous spectrum is Lorentzian and is given 
by (5.5), regardless of the relations among T,, T,, and o .  

In summary, in the first case, after the kinetic stage of 
the evolution of the fluctuations has given way to the hydro- 
dynamic stage, there is initially a rapid relaxation to thermal 
equilibrium ("rapid" at the hydrodynamic time scale). 
Then comes a slow stage of a diffusion-Maxwellian relaxa- 
tion of the perturbation of the electron density, Sii (q,o).  In 
the expressions for the fluctuation of the distribution func- 
tion, (2.16)-(2.17) and (2.22), we can ignore terms - iqST(q,w ) . This process is a stochastic electron-density 
wave, as we have already mentioned, and the spectrum of its 
fluctuations is described by (5.1 ) and (5.2). 

In the second case, in contrast, the hydrodynamic stage 
of the evolution of the fluctuations begins with a rapid relax- 
ation to a state which is homogeneous in terms of the elec- 
tron density. Then comes a slow relaxation of the electron 
temperature, which constitutes a stochastic temperature 
wave. The spectral density of the fluctuations is described by 
expressions (5.3) and (5.4). In the expressions for the fluc- 
tuation of the distribution function, SF, (q,o ), we can ignore 
terms -Sn(q,w) except for the term associated with the 
Maxwellian relaxation, as was pointed out earlier. 

It follows from this discussion that in each of the limit- 
ing cases considered here the electron subsystem has a single 
important degree of freedom in the stage of the hydrody- 
namic evolution of the fluctuations. The fluctuation pro- 
cesses associated with the second degree of freedom adiabat- 
ically track the processes associated with this independent 
degree of freedom. This subordination of the degrees of free- 
dom leads to (first) a renormalization of the relaxation pa- 
rameters and (second) a Lorentzian shape of the spectral 
densities of the hydrodynamic fluctuations. This is always 
the case for linear systems with a single degree of freedom. 

6. SCATTERING OF LIGHT BY HYDRODYNAMIC 
FLUCTUATIONS 

The theory of low-frequency, long-wave fluctuations 
derived here can be used to study the scattering of light by a 
nonequilibrium semiconductor electron gas. We have in 
mind a scattering which is controlled by electron  collision^,^ 
in which the light is scattered by macroscopic fluctuations of 
the electron density and the electron temperature, which in 
turn determine a fluctuation of the electron component of 
the dielectric constant. 

This problem is the subject of an extensive literature, 
because of both the fundamental and applied importance of 
the phenomenon. The scattering of light by condensed me- 
dia has been studied most comprehensively in the well- 
known series of monographs in Refs. 14-18, where various 
mechanisms and sources for the electron scattering of light 
were studied. An approach based on the Chapman-Enskog 
procedure, similar to the procedure of Ref. 4, was used in 
Ref. 19. A theory was derived there for quasielastic electron 
scattering of light in a heavily doped semiconductor by fluc- 
tuations of the energy density and momentum of the carriers 
and by fluctuations of the spin density. In each of these cases, 
however, only one of the listed mechanisms was important, 

so the situation which prevailed was one in which there was a 
single fluctuation degree of freedom. The collision-con- 
trolled scattering of light by free electrons in semiconduc- 
tors, in which fluctuations of the electron density play a lead- 
ing role, was studied theoretically in Ref. 4. This scattering 
was observed experimentally in Ref. 20. There has been no 
previous study of electron scattering of light in semiconduc- 
tors under conditions such that fluctuations in both the elec- 
tron density and the electron temperature play an important 
role. 

A quantitative characteristic of the scattering proper- 
ties of a medium is the differential scattering cross section 

dzo (k,, Q,) /dOdQ,, 

which is defined as the ratio of d 'g,, (a, ), which is the frac- 
tion of the energy which is scattered by the system per unit 
time into a solid angle d 0 in the frequency interval dCl, 
along the direction of the inner vector n = k, / k,, to the time 
average of the Poynting vector of the incident wave, S (Ref. 
21): 

80 (k,, 9,) - d Z 8 .  (Q,) - 
dOdQ, ' I ( s > I ~ o ~ Q , '  

(6.1) 

where k, and a, are the wave vector and frequency of the 
scattered electromagnetic wave. 

