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The renormalization-group method is used to calculate corrections to the Kolmogorov exponents 
for intermittency effects. These corrections incorporate the dependence of the spectrum on the 
external scale of the turbulence. An ir cutoff parameter serves as this external scale. A 
renormalization-group function is derived in the two-loop approximation. The form of this 
function implies the existence of a nontrivial fixed point which is stable in the uv region. The 
corrections to the spectrum are manifested as an anomalous dimension. The anomalous 
dimensionality of the correlation function of the effective random forces is predominant. The 
anomalous dimension of the effective viscosity is smaller by a factor of 3. The valuep = 0.153 is 
found for the exponent which characterizes the dissipation spectrum. This value agrees with 
experimental data. 

1. INTRODUCTION 

The basic features of active turbulence are described by 
Kolmogorov's semiphenomenological theory, which is 
based on the assumption that the spectral energy flux re- 
mains constant in the inertial interval. However, intermit- 
tency effects and the associated fluctuations of the spectral 
flux give rise to small corrections to the Kolmogorov expo- 
nents, and they demote the constants characterizing the ac- 
tive turbulence from their universal status. Methods based 
solely on self-similarity considerations are incapable of de- 
riving these corrections. 

To calculate these corrections, it is necessary to de- 
scribe the turbulence by a hydrodynamic method based on a 
study of statistical solutions of the Navier-Stokes equations. 
If we look at a turbulent fluid as a dynamic system, we see 
that it is characterized by a very large number of excited 
modes and a strong intermode interaction. The situation is 
quite reminiscent of that in quantum field theory. In meth- 
ods of quantum field theory, the Kolmogorov spectrum can 
be derived under the assumption that the correlation func- 
tion of the effective random forces, which determines the 
pumping of energy to a given mode by nonlinear interactions 
with other modes, is 

(1.1) 
where 

and d is the dimensionality of the space. 
With y = d, the constant Do has the dimensionality of 

an energy dissipation rate. According to Kolmogorov's 
ideas, this is the only parameter of importance in determin- 
ing the universal turbulence regime in the inertial interval.' 
In this sense we will regard the value y = d as corresponding 
to the "real" t h e ~ r y . ~  The renormalization-group method3s4 
can be used to derive an expression corresponding to ( 1.1 ) 
for the turbulent viscosity a which determines the decay rate 
of the response of turbulent fluctuations to an instantaneous 
perturbation. According to Refs. 5-7 we have 

where A,  is a constant related to the Kolmogorov con- 
~ t a n t . ~ ' ~  Actually, the results in ( 1.1 ) and ( 1.2) are a conse- 
quence of scale invariance, i.e., of the absence of a character- 
istic parameter with the dimensionality of a length in the 
inertial interval. It was shown in Refs. 9 and 10 that scale- 
invariant solutions with Kolmogorov exponents would be 
compatible with the Dyson equations if divergences did not 
appear on the diagrams corresponding to Kolmogorov solu- 
tions at either small wave numbers (an ir divergence) or 
large wave numbers (a  uv divergence). Since the ir diver- 
gence turns out to be stronger than logarithmic, a divergence 
of this type cannot be removed by a renormalization proce- 
dure. The presence of an ir divergence means that there is an 
additional important parameter with the dimensionality of a 
length, L (the external scale of the turbulence), in the iner- 
tial interval. The dependence on this parameter as L - m is 
nonanalytic. In this case we are dealing with an incomplete 
self-similarity (a  self-similarity of the second kind in the ter- 
minology of Ref. 1 1 ) . 

The renormalization-group method can be used to cal- 
culate the exponents of the asymptotic behavior in a situa- 
tion with an incomplete self-similarity. In particular, Gol- 
denfeld et al.12 have shown how this method can be used to 
find the exponent of incomplete self-similarity in a nonlin- 
ear-diffusion problem. In the case of turbulence, however, 
the problem is more complex, since the divergences which 
arise in the use of a perturbation theory are power-law rather 
than logarithmic. In a case of this sort, it is customary to use 
an E expansion. In that method, the calculations are carried 
out in a space with a dimensionality which differs from that 
of real physical space. In a space of this dimensionality, the 
uv divergences are logarithmic, and the theory is renormali- 
zable. 

