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The crossing of a plasma-vacuum interface by a fast nonrelativistic charged particle is analyzed. 
The analysis is carried out for crossings in both directions. The temporal and spatial evolution of 
the potential and energy of the particle and of the surface charge and space charge which the 
particle induces is analyzed in the model of a cold plasma. The transformation of the image charge 
into a wakefield charge is studied. 

As it passes through a material medium, a fast charged 
particle excites oscillations of the charge density behind it- 
self.'-3 These wakefields and the particle energy losses asso- 
ciated with their excitation have been studied widely for a 
variety of media, particularly plasmas.3-'0 Wakefields have 
recently reattracted interest because of the development of 
new methods for accelerating particles.''-'3 

In most studies of wakefields it has been assumed that 
the medium is unbounded. The wakefields are excited as the 
particle enters the medium, or they disappear when the par- 
ticle leaves the medium, because of a number of transient 
polarization processes which occur near the interface. 
Among these processes, the excitation of surface oscilla- 
t i o n ~ ' ~ . ' ~  and the associated additional energy loss have been 
studied previously. In connection with the development of 
new particle acceleration methods, numerical cal~ulations'~ 
have recently determined the distance from the sharp plas- 
ma boundary at which the amplitude of the wakefield excit- 
ed by an ultrarelativistic particle reaches the same level as in 
an unbounded medium. 

In the present study we have attempted a more compre- 
hensive investigation of the polarization processes which 
arise as a fast but nonrelativistic charged particle crosses a 
plasma-vacuum interface, in both directions. A theory for 
the polarization processes is derived in the model of a cold 
electron plasma. Expressions are derived for the scalar po- 
tential, the surface charge density, the total charge on the 
surface, and the change in the energy of the particle which 
occurs as the interface is crossed. A wakefield space charge 
arises because of an "overflow" of induced surface charge. 
The latter oscillates at the plasma frequency and screens the 
wakefield of the particle outside the plasma. The effect of the 
interface on the energy of the particle is not simply the effect 
of the surface-oscillation field; it is instead determined by the 
effects of various near-surface fields. One result of this situa- 
tion is that the particle does not lose energy but instead ac- 
quires energy as it crosses the interface from the vacuum into 
the plasma. 

1. A nonrelativistic particle with a charge Q is moving 
at a velocity u along thez axis, which is directed perpendicu- 
lar to the interface between two media. In the time interval 
- w < t  < 0 the particle is in the first medium (z < 0), while 

in the time interval w > t >  0 it is in the second medium 
(z > 0) .  Each of the media has only a temporal dispersion; 
the respective dielectric constants are &,(a) and ~ , ( w ) .  
Working from the equation div D = 4.rrp0, where 

po = QS(z - ut)S(r, ), and the continuity conditions at 
z = 0 for the normal component of the magnetic induction 
and the tangential component of the electric field, we find 
the following expression for the potential p (E  = - Vp) 

where x and w are variables which correspond to Fourier 
expansions in r, and t. The first terms in square brackets in 
expressions ( 1) correspond to the potential of the particle in 
an unbounded medium, while the second terms correspond 
to the potential which arises because of the interface. 

The expression for the electric field vector which fol- 
lows from ( 1 ) is the same as that given in Refs. 17 and 18 if 
we take the limit u <c in the latter. The expression for the 
electric field corresponding to ( 1 ) was analyzed for the case 
without dispersion in Ref. 19. 

2. We can use ( 1) to study the temporal and spatial 
evolution of the potential only if the functions E, , ,  (w) are 
known. In the case of a trial particle whose velocity u is large 
in comparison with the average electron velocities of the me- 
dium, v,, it is common to use the plasma dielectric constant4 

where w, is the plasma frequency, and v is the effective elec- 
tron collision rate. (For applications to continuous media, it 
is also assumed, in our macroscopic approach, that the 
length of the plasma wave is much greater than the interato- 
mic distances. ) 

Let us take a brief look at the known results for an infi- 
nite medium with dielectric constant (2).  In the limit v <up, 
the potential set up by the particle is4 ( r  = Ir, I ) 
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where 6 = z  - ut, k,  = w, /u,  y = v/2u, K o ( x )  is the modi- constant E~ as given by ( 2 )  from the vacuum side ( E ,  = 1 ) .  
fied Bessel function, B(x) is the unit step function For the potential from ( 1 )  we find, for t < 0 ,  
[ 0 ( 0 )  = + I ,  

cP m @ (r;  z ;  t )  = - 
( 1 . ~  

IY, ( a ;  bi = (-ax) J , ,  (bx) , (4) 
Qk,  

z2+ 1 1 1 
-- W I ;  k ,  z<O 

and J,(bx) is a Bessel function. 
The function W2 falls off monotonically with increasing 1 7 ( 6 )  

-- 
16 I and also with increasing r. Ic, (rZ+E2)'" 2 I h  

2 0 0 ,  z>o 

Its properties are examined in more detail in Appendix 
1. 