If a monochromatic electromagnetic plane wave of fre- 
quency Ri and wave vector ki: 

4 -+ 

8i (r, t )  =go exp [-i (pit-k,r) 1 ,  (6.2) 

is incident on the scattering medium, then we have 

where c is the velocity of light. 
The energy d g,, (a, ) can be calculated by the method 

of retarded  potential^.^' In an electron gas with a fluctuating 
electron density Sn(r,t) and a fluctuating temperature 
ST(r,t), the field of the incident wave in (6.2) gives rise to a 
fluctuating current 

a w i )  6ji (r, t ) =  [?6n(r, t ) +  - 
32'' 

6T (r3 t )  ]& (r, t ) ,  

where o( ) is the high-frequency conductivity of the non- 
equilibrium electron gas. It is assumed here that the follow- 
ing conditions hold: 

The fluctuation response in (6.4) serves as a source in the 
wave equation and causes a fluctuation in the vector poten- 
tial of the scattered wave, SA,. The magnitude of this fluctu- 
ation in the wave zone is2' 

Here R,  is the distance from the scattering volume to the 
point at which the radiation is detected. The wave-zone ap- 
proximation requires that the distance R,  be far greater than 
the characteristic dimensions of the scattering volume and 
also far greater than the wavelength of the scattered light. 
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Expression (6.6) can be used to establish the relation- 
ship between the monochromatic harmonics of the fluctu- 
ations of the vector potential and the electron density and 
temperature. Multiplying this expression by exp(iR, t ) ,  and 
integrating over time, we find 

ao(s , )  
x exp (ik.Ro) [- 6n(q,o)+- a a ( ~ , )  8 ~ ( q , m ) ] ,  

a n, aT 

(6.7) 

where we have used Fourier transforms as in (2.2), and 
where we have introduced 

Equations (6.8) relate the frequencies and wave vectors of 
the incident and scattered waves and the frequency and wave 
vector of the fluctuations of the electron density and tem- 
perature. 

Using (6.7), we can find the Fourier components of the 
electric and magnetic components for the field of the scat- 
tered wave in the wave zone:" 

Making use of the properties of complex random quan- 
ti tie^,'^ we can write the average value of the Poynting vector 
of the scattered wave as 

C 
(S, (R,, t )  >= -Re< [GE, (Re, t )  6H,' (R,, t )  ] >. (6.12) 

8n 

Using spectral expansions for SE, and 6H,5, we can rewrite it 
as 

+ m 

c dQ, 
tS. (R,, t )  >=n - J (6E,hH.)Qe- 

8n -_ 2n ' 

where (GE,SH, ),, is the spectral density, given by 

<6E,(R,, Q,)6II,*(R,. 9,') >=2~(6E,611,).,6 (8,-Q,'). 

(6.14) 

We then find the energy fraction d 2$, (0, ) to be 

The differential scattering cross section is 

Substituting (6.7), (6.10),and (6.1 1) into (6.14), and using 
(6.8) and (6.9), we find the cross section for the scattering 
of the light, which is related to the fluctuations of the elec- 
tron density and the electron temperature: 

a~ (a,) ao (n,) 
xsin' 8 [ I--- I ( 6 )  + 1 1 (62'') .. 

8 no 

[ (Qi) (',) R~ (bn6T) ,. +2 Re ------ ------ 
dn, aT I 

+ 
Here 8 is the angle between the vectors n and EF, [for unpo- 
larized electromagnetic radiation, an average over all polari- 
zations of the incident wave yields 
(sin2 8 ) = + ( 1 + cos279), where 79 is the angle between the 
wave vectors k, and k, 1. In addition, in (6.1 ) we have used 
the second of inequalities (6.5), and we have set R, -- R,. We 
have also used (6.8), from which we find dR, = dm. 

