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A parameter E indicative of the non-Markov properties of random molecular processes was 
recently introduced by us [Sov. Phys. JETP 72,80 ( 1991); Phys. Lett. A 143,199 ( 1990) 1. We 
report here further development of the notions of non-Markov properties of relaxation processes 
in liquids. In particular, we introduce the concepts of the spectrum of this parameter and of the 
extent to which the relaxation is a Markov process. Actual computations and numerical estimates 
are made for the vibrational, dielectric, and structural relaxations molecular liquids and in simple 
classical ones. They show that non-Markov time-dependent effects play a basic role in the kinetics 
of relaxation processes in liquids. 

1. INTRODUCTION 

The title of this article may mislead the reader. In its 
usual meaning, a spectrum of physical quantities is a set of 
eigenvalues of corresponding operators. Yet the spectrum 
concept has another and wider meaning. The term "spec- 
trum" stems from the Latin word for "representation" or 
"image." In physics, therefore, spectrum means an aggre- 
gate of all values of a physical quantity indicative of a system 
or a process. 

Investigation of a spectrum of physical quantities is one 
of the most vital tasks of the physics of condensed media. 
The most traditional is a determination of an energy spec- 
trum, of a system of eigenfunctions, of spectral invariants, of 
spectral properties of a corresponding group of unitary shift 
operators, etc. We analyze in the present paper the spectral 
features of processes such as vibrational and dielectric relax- 
ations and of random density fluctuations that lead to struc- 
tural relaxation. 

Spectral analysis of stationary random processes con- 
sists usually of two characteristic tasks.'-3 The first is the 
spectral resolution of stationary random processes. In this 
case a random function (process) is expanded in a series or 
an integral over a special system of functions, where the coef- 
ficients of this expansion take the form of mutually uncorre- 
lated random quantities. In a number of cases this expansion 
is with respect to some standard and quite simple complete 
set of functions. The second task is the development of an 
aggregate of statistical devices that permit the spectral den- 
sity of a stationary random process to be estimated from data 
observed in a single realization of this process. 

The fundamental role of non-Markovian temporal cor- 
relation effects in relaxation processes in liquids has recently 
been reliably ~onf i rmed.~-~  It is known that processes desig- 
nated as Markovian are those in which there is no connec- 
tion between the past and the future, i.e., there is no memory. 
The science of Markov processes was initiated by Markov's 
famous paper'' published in Kazan' in 1906. The properties 
of Markov processes have been studied in sufficient detail 
both in mathematics and in physics. The tremendous role of 
Markov processes, in particular, is attested to by the fact that 
all the basic equations of the theory of irreversible processes 
(transport and kinetic phenomena, spin and galvanomag- 
netic effects, and others) are Markov equations and take no 

account whatsoever of the statistical effects of molecular 
memory. 

This status of the theory as reflected the feasibility of 
experiments in which most observations pertained to rela- 
tively slow processes in the long-wave region of space-time 
processes. The situation was noticeably changed after accu- 
mulation of data for the short-wave region of the spectrum 
and observation of fast processes. The available data on 
slow-neutron processes, and on dielectric, vibrational, spin 
and other types of relaxation, attest to the existence of non- 
Markov effects in relaxation processes in liquids. The situa- 
tion is such that it is possible to extract from experiments 
detailed data on the kinetics of non-Markov processes. In 
contemporary theory of random processes, however, the 
study of the class of non-Markov processes has been patently 
insufficient. This raises fundamental difficulties in the phys- 
ical interpretation of experimental data. It suffices to point, 
for example, to a specific fact that follows from Refs. 8 and 
11, that a process cannot be firmly identified as Markov or 
non-Markov is not firmly established and its very classifica- 
tion can be gradually varied. The situation is aggravated also 
by the lack of established concepts and representations of 
non-Markov random processes. The first attempt to intro- 
duce a parameter and criterion for non-Markov behavior is 
contained in our earlier papers.'." 

We introduce here the concept of the "non-Markov" 
parameter spectrum. The concept is analyzed using as exam- 
ples structural, dielectric, and vibrational relaxations in var- 
ious liquids. 

