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The cross section for scattering of x rays by solitons is calculated. The authors consider solitons 
corresponding to the formation of a kink in a system of adatoms on the surface of a substrate, or of 
a crowdion in a chain of atoms in a crystal that are described by the sine-Gordon equation, and 
also solitons in a bound electron-phonon quasi-one-dimensional molecular chain. It is shown that 
investigation of the x-ray scattering makes it possible to obtain information about the static and 
dynamical properties of the solitons. 

1. It is well known that the study of x-ray scattering 
gives information about the arrangement of atoms in a solid, 
i.e., about the crystal lattice of the solid and about the defects 
of the crystal lattice. Great attention has been paid recently 
to special defects in one- and two-dimensional crystals- 
namely, solitons of various types (see Refs. 1-5 ) .  Solitons, as 
a rule, are macroscopic defects whose size x, is considerably 
greater than the interatomic spacings a and whose dimen- 
sionality d, is smaller by one than the dimensionality d of the 
space of the crystal. The condition x, &a  makes it possible to 
describe such defects (solitons) macroscopically, while the 
condition d, = d - 1 permits us to assert that solitons will 
lead to broadening of x-ray spots.' 

The aim of this paper is to draw the attention of re- 
searchers to the fact the study of the scattering of x rays (or, 
incidentally, the scattering of light or electrons), together 
with an investigation of the neutron scattering, can give im- 
portant experimental information about the properties of so- 
litons in solids. '' 

In this paper we calculate the structure factors of soli- 
tons. We consider examples of solitons corresponding to the 
formation of a kink (fold) in a system of adatoms on the 
surface of a substrate, or of a crowdion in a chain of atoms in 
a crystal that are described by the sine-Gordon equation, 
and solitons in a bound electron-phonon quasi-one-dimen- 
sional molecular chain (Davydov solitons); we discuss the 
change of the x-ray line shape in momentum space. It is 
shown that the temporal structure factor in the expression 

We shall assume that the lattice of adatoms is rhombic 
and corresponds to a "flat" substrate lattice. We choose the 
coordinate axes along the symmetry axes of the crystal, and 
denote the lattice constant along the x axis by a. Let u(x,y) 
be the displacement of the atoms; then the energy of the two- 
dimensional crystal (system of adatoms) can be represented 
in the form3 

wherep, is the matter density of the two-dimensional crys- 
tal, theil are elastic constants, and Vo is the potential-energy 
constant. In this formula the first term is the kinetic energy, 
the next group of terms is the elastic energy, and the last term 
describes the interaction of the adatoms with the substrate. 
The interaction energy is chosen so that it vanishes for the 
undeformed lattice (u, = nu, u, = mb; n and m are inte- 
gers), i.e., it is reckoned from the energy of adsorption of the 
atoms; i is a reciprocal-lattice vector, and u ,  are compo- 
nents of the strain tensor: 2u,  = aui/dx, + &,/ax,. 

The Hamiltonian ( 1 ) for a displacement u along the x 
axis corresponds to an equation of motion that is called the 
sine-Gordon equation: 

for the cross section for x-ray scattering coincides with this where C2 = 
structure factor in the cross section for neutron scattering. By now this equation has been well studied.' We give its 

2. First we shall discuss the one-dimensional solitons solution, corresponding to a stationary soliton of the kink 
that arise in two-dimensional (quasi-two-dimensional) type:' 
crystals. As examples of such crystals we may consider ada- 
toms adsorbed on the surface of a metal or graphite, liquid- t g  (nu/2a) = exp [T (x-x,) /so], ( 3 )  - - 
crystal films, lattices of Abrikosov vortices, or lattices of 
magnetic bubbles in thin magnetic films. Finally, there is a where x, is the coordinate of the center of the soliton, 

large class of real crystals in which the interaction of atoms XO = [ (a/2v) ' ( I l l  /Yo ) 1 "' is the width of the and 

between certain crystallographic planes is considerably the f signs to a kink and an antikink, respec- 

smaller than the interaction of atoms within one such tively. Henceforth, for definiteness, we shall consider a kink. 

tallographic plane; these are quasi-two-dimensional crys- For adatoms interacting weakly with the substrate we have 

tals. We recall that mica, high-temperature superconduc- VO 4A and xo >a, i.e., the above macroscopic treatment is 
tors, etc., belong to this group. justified. 