Figure 1 shows equipotentials calculated from ( 3 )  and 
(4) .  The results of corresponding calculations6~' for a plas- 
ma with electron thermal motion in the limit usu , .  agree 
well with the results in Fig. 1 .  

The first term in ( 3 )  corresponds to the Coulomb po- 
tential. The meaning of the other terms can be seen easily by 
examining the induced charge density: 

We see that a charge arises only behind the particle, and only 
on its wake. Since the charge density in ( 5 )  vanishes at 
6 = 0, fringing potentials [the second term on the right in 
( 3 )  ] arise near the particle ( k ,  16 I < 1 ,  / k, r  < 1 ). Far behind 
the particle (k,{  < - 1 ), u a weakfield potential [the last 
term in ( 3 )  1 corresponds to the charge density in ( 5 ) .  

There are two points to note here. First, an induced 
charge arises only on the line r, = 0  in our model as the trial 
particle moves. This result means that the electron fluid 
away from this line behaves as an incompressible fluid 
(div v = 0 ,  where v is the fluid flow velocity). When the 
thermal motion is taken into account, the charge density is 
smeared over a scale -u,/w,.  Second, the total wakefield 
charge induced on the line r, = 0  is equal to the charge of the 
particle but with the opposite sign ( - Q ) .  It follows that as 
a particle enters a neutral medium a charge equal to the 
charge of the particle arises away from the wake of the parti- 
cle. In particular, some calculations which have been carried 
out show that as a particle moves along the axis of a plasma 
cylinder an induced charge Q moves along the surface of the 
cylinder. 

3. We now consider the process by which a particle ap- 
proaches the plane interface of a medium with a dielectric 

where rl = izl + ult 1, k, = w,/u, and w, = ~ , / 2 " ~  is the 
frequency of the surface oscillations of the electrons. Expres- 
sion ( 6 )  contains an image potential along with the Cou- 
lomb potential. Although this potential is not a Coulomb 
potential in vacuum ( z  < O ) ,  as it would be in the electrostat- 
ic case," it does depend on the variable r,~, which specifies 
the distance from the observation point to a point in the 
medium (z > 0 )  at the same distance as the particle from the 
interface. 

Figure 2  shows equipotentials @ = const for the case of 
a particle at a distance z = k  ,- from the interface. The im- 
age potential is set up by a surface charge with a density 

where W ,  ( a ; b )  = - d  W2(a;b) /da .  It is easy to see that the 
total charge induced at the surface is independent of the time 
and is equal to - Q. The surface density of this charge 
evolves in the following way according to ( 7 ) .  If the particle 
is far from the surface (ult  1 % k c  I ) ,  then we have 
u/Qk : - - u It j/2.irk : (u2t + ?) '". This formula is the 
same as the known expression for the charge density in the 
electrostatic case.'' The potential is also close to that in the 
electrostatic case. If ult I < kc l ,  and if the particle is near 
the interface, then the charge density distribution in ( 7 )  
differs from the electrostatic distribution. In particular, at 
the time at which the particle crosses the interface ( t  = 0 )  
we have u/Qk : = - Ko(kor) /2a  according to ( 7 ) ,  and the 
surface charge density is concentrated in a region with a 

FIG. 1. Contour curves of the function a,, in the r, 4 
plane. The particle is moving from left to right. The 
interval between contour lines is 0.05. Solid lines- 
@,,>O; dashed lines-@,, < 0. Along the scale of the 
variable r, the calculation begins at the value 0.2. 
Here y = 0. 
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radius r 5 k; I. For the same situation in the electrostatic 
case, there is a surface charge density only at the point 
r =  0 [u /Qkt  = - 2 S ( k i ? ) / a ] .  