2. GENERALTHEORY 

An extensive class of relaxation processes is presently 
studied by the method of projection operators, introduced in 
the Sixties by Zwanzig4.I2 and M ~ r i . ~ . "  This method is used 
to find for a normalized temporal correlation function 
(TCF 

n(t)=<6A'(0)6A (t))/()6A (0) 1') (1)  

of the fluctuations of a physical quantity A ( t )  

6A (t)  =A (t) - (A ( t )  > (2)  

an infinite chain of coupled non-Markov kinetic equations 
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d M ,  ( t )  
-= -a2' j dr b f 2 ( ~ - ~ ) 1 ~ ~ ,  ( T I ,  

dt 
0 

Here M, ( t ) ,  M2(t) ,  M3(t) are memory functions of first, 
second, and third order, respectively, and O:, a:, R: are 
relaxation parameters having the dimension of frequency 
squared. Their connection with the even frequency moments 
of the spectral density of the TCF a ( t )  is'' 

Several different methods have by now been developed 
to close the equation chain (3).  Firstly, a transition to the 
Markov limit, effected by introducing the so-called slow 
time T = il 2t(il -0) (Refs. 12 and 14). Secondly, the inter- 
acting-mode approximation.6215 Thirdly, the method of slow 
memory functions, when a memory function of a definite 
order is approximated by a known model function whose 
parameters are obtained with the aid of the frequency mo- 
ments of the corresponding TCF or are established by fitting 
to the experimental data. 

In addition to the foregoing there is one more method 
based in Bogolyubov's ideas of the abbreviated description 
and the relaxation-time hierarchy. It was first proposed by 
one of us to described magnetic spin relaxation in l i q ~ i d s . ~ , ' ~  
It was used as a basis for the development of a theory of 
electron spin relaxation observed in liquids by the method of 
nonresonant parametric absorption in parallel fields,I7 and 
of a theory of quadrupole relaxation in liquefied inert gases, 
liquid metals, and semicondu~tors.'~ The method was also 
used to develop a microscopic theory of coherentI9 and inco- 
herent'' scattering of slow neutrons in simple classical li- 
quids, and to investigate the kinetics of spin-density fluctu- 
ations in paramagnetic liquids." Closely similar ideas were 
used to study vibrational2' and dielectric relaxations.9s23 
This method used in the present paper to close the equation 
chain ( 3 ) .  

In our preceding papersx*' ' we introduced a microscop- 
ic parameter E:') indicative of the extent to which an arbi- 
trary relaxation process 

In Refs. 8 and 11 we introduced also a more accurate non- 
Markov parameter &I2' analogous to E;": 

where 7,' is the lifetime of the fluctuation correlations SA ( t )  
and r, , is the memory lifetime, 

I/,. I/,, 

, = J t t  } . T i <  ={ J' dttnwI (1)) 9 

0 0 

It was shown in Refs. 8 and 11 that to obtain a clear enough 
qualitative picture it suffices to calculate the simpler param- 
eter & I L )  = E'. In the case when & 1 the relaxation time of 
the initial TCF a ( t )  is much longer than the relaxation time 
of the memory function MI  ( t ) ,  and the process can be re- 
garded as quasi-Markov. It will be a Markov process in the 
limit as E ,  + w . If, however, -Y 1, the times T, and r1 are of 
the same order and the process becomes definitely non-Mar- 
kovian. The spatial dispersion of a parameter serving as a 
measure of the deviation of the process from a Markovian 
nature was calculated in Refs. 8 and 11 for a structural-re- 
laxation process responsible for the coherent scattering of 
slow neutrons in simple liquids. That theory led to a clear 
identification of regions of Markovian and non-Markovian 
behavior of the process, and it explained several features of 
the scattering spectra. 

To analyze the non-Markovian properties of relaxation 
properties at a more profound level, and in more detail, we 
follow the ideas of Refs. 8 and 1 1, introducing a sequence of 
parameter values E, (i = 1,2,3 ,... ) : 

where T, is the relaxation time of the memory function of 
index i. We refer to the entire set of parameter values, 
{E) = {E, ,E~,E~,  ...), as the "spectrum of the deviation from a 
Markovian process." Corresponding to each ith equation of 
chain of equations (3)  is a certain value of E, . The index i can 
be called a "level." In general, the system of equations in (3)  
is infinite (i- w ), so the spectrum {E) is also infinite. 

