
Condensed states of excited cesium atoms 
E. A. Manykin, M. I. Ozhovan, and P. P. Polukktov 

Kurchatov Institute Russian Science Center 
(Submitted 27 February 1992 ) 
Zh. Eksp. Teor. Fiz. 102,804-813 (September 1992) 

The basic properties of condensates of excited cesium atoms are determined for excitation levels 
n = 10-20. Estimates are derived for the equilibrium density, the binding energy, the surface 
tension, the resistivity, the transmission boundary, the bulk modulus, the sound velocity, and the 
melting point. 

INTRODUCTION 

Condensed excited states have been introduced in order 
to describe dense systems of excited atoms. The behavior of 
such systems changes qualitatively at the densities at which 
the wave functions of the valence electrons begin to overlap 
significantly. Individual states of the excited atoms are not 
suitable for determining the properties of dense systems, be- 
cause of the pronounced perturbations. A condensed state of 
the excited atoms for which the valence electrons are collec- 
tivized and form a Fermi liquid around the atomic cores 
might serve as a basis here. A state of this sort has been 
proposed previously for describing highly excited semicon- 
ductors. Specifically, this is the well-known electron-hole 
state which arises as the result of a condensation of excitons, 
which are elementary excitations in semiconductors.l The 
concept of a condensed excited state makes it possible to 
include in the discussion a system of highly excited impuri- 
ties in semiconductors and insulators. Some basic ideas re- 
garding a condensate of excited atoms are set forth in some 
of our previous 

In a study of a photodielectric effect involving excited 
impurities (Ga)  in germanium, Bocharnikov et al.5 ob- 
served a faster than linear increase in the dielectric constant 
with increasing concentration of the excited particles. This 
increase was a consequence of an interaction of excited 
centers. Condensed states of excited gallium impurities were 
probably being observed in that study. It is pertinent to note 
that the Fermi liquid of this system consists of holes. ( I t  was 
recently shown that a transition to a superconducting state 
can occur at very high temperatures in similar systems6) A 
detailed study of the optical breakdown of glasses led Glebov 
and Efimov7 to suggest that the actual mechanism for the 
intrinsic optical breakdown of glasses is the abrupt onset of a 
spectrum of electron states corresponding to a collectiviza- 
tion of valence electrons and a "metallization" of the glass 
when the light reaches a certain critical intensity. Glebov 
and Efimov found qualitative support for the idea that an 
excited condensate forms in experiments on the optical 
breakdown of irradiated glasses. The condensate apparently 
forms at the center of the caustic, and the effects which are 
subsequently observed stem from an intense absorption of 
electromagnetic radiation by this condensate. Petrov and 
KashkarovX observed a large number of defects in the sur- 
face layers of some irradiated semiconductors (Si and Ge)  
which were definitely not of thermal origin. We explained 
those experiments in Ref. 9, where we derived an equation of 
state of an excited condensate of impurities in a semiconduc- 
tor (or insulator), and where we pointed out the mechanism 

for the onset of destructive stress. Zmuidzinas" presented 
some arguments for an anomalous increase in the lifetime of 
the excited condensate and for a possible superconducting 
transition, working from a two-band model of an insulator in 
a magnetic field. 

Aman et a1.I' and Svensson et al.I2 recently carried out 
several interesting studies of dense systems of excited cesium 
atoms. Using time-of-flight mass spectrometry, Aman et 
al." observed clusters of excited cesium atoms; the number 
of atoms in a cluster was on the order of lo4. Svensson et 
a1.12 studied the current-voltage characteristic of a vacuum 
gap under the conditions favoring the formation of a conden- 
sate of excited Cs atoms. They observed a linear resistance. 
They estimated the resistivity of the condensate to lie be- 
tween and l o p 2  S1.m. Although the latter experi- 
ments do not provide unambiguous quantitative values of 
the properties of a condensate of excited Cs atoms, some 
estimates (albeit qualitative and preliminary) are necessary 
here. 