As the particle approaches the plasma interface, the 
charge density on the surface becomes redistributed. This 
redistribution results not from a surface current but from an 
inflow (or outflow) of electron fluid to the surface from the 
interior. I t  is determined by the velocity component 
v, (t;r;z = + 0 )  = (e/mu)p(t;r;z = + 0 ) .  From (6 )  we 
find, at t = 0, 

where I,, and L,, are, respectively, the Bessel and Struve func- 
tions of imaginary argument. The function in ( 8 )  changes 
sign with increasing r. At small values of r, for Q < 0, the 
velocity is positive; it goes off to infinity as r+O. With in- 
creasing r, the velocity decreases, and it goes negative at 
r 2 k c  '. At large values of r, the velocity is proportional to 
- (k,r) -', and it approaches zero with increasing r. 

As it approaches the interface, the particle is evidently 
attracted by the image field and accelerated. To  determine 
the energy A W ,  acquired by the particle, we use expression 

FIG. 2. Contour curves of @ = const for a parti- 
cle in vacuum at a distance a = k,  lzl = 1 from 
the interface. Solid lines-@>0; dashed lines- 
@ <O. The interval between lines, A@, is 10 ' 
at negative values of @, while at @ > 0 this inter- 
val varies. It is 0.01 for 0 <@<0.1, 0.02 for 
0.1<@<0.2, and 0.1 for 0.2<@<0.9. 

(6 )  to find the electric field component E, = - dg, /dz at  
the position of the particle ( r  = 0, z = ut) .  This field deter- 
mines the force which is acting on the particle; the integral of 
this field over time, over the interval - cc < t <0,  deter- 
mines the energy increment. After some straightforward cal- 
culations we find 

4. After the particle enters the plasma ( t > 0 )  the poten- 
tial is, according to ( 1 ), 

@ (r; 2; t )  = - cP 

Qkp 

+2e-"'" sin (mot) W ,  (k, 12 ( ; k,r) I ,  z<0 
- ~Il,+T.I/', (kpq; kpr) +2e-v"2 sin (opt )  W ,  (kpz; kpr) 

- I 1 
- -1 IY2 (koq; k,r) +2e-'"' sin (mot) W ,  (k,z; k,r) 1 ,  2'" 

FIG. 3. Contour curves of @ = const for a 
particle in the plasma at a distance z = k ,  ' 
from the interface. 
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FIG. 4. Contour curves for a particle in the plas- 
ma at a distance z = 5 k .  ' from the interface. 

where @, is given by (3) .  Figures 3 and 4 show equipoten- The second term in braces is zero at t = 0, while at .cop t > 1 it 
tials for two positions of the particle with respect to the inter- describes plasma oscillations. These two terms contribute to 
face. the total surface charge, which varies in the following way as 

All the terms except the first in expressions ( 10) are the particle crosses the interface: 
associated with the presence of the interface between the c.2 

plasma and the vacuum. These terms are nonzero near the 
interface, over a length scale z 5 k c  '. They can be divided 
into two groups, which differ in their behavior in time. The 
terms proportional to the function W, are zero except in the 
time interval t 5 '. The other terms, which are propor- 
tional to the function W,, describe temporal oscillations at 
the frequencies of surface and plasma oscillations, which are 
damped because of dissipation. 

To determine the meaning of the individual terms in 
( lo),  we find the surface charge density: 

As the particle moves into the interior of the plasma, a 
charge Q I ( I )  is induced. Using definition ( 5 )  and expres- 
sions ( lo) ,  we find 

ut m 

Qcf ( t )  = 2n j d z  rp' (i; z; t)di=QH (t) [e- ' ' I2 cos (opt) -11. 
0 0 

(13) . , 

o ( r :  f ) = Qki { - Hr, (oui; hog + Mi. (wpl; Bp i )  
2x It can be seen from ( 12) and ( 13) that the resultant 

charge induced in the plasma at each instant, 
-e-"/' cos (opt) ti, (/cpr) Q ( t )  + Q A ( t ) ,  is equal to the charge of the particle with 

the opposite sign. As time elapses, this charge becomes redis- 
x 1 tributed. The charge at the surface disappears over a time ' e  ' " 2 s i n ( w " t ) [ z n 0 r 0 k n r 1  2 

liol t>2/v, and the charge in the wakefield of the particle in- 

(11) 

Expression (1 1) contains terms which differ in their 
contribution to the overall surface charge. The two last 
terms describe damped oscillations at respectively the sur- 
face frequency w, and the plasma frequency a , .  The total 
charge over the entire surface is zero in these oscillations 
(Appendix 2; these are "dipole" oscillations). For the oscil- 
lations at w,, the spatial variation of the surface charge is the 
same as that of the velocity component u, of the electron 
fluid, (8 ) ,  at the time t = 0. 