The approximation M, ( t )  zM, + , ( 2 )  was used fre- 
quently to close chain of equations (3)  in Refs. 7,9 ,  and 16- 
23. From the physical standpoint, that approximation 
means that the time scales over which the memory functions 
of orders i and i + 1 relax are approximately the same: 
 inthiscasew this case we thus have^,+^ - l , the  ( i +  1) st 
equation of the chain becomes 

( 5 )  & i ( i ' = ~ o / T l r  
t 

dM, (t) 
is non-Markov; here ro and T, are the relaxation times of the -=-a,;, J ~ T M , ( ~ - ~ ) M . ( T ) .  

dt  
initial TCF a ( t )  and of the first-order memory function 
Ml(t) ,  Solving ( 10) by Laplace transforms, 

rn 

0 0 we find 
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M ,  (s)= [--sf (s2+4Qi:,)'"]/2Q,:,. (11) 

We obtain then for the relaxation time r, 

-ci=iz;ti ( 0 )  =oi;:. (12) 

Taking the Laplace transforms of the remaining equations of 
the chain and putting s = 0 we obtain the remaining relaxa- 
tion times: 

T,-,===(Q,~T,)  -I. (13) 

Knowing all the times ri and using ( 7 ) ,  we now easily obtain 
the entire spectrum of the parameter E indicative of devi- 
ation from Markov behavior. In the next sections we demon- 
strate a simplified procedure for finding the spectrum for 
vibrational, dielectric, and structural relaxation. 

3. VIBRATIONAL RELAXATION 

memory effects to be more substantial in SiD,. On the other 
hand, in the general cases the parameter E, is on the order of 
unity. The relaxation times of the first- and second-order 
memory functions are very close. It can therefore be con- 
cluded that more complicated processes are inherent in a 
non-Markov process-processes with non-Markov proper- 
ties. It should also be noted that Figs. lb  and lc  differ rela- 
tively little. This leads to the conclusion that non-Markov 
peculiarities of vibrational relaxation in C2H, apparently 
depend little on frequency. 

4. DIELECTRIC RELAXATION 

One of the most important quantities determined by 
studying dielectric relaxation is the absorption coefficient 

Here I ( @ )  is the TCF spectral density 
We begin with considering the TCF g( t )  of the normal 

coordinate q(t):  Y (t)=(P (0)P ( t ) ) / < P ( O )  ). 

Its spectral density 

1 
I (o) = -- lim He g ( i o ) + e )  

.T r-+,, 

is the normalized isotropic Raman-scattering intensity, The 
TCF ( 14) is frequently investigated using the memory-func- 
tion formalism. One of the methods listed above is used to 
close the kinetic-equation chain (3).  Thus, for example, a 
vibrational relaxation theory based on the approximation 
M, ( t )  ZM, ( t )  was developed in Ref. 22. In this case, using 
( 12) and ( 13), we obtain for the relaxation time 

For the non-Markov parameters (9)  of the first and second 
levels we have 

We present numerical calculations of the parameters E, and 
E~ for SiD, at a temperature T = 148 K and for liquid ethane 
C,H, at T = 168 and 93 K. The frequency moments I,, I,, 
and I, needed to calculate the relaxation frequencies a , ,  a 2 ,  
and fl, were measured in Ref. 24. The values of flz obtained 
in this manner are listed in Table I and the numerically cal- 
culated parameters E; are shown in Fig. l .  

It is seen from Fig. 1 that E, - 10-20 in all the consid- 
ered cases, i.e., vibrational relaxation on the first level is 
quasi-Markovian. The parameter E,  for SiD,, however, is 
half that for C2H,. One can therefore expect the molecular 

where P (0 )  is the polarization vector of the dielectric. 
A dielectric-relaxation theory was developed in Ref. 9 

for liquid CH,I, based on the Zwanzig-Mori formal- 
ism.4,5,12,13 It was also shown there that the best agreement 
with experiment is reached by using the approximation 
M, ( t )  -- M,(t) for the memory function. From this approxi- 
mation and from ( 10) and ( 1 1 ) we get 

Knowing all the necessary times ri it is easy to calculate all 
the parameters E~ [Eq. (9)  1 .  

The numerical values of the frequency parameters flf 
taken from Ref. 9 are listed in Table 11, and the calculated E, 

are shown in Fig. 2. 
It is seen from Fig. 2 that E , )  1, i.e., in this case the 

dielectric relaxation process can be regarded with sufficient 
accuracy as quasi-Markov. On the other hand, the remain- 
ing E~ are much less than E, and are comparable with unity. 
Thus, just as in the case of vibrational relaxation, the deeply 
inherent nature of dielectric relaxation is essentially non- 
Markov and much more complicated. 