We can also write an expression for the high-frequency 
conductivity; in the limit air, $1, it is 

where 

In this case the differential scattering cross section in 
(6.17) becomes 

d lnz  ' 1 x sin2 8[ (6n2) .. + g( -) - 
T2 d l n T  (Q,T)' (6T2) ,u 

n, d l n  -c 1 +2 --- -- -- 
T d l n  T (Qi-c) ,Re (bn6T) ,, 

By way of comparison, in the collisionless regime (as 
T+ ao ) the scattering cross section is determined exclusively 
by fluctuations of the electron density: 

This conclusion does not mean, however, that there are no 
fluctuations of the electron temperature in this electron gas 
or that there is no mutual correlation of these fluctuations 
with the fluctuations in the electron density. 

The situation can be seen most simply by using the mo- 
ment method."n the collisionless regime, the following con- 
ditions hold: 

The first kwo terms are the leading terms in the relaxation 
Eperator ( q , ~ )  in (2.6); the specific form of the operator 
L, is unimportant, since the limit v/(m - qv) +O should be 
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taken in the final expressions, w h e r y z  L, characterizes the 
order of magnitude of the operator L, . The fluctuation spec- 
trum in the collisionless regime is then determined by the 
system of equations 

We then find the following expression for the spectral den- 
sity of the fluctuations in the distribution function over the 
entire frequency range: 

The spectral densities (Sn2)  ,,, (ST ') ,, , and (6nST)  ,, and 
the integral intensities of these fluctuations in the collision- 
less regime are 

Under conditions ( 6 . 2 2 ) ,  in a gas with an electron tem- 
perature, the spectra of the electron-density and tempera- 
ture fluctuations are therefore Gaussian. The change from a 
Lorentzian spectrum to a Gaussian spectrum upon transi- 
tion from the collisional regime to the collisionless regime 
was pointed out theoretically in Ref. 23. It has been studied 
experimentally in gallium ar~enide. '~ The scattering of light 
in the collisionless regime, however, is due exclusively to the 
fluctuations in the electron density. In the opposite case of 
frequent collisions, there are components in the scattering 
cross section from both fluctuations in the electron density 
and fluctuations in the electron temperature, as well as their 
mutual correlation functions. In the high-frequency limit, 
the latter quantities contain small factors ( 0 , ~ )  ' 4 1 and 
(a ,  T )  - 4 1 but may nevertheless make a contribution com- 
parable to that of the first term in ( 6 . 2 0 ) ;  their contribution 
may in fact be predominant.' In a nonequilibrium situation, 
the scattering cross section in ( 6 . 20 )  depends on not only the 
magnitude of the wave vector q  but also its orientation with 
respect to the external electric field E,. In general, this ani- 
sotropy of the scattering cross section is rather complex. It 
does not reduce to simply a Doppler frequency shift by an 
amount on the order of qu; it is determined by expressions 
(A3)-(A7).  In the particular case qlE, ,  the spectrum of 
cross section ( 6 . 20 )  is determined by (4.1 ) - ( 4 . 4 ) .  Since the 
imaginary part of the mutual correlation function in ( 4 . 4 ) ,  