The presence of a logarithmic singularity leads to the 
appearance of pole singularities along E in the coefficients of 
the perturbation-theory series. The transition to real space is 
made by analytically continuing this pole along E to the point 
corresponding to the dimensionality of the space. A similar 
procedure is used in the theory of critical phenomena to find 
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critical exponents and in turbulence theory to determine the 
exponents of the power-law behavior of the spectrum in the 
ir region. It is asserted in Ref. 13 that the use of a continu- 
ation along E in the renormalization-group method corre- 
sponds to incorporating spatially localized wave numbers of 
intermode interactions which are responsible for cascade in- 
teraction-transport processes. It also filters out nonlocal 
wave numbers. 

The use of the renormalization-group method to de- 
scribe the behavior of a turbulent fluid in the ir limit actually 
reduces to calculating the scale dimensionalities of physical 
quantities.2 This simply duplicates the results of the Kolmo- 
gorov theory, although in several cases the renormalization- 
group method also leads to several nontrivial results. For 
example, it shows how a solution goes into the self-similar 
regime7 and reveals numerical amplitide 

The use of the renormalization-group method in the uv 
limit, in which the average effect of the large-scale modes on 
the behavior of the small-scale modes is examined in the 
inertial interval L$ k - I ,  requires a preliminary solution of 
the problem of eliminating the ir divergences. According to 
Kolmogorov's ideas, l4 the ir divergences are associated with 
an incorrect treatment of the interaction with large-scale 
modes (soft quanta) in the use of low-order perturbation 
theories. The situation is reminiscent of that in QED.I5 In 
electrodynamics, the problem is solved by restructuring the 
perturbation-theory series in such a way that the interaction 
with soft quanta is taken into account exactly. For example, 
one could use the Bloch-Nordsieck model here. In hydro- 
dynamics, the summed interaction with soft quanta reduces 
to a transport and a Doppler frequency shift. These effects 
do not alter the characteristics of the spectrum in the inertial 
interval. 

We see thus that when the renormalization-group 
method is used in the uv limit there is the problem of first 
distinguishing the weak dynamic interactions which shape 
the spectrum and which occur against the background of the 
strong kinematic transport effects that are eliminated upon 
the transformation to a moving coordinate system. In the 
few studies which have used the renormalization-group 
method in the uv essentially the only result has 
been to show that the strongest ir divergences reduce to a 
transport. After the transport is eliminated, the external 
scale of the turbulence drops out of the picture, and scale- 
invariance arguments make it possible to find the exponents 
which characterize the spectrum. A shortcoming of this 
analysis is that after the transport effects have been eliminat- 
ed there is still the weak logarithmic dependence on the ex- 
ternal scale (a  logarithmic ir divergence); this dependence 
has not been studied. According to Wilson,18 however, the 
presence of a logarithmic divergence is evidence that the in- 
termode interactions are localized in the space of scales (or 
wave numbers), and it is evidence of a cascade mechanism 
for the interactions between modes with very different 
scales. The dependence on the external scale L "penetrates" 
via the cascade mechanism into the uv part of the spectrum, 
corresponding to the inertial interval. This dependence can 
be determined by summing an infinite subsequence of the 
perturbation-theory series; this is done by the renormaliza- 
tion-group method. In turbulence theory, the renormaliza- 
tion-group method is thus a satisfactory method of describ- 
ing this problem. 