Our purpose in the present study was to determine the 
basic characteristics of a condensate of excited cesium 
atoms. 

HIGHLY EXCITED STATES OF CESIUM 

The potential acting on an outer electron in a highly 
excited atom or  molecule falls off as r - ' at sufficiently large 
distances. "Sufficiently large" distances are much greater 
than the size of the atomic or molecular core. A highly excit- 
ed electron spends most of its time far from the core ( r  a n2) ,  
where the wave functions can be described fairly accurately 
by Coulomb functions. These assumptions underlie a theory 
of a quantum defect which makes it possible to describe 
states of highly excited atoms and molecules on the basis of 
the hydrogen atom. The energy of the atoms can be written 
as I,,, = ( - 1/2) (n  - 6, )', where S, is the quantum de- 
fect, which for a given I is either a constant or  a slowly vary- 
ing function of the energy. (The quantum defect is related to 
the scattering phase shift for low-energy electrons: 
S, = p, /a). The defect is large (6, > 1 ) for states for which 1 
is smaller than the maximum angular momentum of the core 
electrons. The quantum defect may be thought of as a mea- 
sure of the short-range perturbation of the core in a hydro- 
gen-like system. I t  is customary to use an effective quantum 
number n* = n - S, . For cesium atoms, the quantum defect 
for the S states is 4.05 (Ref. 13).  Highly excited S states of 
cesium are thus described by a hydrogen-like model with an 
effective quantum number n* -- n - 4. 

The properties of atoms and of a condensate which 
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TABLE I. Equilibrium properties of a condensate of excited Cs atoms. 

Equilibrium density Binding energy 
Excitation level n p, cm-' 1 B . K  

6 1 9 1 . 1 0 2 1  I !155JO 
6s ground state 

forms from them are conveniently described through the use 
of the concept of a p~eudopotential.'~ The wave function of 
the outer electron in the excited atom is orthogonal with 
respect to all lower-lying states. In other words, the wave 
function executes pronounced oscillations in the core region, 
where these states are localized. The kinetic energy of the 
outer electron is therefore large in this region. This large 
kinetic energy balances the potential energy, so an effective 
repulsive pit appears in the core region when atoms are de- 
scribed by pseudopotentials and pseudowave functions 
which become the same as the actual wave functions in the 
outer region. 

The pseudopotential most convenient for numerical es- 
timates is the Ashcroft pseudopotential, which uses a cancel- 
lation. Specifically, it sets the potential in the core region 
equal to zero (the empty core model) . I 4  The pit radius R, of 
the pseudopotential is found from the agreement of energy 
terms. For this purpose we use a variational procedure with 
a single-parameter exponential function in the outer region, 
where the potential acting on an electron is the Coulomb 
potential. Table I lists the parameters of the Ashcroft pseu- 
dopotential R, of excited S states of Cs atoms for various 
values of the main quantum number n. For comparison, we 
also show the corresponding parameters for ordinary (i.e., 
unexcited) cesium in all the tables below. 

ENERGY FUNCTIONAL OFTHE CONDENSATE 

Let us assume that at absolute zero the condensed phase 
is made up of excited atoms, all of which are in the same n-S 
state. As in the case of an ordinary metal, we can classify the 
energy states of the electron as either outer (valence) or 
inner. The valence electrons form a collective Fermi liquid, 
in which the ion system is immersed. For the inner states of 
an excited atom, the overlap of wave functions is extremely 
slight, and these states effectively remain highly localized 
near the atomic centers. The interaction of the valerlce elec- 
trons with the ion system is specified by a pseudopotential 
v,, which is a superposition of the pseudopotentials of the 
individual ions: 

The summation here is over the direct-lattice vectors Rj, and 
v, ( r  - Rj ) is the pseudopotential of an individual excited 
atom. According to the cancellation theorem,I4 we can use 
the empty-core model for v ,  : 

To estimate the properties of the condensate of excited 
atoms, we use density functional theory,15 in which the ener- 
gy of the system of electrons, E, is a single-valued functional 
of the electron density p ( r ) :  

I p(r)p(r') 
E=T[p]+- Jdrdrl - +  E, , [~]+  J drp(r)v.(r). 