For definiteness, we shall consider first of all the scat- Using Eq. ( 3 ) ,  it is not difficult to find the strain in the 

tering of x rays by a soliton corresponding to the sine-Gor- crysta1: 

don equation. Such solitons arise, e.g., in a system of ada- a w a  
toms interacting weakly with a substrate. Another example u u r = - = - -  ax nx, (4)  

is provided by the crowdions that arise in a chain of close- 
packed atoms in a lattice (see Ref. 4).  From this we see that the strain decreases rapidly (exponen- 
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tially) with distance from the position x, of the kink. Asso- 
ciated with these strains is a change of the density n of the 
two-dimensional crystal: 

where no is the equilibrium density of adatoms, or the den- 
sity of atoms on the surface of the substrate. 

We note that both the Hamiltonian ( 1 ) and the solution 
(3)  describe a crowdion in a chain of atoms, and Eq. (5)  
describes the density distribution in the c r ~ w d i o n . ~  We re- 
call that no (x) is a periodic function ofx, with the period a of 
the lattice. Since u,, < 0 (u,, > O), we may take as the reason 
for the formation of a soliton ( 3 )  of the kink (antikink) type 
the need to place adatoms (vacancies) that are "surplus" in 
relation to the substrate. To ensure electrical neutrality, the 
change of density of the ions induces a change of density of 
the electrons, so that 

Equation (3)  describes a stationary soliton. If it moves 
as a whole with velocity v, the distribution for the displace- 
ment vector will be described as before by Eq. (3),  in whichx 
must be replaced by x - ut, and xo by xo [ 1 - (v/c) 2]  I". 

In this case (v#O), from the condition of electrical neu- 
trality and adiabaticity (w, <A&,, where w, is the character- 
istic soliton frequency and A&, is the change of the electron 
energy), knowledge of the ion density makes it possible to 
determine the change of the electron density. For the 
characteristic soliton frequencies w, we must take 
w ,  = V/X, z (du/dt)/u. We note that the adiabaticity condi- 
tion is fulfilled everywhere with the possible exception of a 
small region of velocities close to the sound velocity c. 

3. From the known electron density n,  (x) we can deter- 
mine the differential cross section for elastic scattering of x 
rays:"' 

do='/,r,2(1+ cos2 0) In, (q) 1'6 (a-6)') d(*'dO'. 
(6)  

n.(q)= jd.2 srp(iqx)n.(x). 

where ro2 = (e2/mc2) is the classical electron radius, 6 is the 
angle between the wave vectors k and k' of the incident quan- 
tum and the scattered quantum, w and w' are the frequencies 
of the incident and scattered quanta, d 0' is an element of 
solid angle in the direction of k', and q = k - k'. 

Equation (6)  for the scattering of y quanta can be rep- 
resented in the form5 

cm 

wherep is the density matrix of the crystal, fl = w' - w, 

ne (q, t )  =eiz'n, (q) t - 1 ; 

X i s  the Hamiltonian of the system, and n, is the electron- 
density operator. In this form, Eq. (7)  describes not only 
elastic but also inelastic scattering of x rays. 

Noting that 

and having in mind the case of scattering with small momen- 
tum transfers (aq 4 1 ) , we rewrite Eq. (7)  in the form 

da(Q, q )  ='/,r,'(l+ cos2 0) (noi7)  '(6 (a-0')  A (k-k') 
+(u,(x, O)U,(X', t )  )a, n)do'dO'. 

where no is the uniform electron density and the angular 
brackets denote both averaging with the density matrix p 
and averaging over the random parameters associated with 
the solitons; Vis the volume of the body. 