5. STRUCTURAL RELAXATION 

In the discussion of this relaxation we confine ourselves 
to simple classical fluids. The structural relaxation reduces 
then to a change of the mutual arrangement of the fluid par- 
ticles, i.e., to a restructuring of the radial distribution of the 
particles. The structural relaxation time .r, is defined as the 
correlation time of the TCF of the fluctuations of the nu- 
merical density 

TABLE I. Values of the frequency relaxation parameters obtained on the basis of the mea- 
suredZ4 frequency moments I,, I,, and I,. 

468 Sov. Phys. JETP 75 (3), September 1992 

I 
Liquid I T, K 

V. Y. Shurygin and R. M. Yul'met'ev 468 

Q:, cm-2 
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FIG. 1 .  Numerical values of the parameter E for the first two- 
level of vibrational relaxation processes: a-SiD4, T = 148 K, 
b-C2H,, T = 168 K; c-C,H,, T = 93 K. 

where a,, is the Kronecker delta. The TCS Laplace trans- 
formp(k,t) is connected with the dynamic structure factor 
S(k,w) of the fluid, determined in experiment from the co- 
herent inelastic scattering of slow neutrons8 

S(li, o)= - S(l') lim He g(k ,  i w l - o ) .  
n S4.+" 

(22) 

HereS(k) is the static structure factor, while k and w are the 
wave vector and the scattering frequency. 

In Ref. 11 we constructed a microscopic coherent neu- 
tron scattering theory for liquid A1 at T = 1056 K. It was 
shown that at this temperature there is realized a relaxation 
regime in which the relaxation times of the second- and 
third-order memory functions are approximately equal: 
T ,ZT~ .  Consequently, the chain (3)  can be closed by using 
the approximation M,(k,t) z M3 (k,t) . We obtain then 
expression ( 16) for the relaxation time and expressions ( 17) 
for the non-Markov parameters E,  and E,. Note that in this 
case all these quantities depend substantially on the wave 
vector k. The frequency moments I,, I,, and I, needed to find 
the squared relaxation frequencies Kt: ,a: ,Kt: were calculat- 
ed in Ref. 25 for the given state of A1 on the basis of the 
Duesbery-Taylor model p~tent ial . '~  The values of fl: at dif- 
ferent wave vectors k are listed in Table 111. Figure 3 shows 
the calculated spatial dispersion of the non-Markov param- 
eters E, and E,. 

It is evident from Fig. 3 that both non-Markov poten- 
tials (especially E, ) have a rather strongly pronounced spa- 
tial dispersion. The numerical value of E, for a given process 
is much less than that of the corresponding values for vibra- 
tional or dielectric relaxation and is quite close to unity. 
Structural relaxation is consequently essentially non-Mar- 
kovian even on the first level. The only exception is the rath- 
er narrow region near the maximum of the static structure 
factor S ( k )  (kz2 .7  Am') ,  where E, has a sharp peak. It is 
only here that the structural relaxation is based on quasi- 
Markov processes. This explains, in particular, why all the 
existing theories of slow-neutron coherent scattering agree 
well with experiment in this region, notwithstanding the en- 
tirely different memory functions used. 

TABLE 11. Frequency parameters for C,I at T = 294 K (Ref. 9 )  

6. DISCUSSION OF RESULTS AND CONCLUSION 

i ' a:, 10Z4s-2 
I 11 I II 

/ I  

To estimate the role of the non-Markov temporal effects 
we had to introduce in our present study the concept of a 
non-Markov spectrum, which has nothing in common with 
the customarily employed concept of a spectrum. It reflects 
the infinite character of the set (3)  of coupled equations, i.e., 

a:, loz4 s-' 

FIG. 2. Spectrum of the parameter E in CH,I for the first seven levels. 
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TABLE 111. Frequency parameters S2; for liquid aluminum at T =  1056 K. 

the infinite structure and hierarchy properties of an arbi- 
trary relaxation process. The hierarchy of the equation is 
due to the quasimolecular interactions and to the static prop- 
erties of the system. The presence of a definite ith level re- 
flects only the existence of an ith equation of the chain. Since 
the number of equations in the chain ( 3 )  is infinite, the spec- 
trum of the parameter E is also infinite. 