2 I r-r' 1 

Here T[p] is the kinetic-energy functional of the system of 
noninteracting electrons, and Ex,. [ p ]  is the exchange-corre- 
lation energy functional. The second term in (3 )  is the Har- 
tree energy, and the last describes the electron-ion interac- 
tion. 

To refine the exchange-correlation energy functional, 
we introduce an exchange-correlation hole with a charge 
densityp,, ( r , r f ) ,  with which the electrons of the system in- 
teract. The charge density of the hole can be expressed with 
the help of the binary correlation function g, (r,rl;A), where 
A is an interaction constant: 

1 

The exchange-correlation energy functional is defined as the 
energy of the interaction of the electrons of the system with 
the charges of the exchange-correlation hole: 

The problem of calculating Ex, [p] reduces to one of choos- 
ing a binary correlation function, integrated over the inter- 
action constant, 

which incorporates both Pauli (exchange) and Coulomb 
correlations in the motion of the electrons. 

Although we do not know the general form of the corre- 
lation function G(r,r1) for arbitrary density distributions 
p ( r ) ,  there are certain exact relations which always hold. 
The following limits always hold: 
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lim G(r, rl)=O, lim G(r, r') = - I ,  
rst-m rr2-0 

( 6 )  

where r , ,  = jr - r'l. In addition, there is a sum rule in force, 
which states that the total charge of the hole at each point in 
space is equal to one: 

If we l e t p ( r )  approach a constant value, i.e., in the case of a 
uniform distribution of electrons with a density ph,  then the 
function G(r,rf ) becomes the correlation function of a uni- 
form electron gas: 

lim G (r, r') =Gh (I*, r') . 
p(')*ph 

The distribution function can be broken up into two parts: 
G(r,rf)  = G, (r,rr) + Gc (r ,r l ) ,  where G, (r,rf) incorpo- 
rates the exchange correlations, and G, (r,rl) incorporates 
the Coulomb correlations. The following exact equations 
hold for the exchange-correlation function: 

Iim Gz(r, rt)=O, lim Gz(r, r')=-'/2, 
r ~ t - m  rgz-0 

( 9 )  

J d r ~ ~ ( r ~ ) ~ ~ ( r ,  rr)=-I ,  
lim Gs(r, r') =G:(r, r'). 

p(r)-ph 

The exchange-correlation function of a uniform electron gas 
is [k, = (3r2ph ] 

sin (kFr,,) -k,r,, cos (kFr92) 
G:(r,rl)= -- 

kFr,Z 

The following exact equations hold for the Coulomb-corre- 
lation function: 

lim Gc(r, r1)=0, lim Gc(r, r l ) =  -'I2, ( 1 3 )  
731-+m r t w o  

lim Gc (r, r') =Gt (r, r') . 
p(r)-+ph 

The Coulomb-correlation function of a uniform electron gas 
can be writtenI6 

G~~ (r, r') =-'IZ exp ( - ~ r , ~ ) c o s  (firiz), ( 1 6 )  

where a = 3'/'8, P = ( - rph / 8 ~ ~  ) E~ is the correla- 
tion energy per electron in the uniform electron gas. 