The first term in Eq. (7 )  describes ordinary forward 
scattering by the crystal, and the second term describes scat- 
tering by solitons. We shall consider the second term: 

From this we see that the line shape for small-angle scatter- 
ing (the central peak) of x rays by a soliton is determined by 
the correlation function of the tensor of the deformations 
induced by the soliton. As usual, the running coordinate of 
the ith soliton will be reckoned from its center xSi. Then 

U, (X. I )  = C u 2 )  [x-x*i (f) 1. (10) 

The summation over i denotes a summation over the soli- 
tons, the number of which is n,. The Fourier component 
u,, (q , t )  then takes the form 

There are two random parameters characterizing each 
soliton i. One of them is the random initial position xSi (0) of 
the soliton center in the crystal, and the second is related to 
the random forces (impacts) acting on the soliton as it 
moves. 

The averaging over xSi (0) is performed in the standard 
way: 

. (exp {iq[xBi(0) -x.,. (O)] })=,=A (i-i'). (12) 

Therefore, after the averaging over x,, we have for the corre- 
lation function 

" 8  

( i )  
(ur.(x. o)u. .(x~.  t )  ).. =r( I U =  (q) Iz(expliq AX.. (t) I).. 

, = I  

(13) 

The angular brackets in the right-hand side of this formula 
denote averaging over the random motion of the soliton, and 
Ax,, ( t )  = x,, ( t )  - x,, (0).  

If all the solitons are the same, we have 

(u=(x, 0 )  u=(x', t )  L,=n. (T) I u, (q) lZ(exp[iqAx, (t) ] )n,  

(14) 

where n, is the number ofsolitons in the body at temperature 
T. From this it can be seen that the shape of the central peak 
of the x-ray scattering is determined by the same factor 

491 Sov. Phys. JETP 75 (3), September 1992 V. G. Baryakhtar and Ir. V. Baryakhtar 491 



as for neutron scattering.' 
The intensity of the central x-ray scattering peak, ac- 

cording to ( 14) and (9),  is proportional to the square of the 
Fourier component of the tensor of the static deformations 
that are caused by the soliton. 

If the motion of the soliton is a random process and is 
such that all averages of odd powers of Ax, ( t )  are equal to 
zero (a  Gaussian process), then - 

qZ(bx,Z(t) )}COS Qt  dt. ( 16) 

Using Eqs. ( 14) and ( 16), we represent the cross sec- 
tion for small-angle scattering of x rays in the form 

do, (B, q) ='lZro2(1+ cosZ 0) (nov)Zns(T)u=2(q)Ff (8, q). 

(17) 

4. In this article we shall consider mainly elastic x-ray 
scattering, i.e., Eq. (6)  will be used. The question of the 
central peak, i.e., the "smearing out" of S(w - w ' )  into a 
smoother function as a result of the thermal motion of the 
solitons, is investigated here for Davydov solitons and crow- 
dions by the method proposed in Ref. 8 in a calculation of the 
magnetic cross section for scattering of neutrons by solitons 
in a ferromagnet with magnetic anisotropy of the "easy 
plane" type. 

Using (5') for n, (x) ,  it is easy to find the Fourier com- 
ponent for the electron-density change due to the solitons: 

ne(q)= zexp[-ixv(q-T) l u ~ ( q - r ~ n o e ~ ~ ~ A ( q y - ~ , ~ .  
s 

(18) 

In this formula, 

Using (18) and (19) for n, (q), it is not difficult to 
obtain an explicit expression for the cross section for elastic 
scattering of x rays by solitons. First, however, we shall dis- 
cuss ( 18). From this formula it can be seen that a soliton 
with its symmetry axis along they axis does not give rise to 
smearing out of the x-ray spot along they axis, because of the 
presence of the dependence A(qy - T, ). The situation with 
the shape of the spot along the x axis is different. Here we 
have a superposition of a "point" spot resulting from no, (x)  
and a spot "smeared out" to a width IT, - q, I =:2/n-xo from 
the contribution of uxx (7, - q, ). As a result, the x-ray spot 
is smeared out along thex axis. The magnitude of this smear- 
ing is 1 Aqj z l/x, < l/a, by virtue of the condition xo $a. 
Therefore, the overlap of individual peaks may be disregard- 
ed and the cross-section do, for scattering by solitons can be 
represented in the form of a sum of partial terms: 

Before writing out the expressions for do,, in explicit form, 
we note that it is necessary to average the correlator of the 
densities over the random positions of the coordinate x, (0) 
of the soliton center. After the averaging for the part of this 
correlator due to the solitons, we have 

For do,, , in the approximation of stationary solitons, 
we obtain 

This formula describes the contribution of the solitons to the 
elastic scattering of x rays by solitons distributed randomly 
along the x axis; the quantity u,, (T, - q, ) is given by the 
expression ( 19). 