Im ( S f i S ? )  T):, , is an odd function of the frequency, the peak of 
the spectral line in ( 6 . 2 0 )  is shifted away from the point 
w  = 0  in this case. The sign and magnitude of this shift are 
determined by an additional kinetic correlation which is de- 
scribed by the function R ( T) . This correlation-induced shift 
of the peak of the spectral line is a qualitatively new effect in 
the scattering of light by a semiconductor electron gas with 
an intense interparticle interaction. The experimental obser- 
vation of this new effect might serve as reliable proof of the 
additional correlation in such a gas. It might also give us the 
value of the correlation tensor Amp ( a )  in (A9).  We should 
stress once again that this shift is not due to a drift of the 
electron system (that drift is proportional to q u ) ,  since it 
occurs in the case qlE,,.  If the condition o S q u  holds [using 
q z  k,  - k,  z k, z2n-//Z, = R,/c, we can rewrite this condi- 
tion as u < c ( w / 0 ,  ) 1,  then the correlation-induced shift of 
the spectral line of the scattering light will be predominant 
for fluctuations with arbitrary wave vectors q ,  provided that 
all the terms in ( 6 . 20 )  are of the same order of magnitude. 

7. CONCLUSION 

We have studied hydrodynamic fluctuations in a non- 
equilibrium semiconductor electron gas under conditions 
such that an electron temperature can be introduced. Fluc- 
tuating excitations in such a gas constitute coupled stochas- 
tic waves of the electron density and temperature waves. The 
coupling arises from the mutuals effect of the fluctuations in 
the electron density, Sn ( q , w ) ,  and those in the electron tem- 
perature, S T ( q , w ) ,  as a result of the thermal-diffusion con- 
tribution to the particle transport equation and the diffu- 
sion-drift contribution to the energy-transport equation. 

The spectra of the fluctuations in a collision-controlled 
regime are non-Lorentzian for arbitrary relations among the 
fluctuation frequency w ,  the Maxwellian relaxation time T,, 
and the electron temperature T [  and also for arbitrary rela- 
tions among the fluctuation wave vector q ,  the screening 
length L,, and the electron cooling length L,. The mutual 
spectral density (SnST)  ,, is on the same order of magnitude 
as the spectral densities of the fluctuations, (Sn 2 ) , ,  and 
( S T 2 ) q , o .  

It is also important to note that the spectra of hydrody- 
namic fluctuations in an equilibrium electron gas with in- 
tense interparticle scattering are radically different from 
those for a gas in which the rate of electron-electron collision 
is small in comparison with other kinetic relaxation frequen- 
cies. On the other hand, there are no qualitative differences 
between the two cases in terms of steady-state kinetic effects 
under approximately equilibrium conditions. Consequently, 
a study of the spectra of hydrodynamic fluctuations under 
equilibrium conditions can provide important information 
on the microscopic processes which occur in a semiconduc- 
tor electron gas and on the rates of these processes. 

Under nonequilibrium conditions, the spectra of hydro- 
dynamic fluctuations have a component which is peculiar to 
nonequilibrium systems with an intense electron-electron 
interaction. This component leads to numerous qualitatively 
new features in the fluctuation spectra. The additional kinet- 
ic correlation which rises in an electron gas of this sort may 
either strengthen or suppress the intensity of hydrodynamic 
fluctuations. Because sf this correlation, the similarity be- 
tween the equilibrium fluctuation spectra and the nonequi- 
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librium spectra with wave vectors qlE, is disrupted. 
Either at or away from equilibrium, there is a frequency 

region in which the fluctuations Sn (q,w) and ST(q,w) have 
the same sign, on the average (this is a correlation region), 
and the mutual spectral density of the fluctuations is positive 
(SnGT) ,,,, and there is also a region in which these fluctu- 
ations have opposite signs (this is an anticorrelation region), 
and we have (SnGT) ,,, < 0. 