2. STATEMENT OF THE PROBLEM 

We consider the model of a viscous, incompressible flu- 
id described by the Navier-Stokes equations in an external 
random force which is a Gaussian white noise. We treat the 
characteristics of the hydrodynamic field-the pressure p 
and the velocity components v, at the point 1 = {r, ,ti  )-as 
components of a ( d  + 1 )-dimensional vector in a space of d 
dimensions in accordance with the definition 

In the "field-doubling" formalism," this system is 
specified by the action8 

where 

Y, is the molecular viscosity, and A, is a formal expansion 
parameter, which should be set equal to one in the final re- 
sult. It follows from the Dyson equations that the effect of 
the nonlinear intermode interactions reduces to the replace- 
ment of the correlation function of the random external 
forces, localized in the interval containing the energy, by the 
correlation function of effective random forces ( 1.1 ) and the 
replacement of the molecular viscosity a = Y, k * by the tur- 
bulent viscosity ( 1.2). These functions will be used as a ze- 
roth approximation in deriving the corrections to the Kol- 
mogorov theory for the effect of the external scale of the 
turbulence on the characteristics of the turbulent field in the 
inertial interval. In a sense, the Kolmogorov theory should 
be thought of as an analog of Landau's mean field theory in 
the physics of critical phenomena, while the corrections to 
the mean field theory incorporate the fluctuations in the gov- 
erning parameters such as A, and Do. Incorporating these 
fluctuations reduces to replacing the parameters A, and D, 
by certain functions of the wave number k and of the external 
scale of the turbulence, L. The deviation from analyticity 
with respect to L, which stems from the ir divergences, is 
confined to these functions. 

As zeroth approximations of the renormalized pertur- 
bation theory for the correlation function of the effective 
random forces and the turbulent viscosity we adopt the ex- 
pressions 

where the renormalized values of the parameters, D and A, 
are related by D = Z, Do and A = Z,A, D to the original 
values Do and A,. The renormalization constants Z, and Z2 
are found from the requirement that the corrections to the 
renormalized parameter values, which arise in various or- 
ders of perturbation theory, cancel out with the contribu- 
tions of the counterterms introduced in the renormalization 
procedures at the normalization point k = 7, w = 0. In addi- 
tion to the renormalization of these parameters, one should 
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also carry out a frequency renormalization8 corresponding 
to the multiplicative renormalization of the amplitudes of 
the Green's functions, vertices, and correlation functions of 
random forces which is allowed by the system of Dyson 
equations (it follows from the Galilean invariance of the 
hydrodynamic system that the multiplicative-transforma- 
tion group of the Dyson equations is a one-parameter 
group2' ) . 

After transport effects are eliminated, the ir diver- 
gences which arise in the perturbation theory are logarith- 
mic and can be removed by a renormalization. Consequent- 
ly, the singular dependence on the external parameter L is 
confined to the renormalization constants. In the limit 
kL- co (which corresponds to the inertial interval) the 
physical quantities are independent of L. In the renormal- 
ized perturbation theory, however, the dependence on the 
external scale is replaced by a dependence on the normaliza- 
tion momentum 7; this dependence is determined by the re- 
normalization-group method. 

In Fourier space, the renormalized action is specified by 
Fourier-transformed relation (2.1 ), which contains o ( k )  in 
place of v,k 2, which has D(k )  as in (2.3), and which has 
R = 2 ; 'A,, where Z ,  is the renormalization constant ofthe 
field amplitude $. The counterterm which cancels the renor- 
malization effect enters the perturbation in the form 

+ (2,-l- 1 )Z3-'a (k)$, (k. o) S'/2iD (k, 

X ( Z ~ - ' - I ) Z , - ~ ~ , ( ~ ,  a) 1. (2.4) 

3. CONDITIONS FOR RENORMALIZATION INVARIANCE 

To calculate the corrections to the Kolmogorov theory 
we seek a solution in the form corresponding to the replace- 
ment of the renormalized parameters A and D by some func- 
tions which depend on the wave number k; on the renormal- 
ized parameter values A,  D, and A; and on the normalization 
momentum 7. Taking dimensionality considerations into 
account, along with the results of an analysis of the low or- 
ders of perturbation theory, we can write these functions in 
the form 

D!k, A ,  D. A ;  q)=Dfljlcl~~, h) ,  
A(k, A ,  D, A ;  q)=Af?(h.Iq, h), (3.1) 

h-?b'DIA3, f l , ? ( l ,  h)=I .  