For the case when the symmetry axis of the soliton is 
parallel to the x axis Eq. (22) can be trivially rewritten: 
A(T, - q,) is replaced by A(T, - q, ), and u,, (T, - q, in 
the second term is replaced by uyy (7, - q, ). 

5. The thermal motion is taken into account in different 
ways for a one-dimensional soliton in a system of adatoms 
and for a crowdion. This is due to the fact that thermal mo- 
tion for a soliton in a system of adatoms consists in flexural 
oscillations of the soliton (we recall that the mass of this 
soliton is proportional to L,, i.e., tends to infinity as L, - w ; 
L, is the length of the crystal along they axis). As regards 
the crowdion, its effective mass m,, as is well knowq4 is 
finite, and under the action of temperature the crowdion 
executes random motion. In order to obtain the formulas 
that describe the "smoothing" of the 6-function over the 
frequencies on account of the thermal motion, we shall con- 
sider a crowdion moving with a constant velocity v. As al- 
ready noted, the distribution of the displacement vector for 
such a soliton will be described by Eq. ( 3 )  with the replace- 
mentsx-x - utandx, -xo [ l  - (v/c)~] '" .  Equation (18) 
for the Fourier component of the change of electron density 
then takes the form 

This change in the formula for the Fourier component of the 
electron density leads to the replacement of S(w - w') in Eq. 
(22) by S[w-wf-R(T,  -q,) - v ( T ,  -q , )] ,  where 
R (q) = q2/2m, is the energy of recoil of the crowdion. We 
shall average this 6-function over the thermal motion of the 
crowdion: 

m, 

Using this formula for the contribution of the solitons to the 
x-ray scattering, we finally have 

d ~ , , = ' / ~ r ~ ~ ( l +  cos2 0)n. (T) I no , (~ )  V12F,(rz-qx) 
X F ,  (o-of, T,-q,) A (7,-q,)do'dO1, (25) 

where F, and F, are the spatial and temporal structure fac- 
tors, which are given by the formulas 

F ,  (q) = 1 u,(q) 1z=2alnxo ch(nxoq/2), 
(26) 
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We note that the spatial structure factor F, is deter- 
mined by the actual form of the distribution of the displace- 
ments of the atoms in the soliton. The temporal structure 
factor F l ,  on the other hand, arises as a result of averaging of 
the 8-function describing the law of energy conservation in 
the x-ray scattering process, and has a general Gaussian 
form in the approximation of an ideal gas of solitons. 

6. We shall discuss in more detail the line shape for 
small-angle x-ray scattering-the line shape of the central 
peak (CP) of the x-ray scattering. For this we return to Eq. 
( 171, but we can also start from Eq. (25), in which we set 
r = 0 and replace n,, ( 0 )  by n ,  . We recall that allowance for 
the interaction of solitons with each other and with phonons, 
lattice defects, etc., changes the formula for the neutron- 
scattering CP from a Gaussian form to a smoother f ~ r m . ~ . ' ~  
As already noted, the CP for x-ray scattering has the same 
nature as the CP for neutron scattering. The indicated scat- 
tering processes change the form of the temporal structure 
factor in Eq. ( 17) from a Gaussian [see (26) ] to a smoother, 
Lorentzian form. To calculate this change, as can be seen 
from Eq. (16), it is necessary to return to the analysis of the 
character of the soliton motion. As is well known,"-'3 under 
the action of random collisions a soliton executes Brownian 
motion, which is described by two diffusion coefficients D 
and D,. The kinetic equation for the soliton distribution 
function f has the 

The right-hand side of this equation is the collision integral 
in the Fokker-Planck approximation and the approximation 
of small gradients of the distribution function. 