The kinetic-energy functional of a system of noninter- 
acting electrons can be written in terms of a density matrix: 

The following expressionI7 holds in the Hartree-Fock ap- 
proximation: 

where 

The most accurate approximation for calculating the 
exchange-correlation functional and the kinetic functional is 
the approximation of a nonlocal d e n ~ i t y . ' ~ , ' ~  In this approx- 
imation, the correlation function is parametrically chosen in 
the same form as for a uniform electron gas. At each point in 
space, the parameters which determine this function are 
chosen in accordance with sum rules ( 10) and ( 1 4 ) .  An 
effective Fermi wave vector k ( r )  is introduced in the func- 
tion G, (r ,rf) ,  and a parameter P ( r )  is introduced in the 
function G, (r ,r i ) .  The values are calculated at each point 
from the conditions 

J dr1p(r1)Gt (r, r l ;  p (r) )=O.  ( 1 9 )  

If the binary correlation function has been determined for a 
given electron density distribution, then the exchange-corre- 
lation energy can be calculated from our basic equation ( 5 )  
with the help of ( 4 ) .  According to ( 17) ,  the kinetic-energy 
functional is given by 

Herepf(r) = k 3(r)/31T2. 
The nonlocal-density approximation makes it possible 

to deal correctly with abrupt changes in the electron density 
p ( r )  . However, the local density approximation ( L D A )  or 
"local-density model," which is considerably simpler, i s  
most often used in calculations. l 5  Formally, this approxima- 
tion involves choosing the expression for the charge denb~ty 
of an exchange-correlation hole in the form 

In other words, the constant density ph in the correlation 
function of the uniform electron gas is replaced by the real 
density p ( r ) ,  which depends on a spatial coordinate. The 
energy functional simplifies considerably in this case.4 The 
exchange-correlation energy is given by the integral 

where 

For the kinetic energy we have the expression 
r 

T [ P I = ~  drt(p)p(r), ( 2 4 )  

where 

3 
t (p) = - ( 3 x 7  %p%(r) + I Vp(r) ("~(r) -- (25) 

10 8p2 (r)  4p(r) ' 

Numerical calculations4 show that the L D A  model is 
valid if the radii of the pseudopotentials are not too large. 
The approximation of a nonlocal density has to be used only 
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TABLE 11. Estimated properties of a condensate of excited Cs atoms. 

if the radius of the heart in the empty-core model reaches Table I1 shows estimates of the surface tension u, the 
values on the order of lo3. resistivity pe , and the transmission boundary (the maxi- 

mum light wavelength which is transmitted) il of the con- 

PARAMETERS OF A CONDENSATE OF EXCITED CESIUM 

To estimate the parameters of a condensate of excited 
Cs atoms, we use the spherical-cell method, which works 
well for sp bands. l9 We also use the local-density approxima- 
tion. According to Ref. 4, the LDA model works well up to 
excitation levels n - 30. Since there are no corrections for 
intercell interactions in the approximation of the spherical 
cells, the integrals in the expressions for the energy func- 
tional can be taken within a single cell. As a trial distribution 
of the electrons within a cell, we use a single-parameter 
Gaussian profile which minimizes the energy of the system: 

Excitation level, n 

6s ground state 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

where R ,, = (R, + D )  is the radius of the cell, and R ,  is 
the radius of the Ashcroft pseudopotential of the corre- 
sponding n state of the excited atom. A distribution width 
D z  1.8R z 4  turns out to be the optimum width here.' 

The binding energy (or adhesion energy) B is defined as 
the differer~ce between the energy per atom in the condensate 
and the binding energy of an electron in the unperturbed 
excited atom. 

Table I shows numerical values of the interatomic dis- 
tances L, , of the equilibrium density p, and of the binding 
energy B. 

Surf. tension 0, 
erg/cm2 

85,O 
1,o 
0,4 
0 2  
0,1 
0,06 
0,03 
0.02 
0,Ol 
0,008 
0,006 
0,004 

Resistivity p,, .m 
Transmissi0.n 

boundary, A, ,um 

densate. The surface tension was found from the formula 
u z  4B /TL :. The resistivity was found from p, =. mv/pe21e, 
where u is the average electron velocity, and I ,  is the mean 
free path. Here we are adopting I, z L, /2. The transparency 
boundary is determined from an estimate of the electron 
plasma frequency of the condensate. 