The condition for renormalization invariance is that the 
result of the calculation of the Green's function and of the 
binary correlation function of the velocity be independent of 
the choice of the normalization point 7 for the values of the 
renormalized parameters corresponding to this point. These 
conditions can be written in the form8 

Dfl(klq, h)=Dif32(q~lq, h)fi(klqi, hl). 
(3.2) 

AfZ(kl11, h)=f3(q*lq, h)AifP(klql, hl). 

In ( 3.2) we have introduced the new function f3 (7, /7,h), 

which determines the change in the renormalization con- 
stant of the field amplitude $ upon a change in the normali- 
zation point: 

It follows from definition (3.3) that the function f3 satisfies 
the group composition law 

Using the relation R = f: (7, /v, h)  R : , we find from (3.2) 
and (3.4) 

The function 

is thus an invariant of the renormalization-group transfor- 
mation. It is the actual parameter of the series expansion of 
the renormalized perturbation theory. It is analogous to the 
invariant charge in quantum field t h e ~ r y . ~ , ~  Using the con- 
dition h(1,h) = h, we see that the invariant charge satisfies 
the renormalization-group functional equation 

A(z. h )  =li(xlt. K ( t .  h)) .  (3.7) 

Working from (3.2) and (3.4), and eliminating the param- 
eters A and D, we find functional equations for the functions 
J;:  

fl(x. h)=f,(t ,  h)f,(xlt. li(/, h ) ) .  (3.8) 

4. THE RENORMALIZATION-GROUPMETHOD 

In accordance with the renormalization-group meth- 
~ d , ~  we switch from functional equations (3.7) and (3.8) to 
the differential equations 

d d [ - 3 -  +B ( / A ) - - ]  1,  (x, h )  =-y. (x. a) .  (4.1) 
d .z dh 

We see from (4.1 ) that in order to find the functionsJ; (x,h) 
we need to first specify the so-called renormalization-group 
functions y, (h)  and P(h)  = h( y, - 3y, - y3 ), which are 
determined by the behavior of the functionsf] (x,h) near the 
normalization point x = 1. The solution of the equations 
then makes it possible to find these functions over their en- 
tire range, in the way that finite-transformation operators 
are determined in the theory of continuous Lie groups on the 
basis of the known infinitesimal-transformation operators. 
In the renormalization-group method, the renormalization- 
group functions are calculated by a renormalized perturba- 
tion theory. A hydrodynamic perturbation theory for the 
correlation functions and Green's functions is customarily 
constructed through a multiple iteration of the system of 
Navier-Stokes equations, followed by a multiplication of the 
resulting series and by a term-by-term averaging of these 
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FIG. 1. 

series in a random external force." Such a procedure is ex- 
ceedingly complicated and laborious. A more efficient meth- 
od is to use Dyson's equations, which can be constructed 
outside a perturbation theory on the basis of the formalism 
of a characteristic (generating) functional. '9.22 These equa- 
tions are shown in diagram form in Fig. l (Ref. 22). Here the 
lines with a single arrowhead correspond to the Green's 
function of the unperturbed system, 

( 0 )  G, ,  (k, o,)=l',,(k) [ - ~ o , - + c s ( / r )  ] - '  

(a  light line) or the complete Green's function 

(a  heavy line). Here P g ( k )  = Sij - kik,/k is the trans- 
verse-projection operator. A heavy line with two ar- 
rowheads corresponds to the binary correlation function of 
the velocities, BV (k,w), while a light line corresponds to the 
unperturbed correlation function 

A point with two incoming lines and one outgoing line corre- 
sponds to the simple vertex V,,k (k) .  The cross with two out- 
going lines corresponds D(k) ,  the functions o ( k )  and D(k )  
are defined by Eqs. (2.3). A rectangle with one incoming 
and one outgoing line corresponds to the self-energy opera- 
tor Z (k,w ). A rectangle with two outgoing lines corresponds 
to the correlation function of the effective random forces, 
E(k,w). The exact Dyson diagram equations contain com- 
plete vertices of three types, corresponding to the creation of 
one, two, and three quanta. Martin et al.I9 pointed out the 
need to consider the vertices of all three types. The vertices 
of the second and third types arise only in higher orders of 
the perturbation theory. 