Hydrodynamic fluctuations in semiconductors have 
been studied previously in the limiting cases defined by in- 
equalities (1.3) (Refs. 3and4)  and (1.4) (Refs. 5 ,6 ,and8) .  
In each of these limiting cases, fluctuations of a single type- 
either fluctuations in the electron density or fluctuations in 
the electron temperature-play the leading role. Results for 
each of these limiting cases can be found from the general 
expressions derived above. It is also worthwhile to examine 
hydrodynamic fluctuations in situations which are interme- 
diate between those defined by inequalities ( 1.3) and ( 1.4). 
Under these conditions, the contribution of the mutual spec- 
tral densities (SnST),, to the intensity of electron fluctu- 
ations is significant in magnitude. These mutual spectral 
densities in turn contain direct information on the magni- 
tude of the additional kinetic correlation. In addition, the 
actual properties of the semiconductor may be such that a 
transition from inequalities ( 1.4) to inequalities ( 1.3 ) will 
occur with increasing external electric field E,. The reason 
would be a difference in the field dependence of the times r, 
and rT. Under these conditions, the only way to find a satis- 
factory description of the fluctuation spectra is to work from 
the expressions derived here. 

The approach developed here for studying fluctuations 
in systems with several degrees of freedom can be extended 
with essentially no substantial changes to hydrodynamic 
fluctuations in an electron gas with a reduced dimensionali- 
ty. Reggianiz5 has made a first attempt to do this for the 
particular case of a single degree of freedom, for a 2 0  gas of 
electrons. In real structures, however, the density of 2 0  elec- 
trons is usually fairly high, and the electron-temperature ap- 
proximation is good. A situation requiring the use of the 
general approach would arise more easily in this case than in 
3 0  systems. The scattering of light, including the scattering 
by free electrons, is also being studied actively in structures 
of this type.'' 

Experiments on the scattering of electromagnetic waves 
are one method for studying solid-state plasmas. In particu- 
lar, these waves may be scattered by low-frequency, long- 
wave fluctuational excitations of an electron gas. The effi- 
ciency with which the electromagnetic radiation is scattered 
and the spatial-temporal dispersion are described by a differ- 
ential scattering cross section. In this paper we have derived 
an expression for the differential cross section for the scatter- 
ing of light by fluctuations in the electron density and the 
electron temperature. In the collisionless regime specified by 
conditions (6.22), the scattering cross section is determined 
exclusively by the electron-density fluctuations. A study of 
this cross section provides information on the electron tem- 
perature, according to (6.261, and it also provides direct 
information on the electron distribution function. The rea- 
son is that under conditions (6.22) each particle scatters 
light independently, and the resultant Gaussian one-particle 
spectrum reflects the properties of the motion of individual 
particles. In the other (opposite) case, the so-called colli- 

sional regime, defined by ( 1.1 ), the scattered light contains 
information on collective excitations in the electron gas, and 
one can work from the scattering cross section to find the 
long-wave, low-frequency binary-correlation functions, 
which are important characteristics of a many-body system. 
A qualitatively new effect in the scattering of light by a non- 
equilibrium electron gas is the appearance of a correlation- 
induced shift of the peak of the spectral line. This shift is 
unrelated to the drift of electrons. It is determined by the 
existence of an additional correlation in a gas with an intense 
electron-electron interaction. This additional correlation 
will either suppress or intensify the light scattering, depend- 
ing on the sign of the function R ( T ) .  

We conclude with some numerical estimates of the 
properties of semiconductors and the conditions under 
which the cross section for the scattering of light is described 
by expression (6.20). We are interested in a situation in 
which all the terms in (6.20) make contributions on the 
same order of magnitude. First, in order to introduce an 
electron temperature, we must satisfy inequalities ( 1.2). We 
thus need fairly high carrier densities; high carrier densities 
in turn mean small values of the Maxwellian time 7,. How- 
ever, the inequality 7, 47, must hold by virtue of the very 
nature of the hydrodynamic approach. In order to realize a 
collisional regime, we must therefore select semiconductors 
with a low mobility. Furthermore, experiments on scattering 
should be carried out in such a way that the incident electro- 
magnetic radiation passes through the plasma without un- 
dergoing any substantial absorption. Accordingly, under the 
inequality airp $1, the conditions Q, <a, < W,/fi must 
also be satisfied, where $?, is the bandgap, and S1, 
= (4.rre2n,/me) "* is the plasma frequency. Specifically, we 