From the physical standpoint, we are interested in the 
Markov ( E  > 1 ) and non-Markov (E - 1 ) regions of the spec- 
trum. The number of the level at which the change from a 
Markov to a non-Markov spectrum takes place can be called 
the depth of the "Markovization." It is seen from Figs. 1 and 
2, for example, that the vibrational and dielectric relaxation 
are Markov processes only on the first level ( i  = 1 ). (Note 
that the E spectrum for dielectric relaxation of CH,I mole- 
cules is subject to strongly pronounced damped oscilla- 
tions.) As the number of the level increases, for example at 
i = 7, the non-Markov character of the relaxation becomes 
obvious and fixed. It is quite possible that a similar picture 
can be observed also for vibrational relaxations. Non-Mar- 
kov effects ( E ~  - 1 ) become clearly noticeable starting with 
the second level (i = 2). The depth of the "Markovization" 
for these two cases is therefore h, = 1. 

The situation is different for structural relaxation. Fig- 
ure 3 reveals two characteristic peculiarities. First, the pro- 
cess is essentially non-Markov starting already with the first 
level, i.e., h, = 0. Second, the very concepts of a Markov 
and non-Markov relaxation become relatively arbitrary. 
The reason is the existence of a strongly pronounced spatial 
dispersion of E, (k )  and ~ , ( k )  in the region of the first maxi- 

FIG. 3. Spatial dispersion of the parameters E ,  and E, of the first and 
second levels of structural relaxation of liquid A1 at T =  1056 K. 

mum of the static structural factor S (k )  of liquid aluminum. 
In the range of k from 1 to 5 k1 the relaxation changes 
smoothly from the non-Markov to the Markov regime and 
back. 

It is noteworthy that for quasi-Markov (E,  > 1) and 
purely Markov (E,  -+ UJ ) processes the initial TCF a ( t )  can- 
not be determined from the first equation of the chain ( 3 ) .  
The point is that the presence of non-Markov behavior at 
deep levels plays an essential role in the behavior of the ex- 
perimentally observed physical quantities in the case of qua- 
si-Markov and Markov processes on the first level. By way of 
example we refer to spin relaxation in l i q ~ i d s , ~ ~ " ~ ~ ~  where 
the spin relaxation itself is a Markov process. However, the 
presence of non-Markov behavior in molecular processes 
( E ~  - 1 at the second level) leads to an unusual square-root 
dependence of the spin-relaxation time in liquefied inert gas- 
es, liquid metals, and semiconductors ( T,,T2 - T ' 1 2 , ~  - 'I2). 
The picture observed changes substantially when Markov 
molecular processes become responsible for the spin relaxa- 
tion (E* + UJ ). The temperature dependences of T, and T2 
become of the traditional activation type. 

It becomes obvious from the foregoing that the concept 
of molecular memory effects and of non-Markov temporal 
correlation effects become fundamental in statistical phys- 
ics. It was suggested repeatedly in the literature that any 
non-Markov process can be reduced by some definite proce- 
dure to a Markov process. It seems that in principle this is 
impossible. The point is that the molecular memory or statis- 
tical inertia effects cannot be reduced fully, in our opinion, to 
molecular stochastic effects of the Markov type. 

The role of Markov effects is also seen from a new view- 
point. A process initially of Markov type on a definite level 
and at a definite "Markovization" type (h, ) can be trans- 
formed into a non-Markov process. It follows hence that 
known equations of irreversible processes, such as the diffu- 
sion, viscosity, heat-conduction, Bloch, Redfield equations 
and others, should correspond to their non-Markov analog 
in the theory of high-speed magnetic-resonance processes. 

It seems that a non-Markov process corresponds to 
each known Markov random process in physics at some defi- 
nite depth of "Markovization." 

Our numerical estimates show that non-Markov effects 
are not the result of the procedure chosen to close the infinite 
chain of coupled equations. They reflect the profound phys- 
ical nature of the statistical processes occurring in liquids. 
Everything stated above offers evidence that non-Markov 
random processes play a tremendous role in kinetic phenom- 
ena in liquids. A detailed study of the structure, properties, 
and parameters of non-Markov processes extends noticeably 
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the existing notions concerning the properties of condensed 
media. 

The authors are grateful to R. Bittl (Free University, 
Berlin) for a helpful discussion of non-Markov properties of 
statistical systems. 
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