The effective turbulent viscosity i?(k) = a ( k )  
~ f 2  ( k / v ,  h) determines the position of the pole of the 
Green's function in the complex frequency plane. The resi- 
due at this pole determjnes the renormalization coefficient 
for the field amplitude $, in such a way that we have 

As was shown in Refs. 16 and 17, in low orders of per- 
turbation theory the result of a calculation of each diagram is 
written as the sum of powers of the large parameter (kL) 2" 
and of logarithms of this parameter. The terms containing 
positive powers of kL, however, can be interpreted as repre- 
senting the sequential absorption of quanta with zero fre- 
quencies and wave numbers (null quanta). The summation 
of an infinite subsequence of the perturbation-theory series 

with null quanta reduces to a This trans- 
port can be eliminated by transforming to the comoving co- 
ordinate system. Terms containing negative powers of this 
parameter vanish in the uv limit (kL - cc ) . We are left with 
only the powers of ln(kL); they determine the local inter- 
mode interactions. After the renormalization procedure is 
carried out, ln(kL) is replaced by In(k /v). Only the first 
powers of the logarithms contribute the renormalization- 
group function. 

According to the Ward identity which follows from the 
requirement of Galilean invariance of the hydrodynamic 
system, the correction (SF) to the vertex corresponding to 
the absorption of a null quantum is given by the exact expres- 
sion2' 

dZ,,(k,  o) 
6r,,, (k, 1 k. 6 ) :  0.0) = kkk 

d w 
(4.3) 

Since transport effects associated with the absorption of null 
quanta are eliminated by a transformation to the comoving 
coordinate system, the corrections to vertex (4.3) in this 
coordinate system vanish. It is then legitimate to ignore the 
frequency dependence of the eigenenergy operator. This 
procedure is equivalent to the hypothesis of a frozen turbu- 
lence, according to which the frequency dependence of the 
statistical moments of the turbulent fluctuations of the ve- 
locity stems from exclusively the transport of the spatially 
nonuniform velocity field.' It follows from (4.2) and (4.3) 
that effects of a renormalization of the field amplitude 4 and 
of the frequency can be ignored; i.e., we can set J;  E 1. In 
addition, instead of using the normalization conditions on 
the dispersion curve, w = - i e (k) ,  which contain singulari- 
ties, we can carry out a renormalization at w = 0. This justi- 
fies Kraichnan's determination of the turbulent viscosity in 
terms of the eigenenergy operator at a zero frequencyz5 (see 
Ref. 26 for a discussion of these questions). 

5. SOLUTION OFTHE RENORMALIZATION-GROUP 
EQUATIONS 

In contrast to the use of the renormalization-group 
method to describe turbulence in the ir limit, in which case 
the expansion of the renormalization-group function begins 
with the term proportional to ~h (Refs. 2, 6-8, 24, 27, and 
28), in the uv limit the expansion begins with the term pro- 
portional to h 2.  In low-order perturbation theory there ex- 
ists only a trivial fixed point for the renormalization-group 
function. The invariant charge disappears slowly in the limit 
(uv asymptotic freedom), and the correction to the Kolmo- 
gorov spectrum is logarithmic." (In this case we are talking 
about the uv asymptotic freedom with respect to perturba- 
tions of the Kolmogorov regime by fluctuations of the spec- 
tral flux.) Flux fluctuations prevail over the entire inertial 
interval. They are seen as corrections to the Kolmogorov 
exponents for the spectrum. These corrections stem from the 
existence of a nontrivial fixed point. The dependence on the 
external scale L should be seen as an anomalous dimen- 
sion3s4 or a self-similarity dimension of the second kind." 
The existence of a nontrivial fixed point h * > 0 requires that 
in the representation 

for the renormalization-group function the parameters a 
and b differ in sign. The requirement of uv stability of the 

475 Sov. Phys. JETP 75 (3), September 1992 E. V. Teodorovich 475 



FIG. 2. 

fixed point leads to the condition a > 0 (Fig. 2). A calcula- 
tion by perturbation theory shows that these conditions are 
satisfied. 