consider a semiconductor with the properties of n-type Gap: 
m = 0.13m,? To = 77 K, n, = 3.10" cm 3 ,  p77 
= 600cm2/(V.s), B,  = 2.4 eV, E = 10, E _  = 8, and 

s = 5.10' cm/s. Here m, is the mass of a free electron, e, is 
the high-frequency dielectric constant, and s is the sound 
velocity. For pronounced heating we choose E,) = 5-  lo3 
V/cm; we then have T =  300 K, p,,, = 150 cm2/(V.s), r, 
= 1.1.10-i4 s, T,, = ~ ' r n l ' ~ .  T"~/JG~,~~L, = 10 - l 3  S, 
7, zrp G/2ms2 = 2.10 l 2  s, 7, = ~/4.rren&,,, = 1.2 
. l o -  l 2  S, and a, = 8 . 6 . 1 0  l 2  rad/s. The mean free path is 
I, = Er, = 3.5.10 - 7  cm, the Maxwellian length is 
L,  = ni = 2.2.10 - ' cm, and the electron cooling 
length is L, = = 2.8. l o 6  cm (the electron diffu- 
sion coefficient here is D ,  = 3.88 cm2/s). A suitable source 
of the electromagnetic radiation would be a He-Ne laser 
with a vacuum frequency 0 ,  = 6.3. 1014 rad/s (fia,  = 0.41 
eV) and a vacuum wavelength A, = 3 pm.  We would then 
have k, = 2.1. lo4 cm ' ? and the characteristic wave vec- 
tors of the fluctuational excitations in the semiconductor 
would be q ~ 2 k i E  = 1.2.10' c m  ' . The incident light 
will be absorbed somewhat, because of the generation of op- 
tical phonons (fifl, = 5 1.10 - eV). Accordingly, the prop- 
erties which we have selected for the semiconductor, for the 
light being scattered, and the nonequilibrium state of the 
electron gas make it possible to satisfy all the necessary con- 
ditions for observing the collective regime of scattered light 
and for making all the terms in expression (6.20) equally 
significant. Other semiconductors with mobilities which are 
not too high, e.g., CdS, AIP, AlSb, GaN, and p-type semi- 
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conductors, might also be suitable. In high-mobility semi- 
conductors such as n-type InSb and n-type GaAs, a collec- 
tive regime of light scattering is again possible, but the 
primary contribution will come from fluctuations of the 
electron temperature [the second term in (6.20) 1. When the 
scattering cross section is determined in part by fluctuations 
in the electron temperature and in the electron density the 
orientational dependence of the light scattering cross section 
becomes significant under nonequilibrium conditions. 

APPENDIX 

The spectral densities of the long-frequency, low-wave 
fluctuations in the electron density and temperature are de- 
termined completely by Eqs. (2.57)-(2.60). Although we 
have to deal with fourth-order determinants in order to solve 
this system of equations, the resulting solution can be put in 
a fairly simple form, convenient for analysis, by carrying out 
certain transformations: 

The corresponding determinants of the system are 

2 D o  Xq (0) /2Do ) 
An. (q, o) = - Doq2 [v,' (1 + -- - . 

N YTZT V T ~ Z T ~  

Here we have introduced the following notation for the com- 
ponent of an arbitrary vector BaB along the vector q: 

The quantity Zap  (0)  is the low-frequency limit of the corre- 
lation tensor AaB (0) introduced in Ref. 3: 

It violates the Price fluctuation-diffusion relation: 

The reason for this violation may be the additional kinetic 
correlation which stems from the electron-electron interac- 
tion. A measure of the additional correlation is the quantity 
R ( T), which was derived in Refs. 4 and 13 and which can be 
written in the form 

The "correlation flux" ig, @,n is determined by the oper- 
ator in (2.13) without the one summation over p,. 

We wish to thank R. Katilyus for a detailed discussion 
of these results. 
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