The phase state of the condensate at various tempera- 
tures is of much interei. To determine the melting point of 
the condensate we use the Lindemann melting condition, 
according to which melting sets in when the mean square 
amplitude of the vibrations of the ions reaches an apprecia- 
ble level in comparison with the interatomic  distance^.^' If 

2.10-7 
3.10-4 
5.10-4 
7.10-4 
1.10-~ 
1 -10 -~  
2. 10-3 
3.10-" 
3.10-2 
4.10-3 
5.20-:: 
7.10-: 

we use the ~ e b y e  model for the phonons, we can show that 
the Lindemann parameter is related to the melting point T, 
and to the sound velocity us by the simple relation y 
= 1.6 k ,  T,, /Mi uf,where k ,  is the Boltzmann constant, 

and Mi is the mass of the ion. For lattices of most types we 
would have y=. 1/16 (Ref. 20). Assuming that the param- 
eter y for the condensate is the same as that for ordinary 
metallic cesium, we find the melting point of the condensate 
T CES - ,, T ~ ( V ~ / U ~ ) ~ ,  where CES stands for condensed 
excited states. The sound velocity is determined by the vol- 
ume of a unit cell, fl; by the bulk modulus b = ad 2E/df12, 
where Eis  the condensate energy; and by the mass of the ion: 
us = (bfl/Mi ) '". Table I11 shows estimates of the melting 

0,3G 
13 
? 1 
.$a 
46 
63 
85 

210 
I41  
178 
219 
267 

TABLE 111. Mechanical properties of a condensate of excited Cs atoms. 

*The value of T z  is given for the ground state 

443 Sov. Phys. JETP 75 (3), September 1992 

Melting point 
Excitation level n dyn/cm2 
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302 * 
387 
387 
46 1 
46 1 
541 
541 
627 
627 
627 
720 
720 

bS ground state 
10 
11 
12, 
13 
14 
15 
16 
17 
18 
19 

2.1010 

2.107 
8.106 
4.106 
28. 10" 
1.106 
6. l o 5  
4.105 
2.105 
2. lo5  
1.105 

0,97. 105 

1,1.105 
I,I.IO~ 
1.2, I @  
1.2, lo5  
1.3 10" 
1,3.105 
1.4.10" 
1,4, lo5  
1,4.105 
1,5,105 

20 [ 810'  1,5.105 



point of the condensate for various excitation levels. Shown 
for comparison here are values of the bulk modulus and the 
sound velocity. 

Interestingly, the sound velocity does not decrease with 
increasing excitation level, although the elastic modulus of 
the condensate decreases rapidly. This decrease is offset by a 
rapid increase in the volume of the unit cell. Figuratively 
speaking, the propagation of sound is opposed by the low 
elasticity of the system but promoted by the long "strides- 
the interatomic distances. Since the sound velocity in the 
condenstate does not decrease, the melting point of the con- 
densate does not become lower. This extremely unusual 
property of the condensate is even more surprising in view of 
the rapid decrease in the binding energy. It is found that the 
condensate remains in a solid state even at temperatures 
comparable to the binding energy. It should be kept in mind, 
however, that the condensate is easily deformed and com- 
pressed, as can be seen from the small values of the bulk 
modulus. 

METASTABLE NATURE OF THE CONDENSATE 

Condensed excited states at high excitation levels are 
long-lived metastable  state^.^' Their lifetime can apparently 
be unlimited. The reasons are the spatial separation of the 
initial and final states of the valence electrons and the forma- 
tion of a broad potential barrier between them. The barrier 
arises because of specific quantum-mechanical effects in the 
highly nonuniform Fermi liquid. These effects can be sum- 
marized by saying that the interaction of electrons with an 
exchange-correlation hole is predominant in the region in 
which the electron density is relatively high.4 