The fixed point of the renormalization-group transfor- 
mation, h *, is found from the conditionD(h *) = 0. Accord- 
ing to (5.1 ), we then find h * = - a/b. Near the fixed point 
we have 

The large-x asymptotic solution of the renormalization- 
group differential equation for the invariant charge (x,h) 
can be found by the standard This solution is 
given implicitly by 

71 (x, h)  -/A' - ,,cbh+z 

h - h *  

According to Ref. 3, the solution of the renormaliza- 
tion-group differential equation (5.1) forf; (x,h) is given by 
a formula of the type 

Carrying out the integration in (5.4), and using (5.3), we 
find the following result for the asymptotic behavior at 
large x: 

/,(.T. h)=xSt .  6,=(a,+D,h')h'. (5.5) 

6. CALCULATION OF THE PARAMETERS OF THE 
RENORMALIZATION-GROUP FUNCTION 

The functionsf, and f, are given by 

f i  (x, h) =B'R' (I t ,  0) /D(k). j2(x, h) =l -Z(R)  ( I ; ,  0) /a (k), 

where the renormalized self-energy operator B'R' corre- 
sponds to the rectangle with incoming and outgoing arrows 
in Fig. 1, while the correlation function of the effective ran- 
dom forces, 3 'R' ,  corresponds to the rectangle with two out- 
going arrows. We should also add to these diagrams the 
contribution of the counterterms which satisfy the normali- 
zation conditions. 

To illustrate the method for calculating the parameters 
a, and bi, we use the example of the diagrams of second- 
order perturbation theory. According to Fig. 1, the self-en- 
ergy operator in this approximation is given by 

'2) 
xij (k, o) =h2V,,, (k) 

(the range of the integration over q is limited by the condi- 
tion q)m = 1/L). 

From (6.2) with D(q) = q P d  we conclude that the in- 
tegral is dominated by small values q = m < k. We can thus 
set k - q z k  and carry out the integration over the direc- 
tions of the vector q. As a result we find, for a ( k )  $ u ( m ) ,  

(2 )  3 do 1  x i  (k, 0) = - - xh '~k '  J - - 3 xL2Dk2 --- 
2 o c m , ~ 2  o (k) +a 2 u(k)o(m) 

. , 

d - l  s,j a = A q ~ ~ ,  x=-- 2ndI2 
s d = .  

2d ( 2 ~ ) ~  ' r (d12) 

The first term in (6.3) contains a power-law singularity 
as m -0. According to the discussion above, this term is the 
first term of an infinite subsequence whose sum reduces to a 
Doppler frequency shift and can therefore be discarded. The 
second term, after the addition of the counterterm which 
leads to the satisfaction of the normalization conditions, 
leads to a term of the type xhu(k)ln(k /q). Using (6.2), we 
find a, = - x. Examining the second-order diagram in a 
corresponding way for the correction to the correlation 
function of the effective random forces, we find a, = - ic. 

The diagrams of fourth-order perturbation theory for 
the corrections to the self-energy operator and the correla- 
tion function of the effective random forces are shown in 
Figs. 3 and 4, respectively. Calculating the two-loop dia- 
grams is a complicated problem, but we are interested in the 
part proportional to the first power of ln(k/m),  since it 
alone contributes to the renormalization-group function. 
Our analysis of the diagrams for Z'4' shows that logarithmic 
singularities arise because of interior lines of the velocity 
correlation function which carry a small momentum (or 
wave number). These singularities are suppressed if the 
small momentum corresponds to a propagator line going 
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FIG. 4. 

away from a vertex. In calculating the parameter b2 it is thus 
sufficient to consider only the contributions from diagram I 
in Fig. 3 (found by inserting the self-energy part in the pro- 
pagator line in Fig. 1 ) and from diagrams 4-6, which incor- 
porate the third-approximation corrections to the vertex. In 
calculating the corrections to the vertex we use Ward's hy- 
drodynamic identity2' written in the form 

Zij (k, a+Q)-Zij (k, a)  
I':: (k, 0+Q lk, a ;  0. Q)= Ah-, 

52 

A calculation yields 

b2=8x2+6x2=14w' 

The first term in this expression is determined by diagram I 
in Fig. 3, while the second is determined by diagrams 4-6. 