The first term in ( 11 ) becomes Eq. (7) .  As the particle 
moves away from the interface, the corresponding charge 
density falls off monotonically in time at any fixed value of r. 

creases. No actual "overflow" of charge occurs here, of 
course. What actually happens is that the field of the parti- 
cle, which at t < 0 confines the charge to the plasma surface, 
ceases to confine it at t > 0, but it induces a charge in the 
interior of the plasma. The magnitude of the charge induced 
in the interior oscillates at the plasma frequency; the surface 
charge oscillates at the same frequency. 

Let us examine the change in the energy of a particle 
due to the near-surface fields (the customary polarization 
loss, which is determined by the potential @,, is being ig- 
nored). From ( 10) we find the force acting on a particle and 
the corresponding change in the energy over a time 
oo >t>O:  

According to (9)  and ( 14), the total change in the ener- 

463 Sov. Phys. JETP 75 (3), September 1992 Gorbunov eta/. 463 



gy of the particle due to the near-surface fields [ A  W ,  + A W,  
= + n-Q2kp (3-2'12) > 0] is positive; this positive sign cor- 
responds to an acceleration of the particle. The field attract- 
ing the particle toward the plasma interface at t < 0 is thus 
greater than the corresponding field at t > 0. If we consider 
the effect on the particle of only those fields which have wave 
numbers k, and frequencies w, which are characteristic of 
surface oscillations [the terms in (9)  and ( 14) proportional 
to k , ] ,  we find that the change in the energy of the particle is 
A W, = - + n-Q 2k,. This result agrees with the result of 
Ref. 16, where the energy loss associated with the excitation 
of surface waves was studied. 

5. Corresponding calculations have been carried out for 
the case in which the particle crosses the plasma-vacuum 
interface in the opposite direction, i.e., from the plasma into 
vacuum [ E ,  is given by expression ( 2 ) ,  and E, = 1 1. It fol- 
lows from ( 1 ) that the potential of the particle while in the 
plasma ( t  < 0)  is 

+2d (-\) e" sin (kpE)K, (k ,~ )  
- - I  

If the particle has left the plasma ( t  > 0), we have 

I 1 I -- - - 
kP 2 

21h I+'? (koq; kor) -21Ae-v"L sin (mot) 

XLV,  (k,z: kor). z>O. 

f 

From (15) and (16) we can find the densities of the 
induced surface charge and space charge u, integrating them 
over the surface and over the volume, respectively, and we 
can also determine the total charge: 

@ = . 

We see that the space charge disappears in an oscillatory 
manner (oscillating in time), while the surface charge arises 
in the same manner. 

The energy loss of the particle as it crosses the interface 
is 

1 1 
-- l;. ( ) ? + E Z )  'i: 2"' CV,(ko 1 jJ;  k0r)+2eT' sin (kpj)K,(kpr) 

+2e-Lt/2 sin (opt) I V ,  (k, ( Z  I : kpr)-2'"e-""? sin (oat) 

X l V ,  (Ic,)zl; k , r ) .  z < 0 ,  

As in the case in which the particle enters the plasma, the 

energy loss due to the excitation of surface waves is A W,  
= - +  r Q 2 k ,  (Ref. 15). 

From ( 18) we see that there are also losses determined 
by the boundary conditions on the wakefield ( A W ,  
= - +  n- ,Q2kP) .  

As a particle passes through a plasma slab of thickness 
L greater than U / V ,  the effect of each of the interfaces on the 
field of the particle and on the energy loss can be treated 
independently. According to ( 9 ) ,  ( 14), and ( 18), we can 
then add a term A Wf = - rQ2k,(1-2--  ) , associated 
with the boundaries, to the polarization law. This term is 
smaller in magnitude by a factor of ( 1-2 ' ) ' than that 
which follows from the results of Ref. 15. 