A classical analog of this interaction is the interaction 
of a charged particle with its image at the boundaries of 
spherical Wigner-Seitz cells. The valence electrons are 
blocked near the cell boundaries; they can penetrate into the 
internal regions, where the lower-lying states are localized, 
only by tunneling through the broad potential barrier. How- 
ever, the exchange-correlation interaction leads to the ap- 
pearance of a potential barrier only when parameters reach 
certain values. For example, it was shown in Ref. 22 that, in a 
model with a rigid neutralizing background (i.e., in a model 
which is qualitatively different from the Overhauser model, 
in which the background is absolutely deformable), the ex- 

FIG. 1. Effective potential of the valence electrons, W (eV), inside a unit 
cell for a condensate of excited Cs atoms ( n  = 10). This cell radius is 
R,, = 63; the value of the potential at the cell boundary is 
W , ,  = - 0.757; the maximum value is W,,, = 0.299; and the Fermi 
level is E, = - 0.517. 

FIG. 2. Effective potential of the valence electrons in a condensate, 
W,, ( I )  and W,,, (21, and position ofthe Fermi level, E, (3), versus the 
excitation level n of the Cs atoms. 

change-correlation interaction leads to an instability of a 
uniform electron distribution and to the formation of charge 
density waves only when the parameter r, = ( 3 / 4 ~ p ) ' / ~  
reaches the value r, = 17a, for two-dimensional systems or 
r, = 26a, for three-dimensional systems ( a ,  is the first Bohr 
radius). Potential barriers appear in the system of ions at 
excitation levels n* > 3 (Ref. 4) .  Figure 1 shows the effective 
intracell one-particle potential of the valence electrons in a 
condensate of excited Cs atoms with n = 1 0 :  
W = vi + vH + u,, , where vi is the potential of the cesium 
ion, v,  is the Hartree potential, and u,, = - 1 .93p'/3 is the 
effective local exchange-correlation potential. According to 
( 3 ) ,  the latter potential incorporates not only exchange but 
also correlation. It thus differs from the Slater exchange po- 
tential by a numerical factor. 

Figure 2 shows values of the effective potentials at the 
boundary of Wigner-Seitz cells, W,, (an analog of the bot- 
tom of the valence band of the condensate), along with the 
maximum values W,,, , which characterize the height of the 
potential barrier. The position of the Fermi level E, of the 
valence electrons is also shown here. To determine the posi- 
tion of E,, we make use of the circumstance that the valence 
band at the condensate is narrow in energy space. In other 
words, we make use of the small parameter max- 
[ I  ( E ~  - E ~ ) / E ~  I ]  < 1, where .ci are the eigenvalues of the 
Kohn-Shem equation. From density functional theory we 
have 

e.=E+E.-E.. - J drv,,y (r) .  

Making use of the narrowness of the bands, ZE, -- NEF, we 
thus find EF z ( E  + EH + +Ex, ) / N  where N is the number 
of electrons. As can be seen in Fig. 2, the Fermi level is below 
W,,, for condensed states of excited Cs atoms with 
10<n<20.  

CONCLUSION 

Condensed excited states arise when there are a large 
number of excited atoms, because of the strong interaction 
between these atoms. The thermodynamic functions of sys- 
tems of atoms excited to the same state, in a mixture with 
unexcited atoms, were first discussed by Mal'nev and Pe- 
kar.23 Although the results which they derived are valid, 
strictly speaking, only at small deviations from the ideal 
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case, they reached the conclusion that the system is unstable 
and that it decays into two phases. The experiments which 
have been carried out to date do not yield satisfactory esti- 
mates of the properties of the condensate (which possibly 
forms). It is thus not possible to calculate anything more 
accurate than fairly crude model-based estimates. Cesium 
appears to be a suitable material for experiments, especially 
since it is simple to obtain a large number of excited atoms in 
this case. The estimates above will make possible a directed 
effort to search for a condensate and to determine its proper- 
ties. 
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