Analysis of the fourth-order diagrams in Fig. 4 for the 
correlation function of the effective random forces reveals 
that diagrams 2 and 5 contain second powers of ln(k/m).  
They can accordingly be ignored in the determination of the 
renormalization-group function. Diagrams I are found by 
inserting the self-energy part in one of the propagator lines in 
Fig. 1. There are four such diagrams, but they are weighted 
by a factor of 1/2. Diagrams 3-5 are found by substituting 
the vertices of all three types in third-order perturbation the- 
ory into the diagrams equations in Fig. 1. This process re- 
duces to a doubling of the contribution of the vertex of the 
first type. Ward's identity (6.4) can be used again in calcu- 
lating this contribution. The corresponding calculation 
yields 

where the first term is the contribution from diagram I, and 
the second term is the contribution from diagrams 3 and 4. 

Using the parameter values found here, we find, accord- 
ing to (5.5), 

6,=-2,56.10-2, 62=-0,85.10-'. (6.7) 

The spectral energy density of the turbulent fluctuations of 
the velocity can be found in the usual way: 

E(k) -kd - 'D(k ) /a (k )  - k-"~,(k/q)/f,(k/q)=k-~~~(k/q)~. 
Using (6.7), we find 

In discussions of corrections to the exponents, the 
quantity 6 is usually written in the form S = - p/9. The 
quantityp determines the exponent of the dependence of the 
correlation function of the fluctuations of the dissipation 

field.' It can be determined experimentally. While the value 
,u =: 0.4 has been used previously, a more recent refined anal- 
ysis of the experimental data has yielded the estimatez9 
0.15<~<0.25. From (6.7) we findp = 0.153. 

7. CONCLUSION 

In our analysis, the dependence on the external scale L 
is manifested as an anomalous dimension. In this regard, our 
study differs from most previous studies, in which the renor- 
malization-group method has actually been used to justify 
the Kolmogorov hypotheses which make it possible to find 
the exponents of the asymptotic behavior on the basis of di- 
mensionality considerations. In cases in which the scale di- 
mension of the single dimensional parameter which exists in 
the inertial interval-the energy dissipation rate--is fixed in 
some way or other, the renormalization-group equation tells 
us nothing about the spectral exponents beyond what we can 
learn from simply dimensionality considerations (see, for 
example, the review by Kraichnan3' ). 

In particular, in a study of the properties of a turbulent 
fluid in the ir limit by the renormalization-group method, 
the dimensionality of the parameter D is fixed by the choice 
of the "physical" value of E in the procedure of the continu- 
ation along E. The use of the renormalization-group method 
in the uv limitI6 also presupposes that the parameter D is 
unchanged by renormalization-group transformations. For 
this reason, effects of fluctuations in the energy dissipation 
are actually eliminated from consideration, as are the related 
intermittency effects, which are responsible for the appear- 
ance of corrections to the Kolmogorov exponents for the 
spectrum. These effects are described by higher-order per- 
turbation theories, beginning with the fourth. Although the 
effect of the high-order approximations was studied in Refs. 
16, 17, and 23, the analysis was aimed at proving that the 
sum of these approximations reduces to a transport. The 
logarithmic corrections, which describe cascade processes 
from our point of view, were not included in that study. As a 
result, the attempts to find the corrections to the Kolmo- 
gorov exponents by the renormalization-group method 
failed. In Ref. 17, for example, the corrections turned out to 
be simply logarithmic, while in Refs. 16 and 31 the value 
,u =: 1.2 was found. That value differs from the experimental 
data by an order of magnitude. Our calculations show that 
the correction to the exponent of the spectrum of turbulent- 
fluctuation energy is governed primarily by the anomalous 
dimension of the correlation function of the random forces 
(the dimension of this quantity was assumed to be canonical 
in the previous studies). Our calculations also show that the 
contribution of the anomalous dimension of the effective vis- 
cosity to the correction for the spectrum is much smaller 
while it has previously been regarded as predominant. 
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