6.  As a fast charged particle enters a plasma from vacu- 
um, the polarization processes thus develop in the following 
way. As it approaches the plasma interface, the particle in- 
duces at the surface of the plasma a charge of the opposite 
sign, equal in absolute value to its own charge, Q. As the 
particle comes nearer the interface, the region in which the 
surface charge is localized shrinks, and at the time the parti- 
cle crosses the interface the size of this region is on the order 
of u/w,, where w, is the frequency of the surface oscillations. 
The redistribution of charge density stems from fluxes of 
electrons to the plasma surface from the interior and in the 
opposite direction. 

After the particle enters the plasma, a dynamic screen- 
ing of the Coulomb field of the particle arises. A wakefield 
charge oscillating at the plasma frequency w, is induced 
over a distance u/w, behind the particle. The total magni- 
tude of this wakefield charge depends on the distance which 
the particle has traversed in the plasma. If damping is ig- 
nored, this charge varies periodically from 0 to - 2Q. As the 
particle moves, the electric field near the interface thus oscil- 
lates at the frequency w, ,  causing electrons to move either 
toward the plasma interface or away from it. One might say 
that the wakefield excites oscillations of the surface charge 
which completely screen the wakefield in vacuum, where 
this field is zero. As the particle moves a distance - u / v  into 
the plasma, the wakefield at the interface disappears, as do 
the oscillations of the surface charge at the plasma frequen- 
cy. The total charge induced in the wakefield medium be- 
comes equal to - Q, and it is the same as the charge induced 
by the particle at the plasma interface as it approached this 
interface. In a sense, there is an overflow of the induced sur- 
face charge into space charge. 

Surface oscillations with a frequency w,, = w, / 2 1 / 2  are 
also excited near the interface. The total surface charge, 
varying at the frequency a,, is zero; one might say that these 
are oscillations of a dipole type. Such oscillations arise be- 
cause the component of the electron velocity perpendicular 
to the interface, u, , is nonzero at the time at which the parti- 
cle enters the plasma ( t  = 0 ) .  A surface charge thus arises at 
a later time at the interface, and the spatial variation of this 
charge reproduces the variation in the velocity. 

As the particle leaves the plasma, the charge of the 
wakefield overflows into image charge. Surface oscillations 
are again excited. 

In analyzing the electric field of the particle, we used 
the quasistatic approximation and ignored vortical electric 
fields. The condition for the validity of this approximation 
for the question of the polarization loss is the inequality u < c  
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(Ref. 10). For the question of interest here-the fields gen- 
erated by the particle-the condition for the validity of the 
quasistatic approximation is related to the distance ( R )  
from the observation point to the particle or to the interface. 
Analysis shows that the vortical fields can be ignored com- 
pletely if R 5 d m , .  In the interval 

the vortical fields may have the same strength as the quasi- 
static fields. Finally, at R > c2/w, u,  the vortical fields are the 
dominant fields; in particular, they determine the transition 
radiation. l 7  

Although our analysis is valid only for a cold, nonde- 
generate electron gas, there is the possibility that polariza- 
tion processes of the type discussed here also occur in other 
media. In particular, it is possible that by examining the ef- 
fect of near-surface fields on the dynamics of the particles of 
a dicluster passing through a thin foil one might find a more 
complete explanation for the existing experimental data." 

We wish to thank B. M. BolotovskiY for useful discus- 
sions of the questions involved here and S. B. Tarakanov for 
carrying out numerical calculations. 

APPENDIX 1 

The function W2(a;b), defined by (4), has the follow- 
ing properties: 

where I, and L, are respectively the Bessel and Struve func- 
tions of imaginary argument. If b < 1, then 

If b>  1, then 

Forb = 0 we have W2 (a;O) = sin a cia - cos a si (a ) ,  where 
si(a) and ci(a) are the integral sine and cosine, respectively, 
and 

The function W, satisfies the equation A W2 = 0 for a,b > 0 
and has no extrema in this region. In addition, W2 satisfies 
the equation 

a2 - W2 (a; b )  + W ,  (a;  b )  = 
1 

a a' (aZ+DZ) 'h ' 

which gives us yet another representation for W2: 
m 

dg sin (E-a) 
W , ( a : b ) = J  (82+b2)% ' 

APPENDIX 2 

We consider the function 

We write it in the form 

Using this expression, we can evaluate the integral: 
n l z  3 1 4  
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