Here, D and D, are the normal and anomalous soliton- 
diffusion coefficients, m, is the effective mass of the soliton, 
and T is the temperature of the thermostat. The coefficient 
D, was first calculated in Refs. 11 and 12, and D was calcu- 
lated in Ref. 13. 

Using Eq. (27), we can calculate the average (Ax: ( t )  ), 
and with it the structure factor F, (fi,q). We shall give the 
results for F, (fi,q), following Ref. 15. 

If the momentum transfer and frequency transfer are 
large ( f i r  & I, qI& 1, where r and I are the soliton mean free 
time and mean free path), F, (Qq) has the form (26). 

If f i r  < 1 and qI< 1 ,  the line shape is replaced by a Lor- 
entzian one. andI5 

In the region of intermediate frequencies anomalous diffu- 
sion of solitons (D, ) can occur. 

Investigation of the scattering of x rays by a soliton 
makes it possible to determine the dependence of the soliton 
density on the temperature from the factor n, ( T), the shape 
of the particle-density distribution in the soliton from a 
study of the shape of the spot in momentum space, i.e., from 
the shape of FR (q), and the soliton mass from a study of 
F, (fi,q). 

7. As a second example we shall consider the scattering 
of x rays by a soliton in a molecular chain. The distributions 
of the electron density and strain in a molecular chain are 
described by the equations2 

where $ and u are, respectively, the electron wave function 
and the displacement vector of the nuclei from the position 
of equilibrium, g is the coupling constant between the elec- 
tron subsystem and the phonons, u, is the sound velocity, 
and m and M are the masses of the electron and nucleus 
(ion). 

As is well known, Eqs. (28 ) , together with the bound- 
ary conditions that on infinitely remote parts of the chain 
there be no deformations [u ,  ( + w ) = 01 and no excess 
electron density [$( f w ) = (d$ /dx)  ( + w ) = 01, and 
with an electron wave function normalized to unity, have the 
solution2 

$(x, t )  =@ (E)exp[imvx-i(E+mv2/2) t ] ,  
(29) 

In these formulas, 6 = x - vt, Eis the soliton energy, and the 
quantities uy, and @, are given by the formulas 

The first of Eqs. (29) describes the distribution of the 
electron density associated with an extra electron in a molec- 
ular soliton: 

In addition to this electron density it is necessary to take into 
account the change of the density of the electrons of the inner 
orbitals. By virtue of the electrical neutrality of the mole- 
cules this is proportional to the deformations of the atoms 
(ions) of the one-dimensional lattice, i.e., 

Thus, the distribution of the total electron density has the 
form 

Knowing the electron-density change due to the soliton, it is 
not difficult to find the intensity of the scattering of x rays by 
the soliton. For this, according to ( 6 ) ,  it is necessary to find 
the Fourier component of the total electron density. It is easy 
to see that 

nqxo/2 
+2x0@,' exp (iqx.-ivqt) 

sh (nqxo/2) 
n (q-z) x0/2 -z 2xoa"nW(r) exp (iqx,-ivt) . 

sh[n (q-z)xo/2] 
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We see from this formula that all the distinctive features 
of the Fourier component of the electron density that are 
characteristic for the electron density in a soliton in a layer of 
adatoms [see ( 18) 1 also remain valid for the Fourier com- 
ponent of the electron density in a Davydov soliton. I11 ac- 
cordance with the analysis performed above, the x-ray cross 
section du, is given by Eq. ( 2 5 ) ,  in which F, (q)  now has the 
form 

For the temporal structure factor F, (Sl,q) the consider- 
ations outlined in the preceding section remain valid. 

The authors thank B. A. Ivanov for useful discussions 
and A. K. Kolezhuk for help in acquaintance with the litera- 
ture. 

" The correlator of the ionic (atomic) density for a soliton in a quasi-one- 
dimensional chain of atoms in the p 4  model has been calculated in 
Ref. 6. 
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